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Abstract

Vision-Language Models (VLMs) have shown
promise as web agents, yet their planning—the
ability to devise strategies or action se-
quences to complete tasks—remains understud-
ied. While prior works focus on VLM’s percep-
tion and overall success rates (i.e., goal comple-
tion), fine-grained investigation of their plan-
ning has been overlooked. To address this gap,
we examine VLMs’ capability to (1) under-
stand temporal relationships within web con-
texts, and (2) assess plans of actions across
diverse scenarios. We design four simple yet ef-
fective tests to delve into these nuanced aspects
around planning. Our results across nineteen
VLMs reveal that these models exhibit limited
performance in the aforementioned skills and
are not reliable to function as web agents. To
facilitate future work, we release our planning
evaluations and data, providing a foundation
for advancing the future research in this area.

1 Introduction

Recent advancements in Vision-Language Models
(VLMs) have shown great potential as web agents
capable of autonomously executing user instruc-
tions, such as “Buy a flight ticket from A to B”.
To successfully accomplish these tasks, recent lit-
eratures (Koh et al., 2024b; Gu et al., 2024) have
shown that VLMs must perform three key func-
tions: perceive and comprehend the structure of a
webpage and relevant elements (Perception), rea-
son about task requirements and devise actionable
plans (Planning), and execute appropriate actions
to achieve the desired goal (Action). While VLMs
have demonstrated promising potentials, their cur-
rent performance remains inadequate for reliable
web agents (Koh et al., 2024a; Liu et al., 2024d;
Zheng et al., 2024; He et al., 2024).

Although limitations in model and algorithms
pose a significant challenge, we argue that the lack
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Figure 1: VLMs and Web Planning. For web agents to
complete tasks, a set of critical components are involved.
Among them, the fine-grained evaluation in the planning
component is essential but overlooked. Thus, we design
questions that investigate whether VLMs possess the
nuanced planning skills, enabling the first web planning
evaluation and concluding the lack of capabilities in
VLMs to plan effectively and reliably.

of holistic evaluations is another key factor hinder-
ing progress. More precisely, prior works primarily
assess the efficacy of VLM agents by judging the
correctness of their actions and measuring task suc-
cess rates, i.e., whether the goal is achieved (Pan
et al., 2024; He et al., 2024; Deng et al., 2023).
While this is intuitive and aligned with the objec-
tive of task completion, end-to-end success rates
cannot reveal the bottlenecks of agents or offer de-
tailed diagnosis and insight into the specific Percep-
tion and Planning capabilities. Observing the gap,
prior works (Liu et al., 2024d; Wang et al., 2024a)
prompt the evaluations of fine-grained VLM skills
in web scenarios, such as website grounding and
WebQA (Liu et al., 2024d; Wang et al., 2024a).



However, they focus solely on perception skills,
failing to address the underlying abilities required
for effective planning as shown in Fig. 1, thus mo-
tivating our central research question: Have VLMs
acquired the necessary capabilities to plan effec-
tively as reliable web agents?

To concretize our study, we define planning as
an agent’s ability to devise a sequence of actions to
successfully complete a given task. In the context
of web, a performant planning model must possess
three fundamental skills. First, it needs to under-
stand “order”, determining which webpage states
should come earlier during task completion, essen-
tially answering the question, "What needs to be
done first, and what comes later?" Second, it must
grasp “change”, recognizing how the sequence of
action(s) transforms the webpage states. Third, it
must be able to incorporate the order and change
to “assess” a plan that achieves the desired goal.

Hence, we design a series of unit tests to tar-
get the above prerequisite skills through two key
dimensions. In the first dimension, Temporal Un-
derstanding (Fig. 1 Q1), we conduct two tests in
Sec. 4 to examine whether VLMs can infer which
web-page state/screenshot comes earlier in the tra-
jectory of a given task (e.g "find flights from Wash-
ington to New York"), and can predict future states
following actions. Our results highlight that VLMs
struggle with basic temporal understanding capa-
bilities and they tend to rely on spurious heuristics,
such as the order in which inputs are presented,
instead of the actual semantic logic. Moreover, as
the number of action steps increases, VLMs exhibit
declining performance in predicting future states.

In the second dimension, Plan Assessment
(Fig. 1 Q2), we examine whether VLMs can reason
and choose the correct course of action to achieve
a task, given a goal and a screenshot as the start
state. Specifically, in Sec. 5, we test on real-world
web environments and a synthetic web dataset cu-
rated for diversity and controllability. The results
show overall poor performance in assessing plans,
with significant struggles in handling edge cases,
such as reverting erroneous actions (e.g clicking
the wrong checkbox) in the synthetic dataset.

Overall, our findings reveal that VLMs are not
yet equipped with adequate abilities to reliably plan
as trustworthy web agents. We envision that our
benchmark can pave the way for future research
in thorough evaluations of VLMs and hopefully
inspire ideas to advance effective and reliable web
agents. In summary, our contributions are:

• We are the first to emphasize and study the
fine-grained skills or prerequisites required by
the VLMs to serve as reliable web agents.

• We repurpose existing datasets/environments
to construct our test datasets and release for
future web agent evaluations.

• We benchmark 19 state-of-the-art VLMs and
conclude that current VLMs cannot be reliable
web agents yet due to limitations in planning.

2 Related Work

VLMs as Web Agents. Vision Language Mod-
els (VLMs) exhibit great potential across a diverse
range of challenges (Ghosh et al., 2024; Ma et al.,
2024; Li et al., 2024b). Of these, one such prob-
lem is "Web Navigation" (Xu et al., 2025; Zheng
et al., 2024), where given a user instruction (e.g.,
"Buy a pen from eBay"), and the current state (e.g.,
webpage screenshot, HTML or meta-data), VLMs’
objective is to predict the next best action(s) that
could lead to the final goal. To succeed, VLMs
must excel in three key areas: 1) Perceiving web
pages with arbitrary formats, dense images and text,
2) Planning and Reasoning over user’s intent, ex-
tracted webpage information, and potential steps
to solve the task, and 3) Predicting the next Action
and its location on the webpage. This led to diverse
benchmarks to evaluate VLMs as shown in Fig. 2.
VLM Agent Task Evaluations. Earlier bench-
marks, such as MiniWob (Shi et al., 2017) and
WebShop (Yao et al., preprint) typically evaluated
web navigation in simple, simulated environments.
More recently, works like VisualWebArena (Koh
et al., 2024a), SeeAct (Zheng et al., 2024), WebVoy-
ager (He et al., 2024), and MMInA (Zhang et al.,
2024) introduced more challenging settings, testing
agents on the real web. Building on this, (Shlo-
mov et al., 2024) decomposed the agent’s perfor-
mance into grounding and planning by measuring
the success rate on samples where VLM achieved
perfect grounding. However, these benchmarks pri-
marily assess task success, i.e., whether the final
objective is achieved, in two main approaches: the
first employs step-wise evaluation using human-
annotated datasets, specifying the ground-truth ac-
tion at each step (Deng et al., 2023; Zheng et al.,
2024), whereas the second leverages contempo-
rary VLMs (such as GPT-4o, Gemini) to determine
if the agent successfully completed the task (Pan
et al., 2024; He et al., 2024). Despite their intuitive
nature, task success metrics have two key limita-
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Evaluated End Goal Success Rate

Next Action Prediction Accuracy
• VisualWebBench (Liu et al., 2024c)

• MultiUI (Liu et al., 2024b)

• WebSRC (Liu et al., 2021)

• …

On a single webpage screenshot, On webpage after action(s),• VisualWebArena (Koh et al., 2024)

• MMInA (Zhang et al., 2024)

• WebVoyager (He et al., 2024)

• …

Web Planning Skill Benchmarks (Ours)
(a) Temporal Reasoning (Sec. 4.1)

Screenshot 1 Screenshot 2
Q: which screenshot is an earlier step in 
solving the task?

Task: “Which publisher has the most 
journals indexed in Google Scholar?”

(b) State Prediction (Sec. 4.2)

Screenshot
Q: from the screenshot, do both plans lead 
to the same final state of the form?

1. Check 3rd box
2. Uncheck 1st box
3. Click submit button

Plan A

1. Uncheck 1st box
2. Check 3rd box
3. Click submit button

Plan B

(c) Plan Assessment and Identification (Sec. 5.1 & 5.2)

Real web environment
Q: based on the task instruction and the current state (screenshot), which plan would 
most effectively accomplish the task?

Step 1
Step 2
…

Plan A

Synthetic test case

Task: “Plan a trip between …” Task: “Submit the form with …”

Plan C

Step 1
Step 2
…

Plan B

Plan D

Figure 2: Comparisons of benchmarks in different components. While extensive study has focused on evaluating
the required capabilities of the perception and action stage of web agents, the necessary skills for web planning are
overlooked in existing literature and we contribute to cover this gap through four evaluations in this paper.

tions: 1). Reliability – As noted in (He et al., 2024),
there exist multiple valid trajectories to solve a task
and enforcing the agent to match the predefined
action for each step makes the evaluation overly
restrictive. Moreover, relying on existing VLM-
s/LLMs to assess task completion introduces errors
due to their limited capabilities in web environ-
ments (Pan et al., 2024); 2). Depth of Evaluation
– While task success rates measure VLMs’ overall
effectiveness, they lack fine-grained insights into
their capabilities and defects.

VLM Web Understanding and Reasoning Eval-
uation. To circumvent the above issues in evalu-
ation by success rates, recent works (Chen et al.,
2021; Liu et al., 2024b,d; Hsiao et al., 2022) in-
troduce benchmarks to assess VLMs’ granular per-
formance in web scenarios. Particularly, Visual-
WebBench (Liu et al., 2024d) focuses on tasks such
as Web captioning/QA, Action Grounding/Predic-
tion, etc. Moreover, WebQuest (Wang et al., 2024a)
extends the above single web page evaluations to
web page sequences. They propose Multi-Screen
QA, which requires gathering information across
multiple webpages, and Trace QA, asking about the
entire sequence viewed by the user when browsing
the web. However, their questions focus on extract-
ing information across multiple web pages instead
of reasoning or action prediction. In summary, the
above works focus on two categories: 1). Percep-
tion, where VLMs process the textual and visual
content of web pages to answer direct or complex
information extraction questions; 2). Single-Step
Action, where VLMs determine the nature and the
location of action on the user screen. This lack of

focus on Planning motivated our fine-grained in-
vestigation into such capabilities. We devise novel
questions, experiment formulations and examine
19 VLMs to derive our analysis. To our knowledge,
this is the first work to analyze VLMs’ nuanced
planning capabilities in web environment.

3 Experiment Setup

Overview: In our experiments (Sects. 4 and 5), we
test VLMs on four groups of questions as discussed
in Sec. 1 and Fig. 2 and derive model responses by
prompting the model to solve multiple-choice ques-
tions (MCQs) with randomly shuffled options and
one correct choice labeled. In Sec. 4.1, we also eval-
uate the model in a non-MCQ QA setup for compar-
ison. Moreover, for each experiment, we prompt
VLMs with direct instructions (Instruct) and chain-
of-thought (CoT) reasoning (Kojima et al., 2023).
VLMs used: Our experiments evaluate 19 VLMs
including general multi-modal and GUI-specific
models. Considering the importance of practical-
size web agents (Appx. K), for general VLMs, we
choose Qwen2-VL (2B, 7B, 72B) (Wang et al.,
2024b), Llava-1.6 (7B, 13B, 34B) (Liu et al.,
2024a), Llava-One-Vision (0.5B, 7B) (Li et al.,
2024a), Minicpm-V (Yao et al., 2024), Minicpm-o
(MiniCPM-o Team, 2025), InternVL2-MPO (8B)
(Wang et al., 2024c), DeepSeek-VL (Lu et al.,
2024), GLM-4V (Lu et al., 2024), Idefics3 (Jiang
et al., 2024), and Phi-3.5 Vision (et. al., 2024b),
and for GUI-specific models, we consider Ferret-
UI (2B, 8B) (You et al., 2024), UIX-Qwen2 (Liu
et al., 2024c), and CogAgent (Hong et al., 2024).
We utilize a maximum of 4 A4500 GPUs.



Model
Dataset1 -MM-M2W Dataset2 - GUIACT

MCQ Non-MCQ MCQ Non-MCQ
Instruction CoT Instruction CoT Instruction CoT Instruction CoT

Order1 Order2 Order1 Order2 Order1 Order2 Order1 Order2 Order1 Order2 Order1 Order2 Order1 Order2 Order1 Order2
Avg

Table 1: Evaluation on Temporal Ordering Task. We show the mean accuracy of various VLMs on two datasets
across different configurations of the temporal ordering task. Pic1 and Pic2 indicate which the correct answer is.
We observe most models fail to exceed the random guess baseline of 50%, with only Qwen2-VL 72B consistently
surpassing it at 65.89%. The results highlight VLMs’ reliance on spurious heuristics, i.e., the order of options,
rather than genuine temporal understanding.

Response Evaluations: We parse the VLM output
and measure accuracy against the ground truth of
the questions as our metric. While we typically use
deterministic regular expressions for parsing, some
models did not follow the output format, for which
we use Llama3-8B (et. al., 2024a) for parsing (see
Appx. F). As additional baselines, we also conduct
a human study with at least 15 raters on 15 ran-
domly sampled questions (with the same input and
instruction for VLMs) per test. More details about
human study are in Appx. G.

4 Temporal Understanding Analysis

Understanding temporal relations is a fundamental
aspect and prerequisite for effective planning. For
web agents, comprehending the sequential order of
events (e.g., “adding to shopping cart before check-
ing out”) and reasoning about how a webpage’s
state changes through a series of interactions is crit-
ical for making informed plans and decisions. In
this section, our objective is to evaluate the tempo-
ral understanding of VLMs through two hypothe-
ses: 1). Temporal Ordering: Can VLMs identify
which webpage screenshot/state comes earlier in
the user’s trajectory for a given task (e.g., filling out
form comes before submitting it) 2). Future State
Prediction: Can VLMs determine whether two se-
quences of actions lead to same future states?

4.1 Temporal Ordering
Motivation: As agents often process sequences
of prior state screenshots to predict subsequent ac-
tions, understanding the order of webpage states

during navigation is crucial to reason about the dy-
namics in web tasks. This process requires agents
to inherently understand task trajectories (e.g., dur-
ing online shopping) and infer the sequential or-
dering of screenshots to make decisions. To test
this requirement, we assess whether VLMs can un-
derstand the temporal relationship of screenshots
representing different steps in a task.
Experiment Setup: In this test, we provide VLM
with a task instruction, two webpage states (or
screenshots), and the objective to determine which
screenshot represents an earlier step in the tra-
jectory to solve the task. We use Multimodal
Mind2Web (MM-M2W) (Zheng et al., 2024) and
the web-environment subset of GUIAct (Chen
et al., 2024), both of which consist of a task and
a ground-truth trajectory comprising T actions
{at}Tt=0 and corresponding webpage screenshots
{it}Tt=0. In these datasets, i0 (or initial webpage
state) is typically the homepage of a website and
iT (or final webpage state) is typically when task is
completed. Therefore, for a clear and unambiguous
test, we always use i0, it for inputs, hypothesizing
that presenting the initial and final webpage states
is the easiest question to determine which comes
earlier. For completeness, we include further dis-
cussion and ablation on randomly sampled ij , ik
in Appx. C, which yields similar findings.

To prepare inputs for VLMs, we label the screen-
shot images with IDs “Picture 1” and “Picture 2”,
and the ordered input image tuple as (Picture 1,
Picture 2). To mitigate the influence of prompt
variations (specifically input orders), we create two



broad configurations for each screenshot pair. In
the first setting (referred to as Order1), the input
image tuple is (start state i0, end state iT ), and the
expected answer is “Picture 1 comes earlier.” (e.g.,
Fig. 2(a)); in the second configuration (referred
to as Order2), the input image tuple is (end state
iT , start state i0), and the expected answer is “Pic-
ture 2 comes earlier.” For each of the above two
configurations, we prompt the model in MCQ and
non-MCQ format as described in Sec. 3. Each data
point thus generates four question types, enabling
a comprehensive evaluation of the model’s ability
to reason about temporal relationships.
Result - Poor sense of temporal relation: We
observe in Tab. 1 that the average performance
(the rightmost column) of almost every model fails
to surpass the random guess performance of 50%
while a human rater achieves a performance of
about 96.2%. Particularly, only Qwen2-VL 72B,
with a mean accuracy of 65.89% across 16 config-
urations, exhibits a consistent performance above
random guess but still remains significantly lower
than human performance. Additionally, we ob-
serve no significant performance variations be-
tween MCQ and non-MCQ versions in Tab. 1.
Finding - Spurious preference for the first in-
put image: Moreover, we observe that irrespective
of the order of images, VLMs tend to prefer the
answer “Picture 1 comes earlier in the trajectory”
after logically assessing both images before mak-
ing a decision. Specifically, the mean performance
difference across all models, between cases where
“Picture 1” is the correct answer and cases where
“Picture 2” is the correct answer, is 46.64% for
MCQ and 41.66% for non-MCQ. We further study
this in Appx. I through some qualitative examples,
and find that VLMs tend to rationalize their an-
swer of “Picture 1” with untenable reasons. These
examples highlight VLMs’ reliance on spurious
heuristics over genuine temporal understanding, in-
creasing their failures in temporal ordering tests.

4.2 Future State Prediction
Motivation: A critical aspect of temporal under-
standing and planning is imagining webpage state
changes and predicting outcomes from action se-
quences. Particularly, a model must reason about
the final states resulting from different action se-
quences to figure out the most effective course
of action for achieving the goal. Although pre-
vious works briefly discuss next-state prediction
(see Sec. 2), understanding outcomes over a series

of actions remains underexplored for VLMs. To
address this, we propose a simple formulation and
examine whether VLMs can predict if different
action plans lead to the same or distinct final states.
Experiment Setup: This test requires the model to
evaluate two proposed action sequences, provided
with an initial state screenshot i0, and determine
whether the future state it achieved by these plans
are identical. To construct this evaluation, we uti-
lize the data from MiniWob++ environment (Liu
et al., 2018) to generate user interface screenshots,
and two candidate action plans per screenshot, rep-
resenting common web interactions involving UI
elements such as checkboxes, textboxes, sliders
(see Fig. 2(b) and more in Appx. A). To analyze
the impact of trajectory length on planning capac-
ity, we generate data samples with short-horizon
(1-2 action steps) and long-horizon (3-4 action
steps) plans. Although longer horizons (e.g., 6-8
steps) are possible, we limit our exploration to 1-4
steps, which already pose significant challenges for
VLMs. For reliability, each data point is manually
verified, including validating the logical coherence
of action plans and the clarity of resulting states.
Result - Failure in predicting future states: We
present our results in Tab. 2. While a random base-
line would achieve approximately 50%, most mod-
els either perform below or near random guess in
both short- and long-horizon scenarios. Notably,
for the CoT setting in longer-horizon tasks, only
(Qwen2 VL 72B) exceeds 75%. Meanwhile, hu-
man performance in these tasks is 97%.
Finding - Easier to reason on shorter horizons:
We see a trend where all VLMs, except CogAgent,
perform better on short-horizon than long-horizon
plans. While the accuracy gain varies, some mod-
els, such as Llava 1.6 - 34B, show improvements
of 32% over their long-horizon results. This high-
lights the persistent limitations of current VLMs
and raises concerns about their reliability due to
inconsistencies across different scenarios.

5 Plan Assessment Analysis

In this section, we investigate more complex rea-
soning capabilities: Can VLMs select the right plan
to achieve a specific goal under real-world and
challenging synthetic edge-case scenarios? While
the previous temporal analysis focuses on under-
standing the relationship between steps in a se-
quence, plan selection requires using this under-
standing to choose the optimal course of actions.



Model Short Horizon Long Horizon
Instruct CoT Instruct CoT Avg

Table 2: Evaluation on State Predic-
tion Task in Sec. 4.2. We show the
accuracy of VLMs on the short- and
long-horizon splits. While overall per-
formance is suboptimal, models show
improved accuracy with shorter hori-
zons, underscoring their limitations in
multi-step reasoning.

Model Shuffle Perturb. Semantic Perturb.
Instruct CoT Instruct CoT Avg

Table 3: Evaluation on Plan Selec-
tion in Real Web Environment. in
Sec. 5.1 We show the accuracy of
VLMs with two types of MCQ choices
(Sec. 5.1). Many VLMs perform un-
der 50%. Models perform better to
distinguish semantically different op-
tions than options with shuffled orders.

Model Instruct CoT Avg

Table 4: Evaluation on
Plan Selection in Edge
Cases in Sec. 5.2 We ob-
serve a similar trend to
Tab. 3 here. Moreover, CoT
consistently hurts the model
performance compared to
the direct instruction.

This transition represents a critical step in evalu-
ating whether VLMs can function as reliable web
agents. Specifically, each test example consists of
a goal description, a screenshot of current webpage
state, and possible action plan candidates presented
in an MCQ format. The model must identify the
single correct plan to achieve the desired goal.

To analyze whether VLMs can reliably reason
and select plans across diverse contexts, we con-
duct two tests. First, we evaluate real-world web
use cases using tasks and scenarios from actual
website data. Second, we leverage synthetic edge
cases designed to challenge VLMs in controlled
environments, offering a more comprehensive as-
sessment of their reasoning abilities.

5.1 Real Web Environment Study

Experiment Setup: To test VLMs in real-world
web environments, we evaluate whether VLMs
can choose the correct plan from four MCQ op-
tions, given the current webpage screenshot and

task instruction. Specifically, we curate the real-
web dataset from the MM-M2W dataset (Zheng
et al., 2024), where each data point consists of a
task instruction and a human-annotated trajectory
to solve that task. To leverage this data, we first
perform a few modifications. We begin by remov-
ing samples where the action sequence is longer
than 10 steps to align with VLMs’ reasoning limi-
tations (Nagar et al., 2024; Małkiński et al., 2024).
Then, to make the dataset’s provided action descrip-
tions (e.g., “Target element: [button] Search, Ac-
tion: CLICK”) more natural to VLMs (e.g., “Click
on the search button”), we paraphrase them with
GPT-4o (OpenAI, 2024). To ensure data quality,
we manually inspect and refine each sample.

We construct the final test MCQ questions as
follows: For each task instruction g, we sample the
web page screenshot (i.e., state) it from its solu-
tion trajectory, where it is 4-5 action steps away
from reaching the task’s end state (or goal com-
pletion). These action steps will now serve as the



ground-truth correct answer for MCQ. By limiting
the reasoning to the next 4–5 steps, we simplify
the task for a reasonable chance of success. In-
correct MCQ options are then populated using the
following two strategies:
◦ Shuffling Perturbation: Given that a plan is a
sequence of actions where the next action depends
on the previous actions, this configuration creates
incorrect options by violating the sequential flow
of actions. Particularly, we create incorrect options
by entirely or partially reversing the correct action
sequence, e.g., for the task "Buy a Shampoo on
Amazon" and the plan ["Visit Amazon", "Search
Shampoo", "Add to Cart", "Order"], an incorrect
option would be ["Order", "Add to Cart", "Visit
Amazon", "Search Shampoo" ] (see Fig. 26c).
◦ Semantic Perturbation: Given an action plan
for a task, this configuration generates incorrect op-
tions by inserting irrelevant actions from a different
task into the current task’s action plan. Particularly,
for the task "Buy a Shampoo on Amazon" and cor-
rect action plan ["Visit Amazon", "Search Sham-
poo", "Add to Cart", "Order"], an incorrect op-
tion would be ["Visit Amazon", "Search flights to
New York", "Add to Cart", "Order" ] (see Fig. 26d).
With manual validation, we obtain 435 high-quality
samples per strategy, as detailed in Appx. B.
Result - Lack of genuine understanding of plans:
The experiment results are presented in Tab. 3. Un-
der the Shuffling Perturbation setting, while most
VLMs outperform random guess performance (i.e.,
25%), their accuracy remains significantly lower
than that of human raters (i.e., 90%), with only
3 models exceeding 50%. In contrast, in the Se-
mantic Perturbation setting, many models achieve
higher accuracy over 50%, and every model sur-
passes its own performance under Shuffling Pertur-
bation (due to intuitiveness, we skip human study
for the generally easier Semantic Perturbation set-
ting). This suggests that while VLMs can differ-
entiate plans by assessing whether each of their
action is contextually appropriate for the given task
(shown in Appx. I), they struggle to compare plans
based on the difference between the temporal order-
ing of actions, which is critical for planning. Con-
sequently, we anticipate a need to explicitly model
action sequences and state changes in VLMs.

5.2 Edge Case Test Study
Motivation: Real-world data provides valuable in-
sights but often lacks the diversity of scenarios that
agents may encounter during web browsing. For

Figure 3: Performance v/s Model Scales. We plot av-
erage performance of Qwen2-VL and Llava-1.6 family
over all settings in real web environment (Sec. 5.1) and
edge case experiments (Sec. 5.2). We find that scaling
does not automatically help every model.

instance, datasets like MM-M2W include human-
annotated trajectories that typically start from web-
site homepages, have human labels for each action,
as well as represent “perfect” trajectories with min-
imal navigation errors and where each webpage’s
state is likely an ‘ideal state’ for possible actions
(e.g., to fill a form, we define an ‘ideal state’ is
an empty form). However, in practice, edge cases
such as random initializations (e.g., forms have
pre-filled fields) or error states (e.g., checking the
wrong checkbox) are common. While humans can
recover from these, we explore whether VLMs can
do the same. Thus, motivating our development of
synthetic edge case data with controlled variations,
focusing on recoverable errors.
Experiment Setup: We again leverage Mini-
Wob++, focusing on UI elements including check-
boxes, textboxes, sliders, radio-buttons, and but-
tons. For a given task (e.g., “Check the 1st and
2nd checkbox”), we algorithmically perform ac-
tions that modify the empty form state to introduce
random initializations or errors (e.g., toggling the
3rd checkbox), and then generate four action plans,
only one of which correctly solves the task (see
Appx. A). To ensure high-quality data, we manu-
ally validate the correctness of the questions, and
the existence of a single correct option.
Result - Worse performance on edge cases: From
Tab. 4, we observe that most models perform signif-
icantly poor, with accuracy below 50% for both In-
struct and CoT variants. Meanwhile, human raters
achieve 99.2% accuracy for these tasks. The per-
formance is even poorer for GUI-specific models
(Ferret-UI, UIX-Qwen2, CogAgent), with a maxi-
mum accuracy of only 26%. Moreover, we observe
that the highest-performing Qwen2VL 72B model
suffers a 12% performance drop in its CoT variant.
This reinforces concerns if models rely on spurious
correlations rather than genuine understanding to
arrive at correct answers.



(a) Perception Error
Task: Check the 2nd radio button and enter the

number "20" into the 2nd textbox. 

Reasoning: The task requires ... and entering the number "20" 
into the 2nd textbox. The image shows that ... and the 
number "20" is already entered into the 1st textbox. ... 

Output Choice: B

A: …
B: Check the 1st radio button. Then, 
clear the number 20 from the 1st 
textbox and enter it into the 2nd textbox.
C: …
D: …

Task: Select "7" with the slider and click the 3rd checkbox

Reasoning: … Option A moves the slider to the right by 3 
units … This ensures the slider is set to 7 and …

Output Choice: A

A: Move the slider handle to the right 
until the slider value increases by 3. 
Then, uncheck the 3rd checkbox, click 
the 3rd checkbox and then hit Submit.
B: …
C: …
D: …

(b) State Change Understanding Error
Task: Check the 3rd radio button and enter the number

"-2" into the 1st textbox. 

Reasoning: The task requires … and entering the number 
"-2" into the 1st textbox. The image shows that … and 
the number "-2" is already entered into the 3rd textbox. 
Therefore, no action needs to be taken.

Output Choice: D

A: …
B: …
C: …
D: No action needs to be taken.

(c) Basic Reasoning Error

Figure 4: Error case study. We demonstrate three common error paradigms observed in our experiments.

6 Discussion and Analysis

In this section, we highlight the consistent trends
observed across our experimental settings.
Do these skills lead to task success? We compare
the task success of three models—Qwen2-VL-7B,
LLaVA-1.6, and Phi-3.5— from the Mind2Web-
Live benchmark (Pahuja et al., 2025), and their
performance across our planning skills. As detailed
in Appx. D, model’s capabilities in our planning
skills are correlated with the task success rate.
Is CoT reasoning always helpful? In Tabs. 1
to 4, we explore the impact of CoT reasoning on
the performance in each experiment. Interestingly,
we did not observe sufficient gains resulting from
CoT. Specifically, while some models occasionally
showed reduced performance due to CoT, others
consistently struggled to adopt it effectively.
Are bigger models better than their smaller ver-
sions? From Fig. 3, we find that while Qwen2-VL
family improves in performance, Llava 1.6-34B is
not significantly better than its smaller counterparts,
contrary to the findings of (Liu et al., 2024d) - scal-
ing improves perception-related web tasks. Thus,
it is crucial to investigate how factors beyond scal-
ing—such as architecture and pre-training—impact
VLMs’ reasoning and planning abilities on the web.
Do GUI-specific models outperform general
VLMs? Although previous studies show that GUI-
specific models outperform generalist VLMs in
GUI navigation and comprehension tasks (Rawles
et al., 2024; Cheng et al., 2024), they significantly
underperform on our tests in Tabs. 2 to 4 (last three
rows). Similar to (Liu et al., 2024d), we found
this behavior is likely due to over-fitting to the
GUI settings, which affects their general reasoning
and instruction-following capability. We support
this using qualitative examples of GUI-Models in
Appx. I, demonstrating their poor output quality.
Case Study: We present examples in Fig. 4 to bet-
ter understand the errors made by the model. This

section focuses on the results of Qwen2-VL 72B in
Sec. 5.2, with additional results provided in Appx. I.
Our analysis reveals three most common errors: 1).
Perception Errors (Fig. 4a), where incorrect per-
ception of details becomes bottleneck in reasoning,
2). State Change Understanding (Fig. 4b), where
the model fails to imagine future states, 3). Basic
Reasoning (Fig. 4c), where the model fails to make
straightforward logical inferences.

7 Conclusion

In this work, we introduce the first evaluation
frameworks aimed at understanding the fine-
grained skills required for VLMs to plan in web
environments. While prior research has largely
focused on webpage perception and task success
metrics, such evaluations overlooks the necessity
in thoroughly assessing the planning capability re-
quired for reliable web agents to plan. To address
this gap, we carefully design critical questions en-
compassing planning skills such as temporal rela-
tions over state trajectory, temporal prediction of
future states, and plan assessment for identifying
effective plans. By carefully re-purposing exist-
ing data, generating synthetic data and validating
by humans, we create four high-quality tasks and
benchmark 19 state-of-the-art VLMs.

Our findings reveal that current VLMs are far
from achieving human-like planning capabilities,
and hardly above random guessing in many evalu-
ations, indicating fundamental deficiencies in rea-
soning about web dynamics. Specifically, we ob-
serve that models struggle with temporal reasoning
and plan assessment, highlighting their limitations
in synthesizing sequential web information. Ad-
ditionally, common strategies, such as CoT rea-
soning, increasing model scale, and training on
GUI-specific datasets, do not consistently lead to
improvements in fine-grained planning tests. These
findings underscore the pressing need for more so-
phisticated training and evaluation paradigms.



Limitations

Despite our contributions, we acknowledge several
limitations. Due to resource constraints, we are yet
to evaluate proprietary models (e.g GPT, Claude,
Gemini), which may exhibit different planning ca-
pabilities. Additionally, our reliance on repurposed
and synthetic data, while effective in establishing
structured evaluations, limits the coverage of di-
verse real-world scenarios. Given the complexity
and variability of web interactions, we only ad-
dress a key subset of important planning challenges.
Nevertheless, we hope that our study serves as a
foundation for future research, encouraging further
exploration of VLMs’ planning capabilities and
reliablitiy as web agents.
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A Creating Synthetic Data with
MiniWob++

In this section, we describe more details and exam-
ples for the data we create for Sec. 4.2, Sec. 5.2
using the MiniWob++ environment.
Edge Case Test: As shown in Fig. 6, given a task
(e.g "Check abs checkbox"), we first obtain a clean
or fresh form which has not been interacted with.
Next, we algorithmically perform a series of ac-
tions, where we randomly interact with a subset of
form elements (e.g clicking one/two checkboxes).
to generate our edge-case screenshots. This pro-
cess results in an edge case screenshot where some
incorrect elements may be clicked, or certain fields
may have different pre-filled values, and VLMs
have to figure out their way to navigate (or recover)
through this altered state and solve the task. We
perform the above across three MiniWob++ envi-
ronments, each featuring a form with a distinct
combination of elements - (1) checkboxes only,
(2) a slider and a checkbox, (3) a textbox and a
radiobutton (See Fig. 5). Finally, these environ-
ments correspond to three specific tasks for our
Edge Case test, namely Task 1, Task 2, and Task 3,
respectively (See Fig. 7).
Future State Consistency: Now, we leverage the
form screenshots obtained above and algorithmi-
cally create three tasks (Task 1, Task 2, Task 3)
to examine if VLMs can determine whether two
sequences of action lead to the same future states
(see Fig. 8 for long-horizon action plan scenarios
and see Fig. 9 for shorter ones).

Task 1 Task 2 Task 3 

Figure 5: Example Synthetic Data from MiniWob++.
We leverage the MiniWob++ environment to generate
three groups of tasks: 1). a list of checkboxes, 2). a slide
with three checkboxes, and 3). three radio-buttons with
three text boxes. All tasks contain a “Submit” button.

B Constructed Options for Real Web
Plan Assessment

We use the snippet in Fig. 10 to create options for
our shuffling perturbation, and use the snippet in

Automatic 
Perturbation

for Random 
Initializations 

and Errors

Task: Check 0U1A, Goba6 and click Submit

Original Clean Form Edge Case Scenarios

Figure 6: Illustrating one of our algorithmic interactions
to perturb the original clean form state.

Task: Change the current state of the form shown in the image to the state where only 
the checkboxes labeled cdCuet, vLNhw4F, ke are selected. Once the form is in this 
state, click the Submit button. If any other checkboxes remain selected prior to 
submitting, ensure you uncheck them accordingly.

A Check cdCuet, vLNhw4F, ke and Click Submit

B Uncheck cdCuet, Check cdCuet, vLNhw4F, ke and Click Submit

C Uncheck Tg, Check vLNhw4F, ke and Click Submit

D Check vLNhw4F, ke and Click Submit

E Directly click Submit.

(a) Task 1
Task: Change the current state of the form shown in the image to the state where only 
the checkboxes labeled cdCuet, vLNhw4F, ke are selected. Once the form is in this 
state, click the Submit button. If any other checkboxes remain selected prior to 
submitting, ensure you uncheck them accordingly.

E Directly click Submit.

A Click the 1st checkbox and then hit Submit.

B Move the slider handle to the right until the slider value increases by 5 units, 
and then click Submit.

C Move the slider handle to the left until the slider value decreases by 10. Then, 
uncheck the 2nd checkbox, click the 1st checkbox and then hit Submit.

D Move the slider handle to the left until the slider value decreases by 5. Then, 
uncheck the 1st checkbox, click the 1st checkbox and then hit Submit.

(b) Task 2
Task: Check the 1st radio button and enter the number \"46\" into the 2nd textbox. 
Before proceeding, ensure that no other radio button is selected and no text is entered in 
any other textbox.

A Check the 3rd radio button and enter number 46 into the 2nd textbox.

B Check the 1st radio button. Then, clear the number 46 from the 2nd textbox 
and enter it into the 3rd textbox.

C No action needs to be taken.

D Check the 1st radio button and enter the number \"46\" into the 2nd textbox. Before proceeding, 
ensure that no other radio button is selected and no text is entered in any other textbox.

(c) Task 3

Figure 7: Task examples for Edge Case Test Study

Fig. 11 to create the semantic perturbation.

C Choice of States in the Temporal
Ordering Setup

As discussed earlier, our design in the temporal or-
dering experiment focuses on transitions between
the initial state i0 and the final state it to reduce
ambiguity. We now present a discussion for our
choice along with the ablation experiments after
selecting random states ij , ik.



Task: Based on your analysis, state whether both plans result in the same state of the 
form just before clicking Submit. Your final answer must be either \"Yes\" or \"No\".

1. Move the slider handle to the 
right until the slider value increases by 3.
2. Uncheck the 3rd checkbox
3. Click the 2nd checkbox
4. Hit Submit

Plan A

Yes No

Plan B1. Uncheck the 3rd checkbox
2. Click the 2nd checkbox
3. Move the slider handle to the right until 
the slider value increases by 3.
4. Hit Submit

(a) Task 1
Task: Based on your analysis, state whether both plans result in the same state of the form just before clicking Submit. 

Your final answer must be either \"Yes\" or \"No\".

1. Move the slider handle to the right until the slider value increases by 8.
2. Move the slider handle to the right until the slider value increases by 1.
3. Uncheck the 3rd checkbox
4. Click the 2nd checkbox
5. Hit Submit.

Plan A

Yes No

1. Uncheck the 3rd checkbox
2. Click the 2nd checkbox
3. Move the slider handle to the right until the slider value increases by 9.
4. Hit Submit.

Plan B

(b) Task 2
Task: Based on your analysis, state whether both plans result in 

the same state of the form just before clicking Submit. Your 
final answer must be either \"Yes\" or \"No\".

1. Check iyHxAx
2. Uncheck Br
3. Uncheck iyHxAx
4. Check Br
5. Hit Submit

Plan A

1. Uncheck Br
2. Check iyHxAx
3. Check Br
4. Uncheck Br
5. Hit Submit

Plan B

Yes No

(c) Task 3

Figure 8: Task examples for Future State Prediction
study – Long Horizon i.e plans have (3-4 action steps
before submitting the form)

Task: Based on your analysis, state whether both plans result in the same state of the 
form just before clicking Submit. Your final answer must be either \"Yes\" or \"No\".

1. Move the slider handle to the 
right until the slider value increases by 3.
2. Uncheck the 3rd checkbox
3. Hit Submit

Plan A

Yes No

Plan B1. Uncheck the 3rd checkbox
2. Move the slider handle to the right until 
the slider value increases by 3.
3. Hit Submit

(a) Task 1

(b) Task 2
Task: Based on your analysis, state whether both plans result in 

the same state of the form just before clicking Submit. Your 
final answer must be either \"Yes\" or \"No\".

1. Check iyHxAx
2. Uncheck iyHxAx
3. Hit Submit

Plan A

1. Uncheck Br
2. Check Br
3. Hit Submit

Plan B

Yes No

(c) Task 3

Figure 9: Task examples for Future State Prediction
study – Short Horizon i.e plans have (1-2 action steps
before submitting the form)



1 def shuffling_perturbation(arr):
2

3 n = len(arr)
4

5 # Custom shuffling logic for arrays of length 4
6 if n == 4:
7 shufflings = [
8 arr[:], # Original order: [pos1, pos2, pos3, pos4]
9 arr[::-1], # Reversed order: [pos4, pos3, pos2, pos1]

10 [arr[3], arr[2], arr[0], arr[1]], # Custom order: [pos4, pos3, pos1, pos2]
11 [arr[2], arr[3], arr[1], arr[0]] # Custom order: [pos3, pos4, pos2, pos1]
12 ]
13 # Custom shuffling logic for arrays of length 5
14 elif n == 5:
15 shufflings = [
16 arr[:], # Original order: [pos1, pos2, pos3, pos4, pos5]
17 arr[::-1], # Reversed order: [pos5, pos4, pos3, pos2, pos1]
18 # Custom order: [pos5, pos4, pos3, pos1, pos2]
19 [arr[4], arr[3], arr[2], arr[0], arr[1]],
20 # Custom order: [pos4, pos3, pos2, pos1, pos5]
21 [arr[3], arr[2], arr[1], arr[0], arr[4]]
22 ]
23 else:
24 # Return None if array length is not 4 or 5
25 return None
26

27 # Randomly shuffle the generated shufflings
28 random.shuffle(shufflings)
29

30 return shufflings

Figure 10

1

2 # Get the plan to be perturbed based on the current index
3 plan_to_be_perturbed = all_plans_list[idx]
4

5 # sampled_id_for_random_plan --> this is an index from the list of plans other than idx
6 ref_plan = random.sample(all_plans_list[sampled_id_for_random_plan], 1)[0]
7

8 # Replace one action of the plan_to_be_perturbed with the sampled ref_plan
9 plan_to_be_perturbed[random.randint(0, len(plan_to_be_perturbed) - 1)] = ref_plan

10

11 # Append the perturbed plan to the list of semantic-perturbed plans
12 plan_choice_semantic_perturbed.append(plan_to_be_perturbed)

Figure 11



Discussion. Our original choice addresses chal-
lenges of noise associated with the random sam-
pling of intermediate webpage states. For example,
in tasks like “Buy Louis Vuitton on Amazon,” users
scroll through search results dynamically, produc-
ing intermediate screenshots that reflect varying,
non-sequential segments of the page. These vari-
ations, which do not follow a consistent semantic
order, complicate efforts to determine which state
occurs earlier. Similarly, in tasks such as “Add
toilet paper and laundry detergent to Amazon cart,”
the order of intermediate screenshots can plausibly
vary depending on user behavior, making defini-
tive temporal labels infeasible. Thus, creating a
reliable evaluation data in the random way necessi-
tates the need for manually inspecting and filtering
the ambiguous intermediate states and the entire
generated data, which is out of scope for our work.
Ablation Results. For the sake of completeness,
we now include evaluation results with random
states ij , ik. From Table 5, we can observe that for
both the datasets MM-M2W, GUIAct, the perfor-
mance of chosen VLMs (MiniCPM, Qwen2-VL-
7B) is poor and not very substantiallyy better than
the random guess performance of 50%. Although
the potential for the aforementioned issues makes
it harder to draw trends from these numbers, we
can still observe the VLMs to struggle similarly for
the intermediate states.

Model MM-M2W GUIAct
Instruct CoT Instruct CoT

Minicpm 46.28 48.26 51.65% 59.35%
Qwen2-VL 7b 44.94 44.72 54.28% 54.64%

Table 5: Comparison of performance on MM-M2W and
GUIAct datasets using random intermediate states.

D Correlation Between Planning Skill
Performance and Task Success Rate

To investigate the relationship between planning
skill performance and overall task success, we ana-
lyze the results of three models—Qwen2-VL-7B,
LLaVA-1.6, and Phi-3.5—on the Mind2Web-Live
benchmark (Pahuja et al., 2025). We evaluate these
models across three core planning skills: Future
State Prediction, Plan Selection (Real World), and
Edge Case Detection, along with their task success
metrics, including average step success rate, com-
pletion rate, and full task success rate. The results
are summarized in Table 6.

Model Future State Plan Selection Edge Case Planning Avg Step Completion Full Task
Prediction (Real World) Detection Avg SR Rate SR

LLaVA-1.6 35.70 54.67 34.79 41.72 32.0 30.3 4.8
Phi-3.5 56.68 48.04 29.52 44.75 44.0 34.0 13.3
Qwen2-VL-7B 64.71 67.53 48.70 60.31 45.3 40.2 19.3

Table 6: Comparison of planning skill evaluation and
task success metrics across models on the Mind2Web-
Live benchmark.

As shown in Table 6, the average planning skill
scores for LLaVA-1.6, Phi-3.5, and Qwen2-VL-7B
are 41.72, 44.75, and 60.31, respectively. These
scores correlate with each model’s task success
rates: LLaVA-1.6 achieves a full task success rate
of 4.8%, while Phi-3.5 and Qwen2-VL-7B achieve
13.3% and 19.3%, respectively. The ranking of
models by average planning ability closely mir-
rors their ranking in task-level performance metrics,
suggesting a strong relationship between planning
skill and downstream task effectiveness. This find-
ing reinforces the value of skill-level evaluations in
understanding and predicting model performance
in real-world web environments.

E Comparison with Proprietary Models

Given resource constraints, we were unable to run
the complete set of experiments on large-scale pro-
prietary models. To demonstrate the value of our
experimental setup, we conducted smaller-scale
evaluations using GPT-4o-mini across two repre-
sentative tasks: Temporal Ordering and Plan Selec-
tion in Real Web Environments.

For the Temporal Ordering task, we select the
GUIAct data and sample a subset of 500 questions
from the full evaluation set, whereas for Plan As-
sessment, we evaluate on the Shuffle Perturbation
setting. The results are shown in Table 7.

Phase Instruct CoT

Order1 40.6 41.6
Order2 57.8 59.6

Table 7: Temporal Ordering task performance (%) on
GPT-4o-mini.

Prompt Type Accuracy (%)

Instruct 49.66
CoT 48.97

Table 8: Plan Selection task performance (%) on GPT-
4o-mini under the Shuffle Perturbation setting.



Our results with GPT-4o-mini reveal two key
findings: (1) temporal prediction accuracy is only
marginally better than random guessing (50%), and
(2) performance on the plan selection task is weaker
than that of many open-source models (see Table 3).
These observations suggest that proprietary models
do not necessarily outperform smaller open models
on fine-grained web planning evaluations, high-
lighting the value of our task-specific benchmark-
ing approach.

F Prompts

In this section, we include the following prompts:
Temporal Ordering: For simplicity, we only in-
clude the prompts for Non-MCQ settings. Note
that we use the same prompt for the MCQ setting,
differing only in the output format. Fig. 12 shows
the Instruction prompt and Fig. 13 shows the CoT
prompt.
Future State Prediction: Fig. 14 shows the
Instruction prompt and Fig. 15 shows the CoT
prompt.
Plan Assessment : Real Web Environment
Fig. 16 shows the Instruction prompt and Fig. 17
shows the CoT prompt. We add action history to
the prompt in Fig. 18 to evaluate the impact of the
presence of history in Appx. H.
Plan Assessment : Edge Case Scenario Fig. 19
shows the Instruction prompt and Fig. 20 shows
the CoT prompt.
Llama as a Judge Prompt Fig. 22, Fig. 21, Fig. 23
includes all the LLama prompts we use throughout
our paper.

G Human Study Details

In this section, we describe the process we fol-
lowed to obtain human performance for the tests
mentioned in this paper.
Number of samples. We randomly sample 15
questions for Temporal Ordering, Plan Selection
(Real Web Scenarios), and Plan Selection (Edge
Cases). For Future State Prediction, which has
Long and Short Horizon configurations, we sam-
ple 20 total questions to balance volunteer effort
and question count. As noted in the main paper,
of the two configurations for Plan Selection (Real
Web)—Shuffling Perturbation and Semantic Per-
turbation—we conduct human study only for the
harder Shuffling Perturbation due to constraints.
Instructions given to raters. The tests are pre-
sented to humans in the same format as the VLMs

in our study, i.e., MCQs with 4/5 options. To ensure
a fair comparison, we present the same instructions
to both VLMs and human raters. Accordingly, we
use the prompts outlined in Fig. 19, Fig. 14, Fig. 16,
and Fig. 12.
Gathering Responses. Our raters included indi-
viduals from diverse backgrounds, including stu-
dents across various degrees (Bachelor’s, Master’s,
PhD) and fields (CS, ECE, Mathematics, Robotics,
Nursing, Pharmacy, etc.), as well as Postdoctoral
Researchers, Research Associates, and Technical
Industry Professionals. Responses were collected
via Google Forms. Depending on their availability,
each rater participated in 1–4 studies, with 2 being
the most common. This ensured a minimum of 15
responses per study.
Results. The performances of human raters are
96.2% for Temporal Ordering, 97% for Future
State Prediction, 90% for Plan Selection – Real
Web Scenarios, and 99.2% for Plan Selection –
Edge Case Test. Qualitative feedback from raters
revealed that most errors occurred due to rater fa-
tigue of questions, rushing, or missing thorough
reading of the task instruction and options.

H Impact of Action History in Future
Plan Assessment

As described in Sec. 5.1, we use the MM-M2W
dataset (Zheng et al., 2024), where each data point
includes a task instruction and a human-annotated
trajectory (a sequence of states/screenshots and ac-
tions at each state) to complete the task. We first
select samples with action trajectories of length
≤ 10. To create a test question for each task in-
struction g, we sample a web page screenshot (or
state) it from its solution trajectory, where it is 4-5
action steps (ap) away from the task’s end state
(or goal completion). Thus, it can be understood
that for sequences with lengths ≥ 5, there will be
it steps leading from the start state (i0, typically
the homepage) to it. We refer to these as "previ-
ous actions." or "action history". In this ablation
experiment, we investigate whether VLM perfor-
mance in plan assessment improves when provided
with "previous actions" as input, specifically test-
ing if VLMs can better assess plans when given the
history of actions. To construct prompts for this
study, we adapt those used in Sec. 5.1, e.g, Fig. 18
is derived from Fig. 16.

Our results in Tab. 9 reveal a trend similar to the
main paper table without action history. Notably,



Temporal Ordering (No-MCQ) (Instruction Prompting)

You are given a task along with two image screenshots representing steps in a trajectory that either solves the given
question or helps find the relevant information required to answer it. Your goal is to determine which screenshot likely
represents an earlier step in the trajectory.

An earlier step in the trajectory refers to a step that must logically or procedurally occur before the other. Consider
dependencies, prerequisites, or actions that logically precede others. For example, if one step involves entering
information and another involves confirming it, entering the information must logically come earlier. Use this principle
to analyze the order of the screenshots.

Use the task to understand the context, and carefully examine each screenshot for any clues that suggest their order in
the sequence. Consider all visible text, UI elements, and page structure to infer which screenshot likely comes earlier in
the process.

Important Notes:
1. Picture Labelling: Refer to the input image screenshots as [Picture 1, Picture 2]. These labels are purely for
identification and do not indicate any logical order or sequence in the trajectory. Your objective is to determine which
picture represents the earlier step in the trajectory based on the given question description and careful analysis of the
pictures.

2. Relevance to the Task: Both screenshots are directly related to either solving the question or finding relevant
information to answer it. Do not assume that either image is irrelevant.

3. Expert Trajectories: These screenshots are taken from expert human trajectories that were executed to successfully
solve the question. Trust that the screenshots reflect valid steps.

4. Arbitrary Order: The screenshots are presented in no particular order. Their arrangement does not indicate which
step comes earlier in the trajectory.

Task:
{task}

Question:
Based on the two given images and the question, determine which image (or screenshot) represents an earlier step in the
trajectory.

Output format:
Clearly state which picture represents the **earlier step** in the trajectory, "Picture 1" or "Picture 2".

Only output your answer choice ("Picture 1" or "Picture 2"). Do not include any reasoning, explanation, or additional
text.

Figure 12



Temporal Ordering (No-MCQ) (Chain-of-Thought Prompting)

You are given a task along with two image screenshots representing steps in a trajectory that either solves the given
question or helps find the relevant information required to answer it. Your goal is to determine which screenshot likely
represents an earlier step in the trajectory.

An earlier step in the trajectory refers to a step that must logically or procedurally occur before the other. Consider
dependencies, prerequisites, or actions that logically precede others. For example, if one step involves entering
information and another involves confirming it, entering the information must logically come earlier. Use this principle
to analyze the order of the screenshots.

Use the task to understand the context, and carefully examine each screenshot for any clues that suggest their order in
the sequence. Consider all visible text, UI elements, and page structure to infer which screenshot likely comes earlier in
the process.

Important Notes:
1. Picture Labelling: Refer to the input image screenshots as [Picture 1, Picture 2]. These labels are purely for
identification and do not indicate any logical order or sequence in the trajectory. Your objective is to determine which
picture represents the earlier step in the trajectory based on the given question description and careful analysis of the
pictures.

2. Relevance to the Task: Both screenshots are directly related to either solving the question or finding relevant
information to answer it. Do not assume that either image is irrelevant.

3. Expert Trajectories: These screenshots are taken from expert human trajectories that were executed to successfully
solve the question. Trust that the screenshots reflect valid steps.

4. Arbitrary Order: The screenshots are presented in no particular order. Their arrangement does not indicate which
step comes earlier in the trajectory.

Task:
{task}

Question:
Based on the two given images and the task, determine which image (or screenshot) represents an earlier step in the
trajectory.

Follow the below guidelines to derive your answer:

1. Understand the Task Context:
Carefully read the task to identify the context and goal. This will help infer the logical progression of steps.

2. Analyze Each Screenshot:
Examine each screenshot for details like visible text, UI elements, and page structure. Identify clues about what action
or information they represent in the process.

3. Compare and Reason:
Compare the screenshots using the question context and their visible elements. Consider dependencies or prerequisites
to determine which screenshot or step must logically come first.

4. Provide Your Answer:
Clearly state which picture represents the earlier step in the trajectory, "Picture 1" or "Picture 2".

Output format:
Follow the format below for your response.

REASONING: Provide a concise step-by-step reasoning using the steps outlined above.

OUTPUT: Output your answer choice ("Picture 1" or "Picture 2"). Do not include any additional text here.

Figure 13



Future State Prediction (Instruction Prompting)

You are given an image showing the initial state of a form. This form requires the user
to perform a series of actions before clicking the Submit button. Submitting the form
navigates the user to a new window or page.

You are provided with two action plans (Plan A and Plan B) that describe the sequence of
actions to interact with the form. Each plan is executed independently and in isolation,
starting from the exact same initial state shown in the image. The two plans are not
executed one after the other, and neither plan influences the result of the other.

Your task is to determine if the state of the form just before clicking Submit will be
the same after following either plan.

Action Plans:
{plan_choices}

Question:
Based on the given image and the provided action plans, do both plans lead to the same
state of the form just before clicking Submit when executed independently and in isolation,
each starting from the same initial state of the form (i.e., shown in the image)?

Output format:
Only output "Yes" or "No".

Do not include any reasoning, explanation, or additional text.

Figure 14



Future State Prediction (Chain-of-Thought Prompting)

You are given an image showing the initial state of a form. This form requires the user
to perform a series of actions before clicking the Submit button. Submitting the form
navigates the user to a new window or page.

You are provided with two action plans (Plan A and Plan B) that describe the sequence of
actions to interact with the form. Each plan is executed independently and in isolation,
starting from the exact same initial state shown in the image. The two plans are not
executed one after the other, and neither plan influences the result of the other.

Your task is to determine if the state of the form just before clicking Submit will be
the same after following either plan.

Action Plans:
{plan_choices}

Question:
Based on the given image and the provided action plans, do both plans lead to the same
state of the form just before clicking Submit when executed independently and in isolation,
each starting from the same initial state of the form (i.e., shown in the image)?

Follow the steps provided next to arrive at your answer:

1. Image Analysis: Describe the relevant elements in the image, and carefully
review the initial state of the form.
2. Plan Evaluation: Separately evaluate both the action plans step-by-step,
and carefully determine how each step changes the state of the form.
3. State Comparison: Compare the final states of the form just before clicking
Submit after executing Plan A and Plan B in isolation, each starting from the same
initial state. Look for differences in the values and configurations of the form
elements.
4. Final Answer: Based on your analysis, state whether both plans result in the
same state of the form just before clicking Submit. Your final answer must be either
"Yes" or "No".

Output format:
Your output should follow the below format:

REASONING: Be concise and to the point.

OUTPUT: "Yes" or "No". Do not include any additional text here.

Figure 15



Real Web Environment Study (Instruction Prompting)

You are given an image and a task that needs to be performed based on that image. The image
represents what a user is currently seeing on their screen while attempting to solve the task. You
are also provided with four choices of action plans (each represented as a set of actions) that
outline potential steps to accomplish the task.

Your goal is to carefully analyze the image and evaluate the four action plans to decide which one
most effectively helps the user complete the task.

Important Notes:
1. The current screenshot represents the user’s current state or screen. As the user executes an
action (e.g., clicking a button) from any plan, the screen or state may change. You must imagine
these transformations and assess the feasibility of the remaining actions in each plan.

2. Some action plans may include invalid actions that cannot be executed based on the current or
subsequent screens. It is your responsibility to identify and exclude such plans from being valid
answer candidates.

3. The task is guaranteed to succeed within the next {plan_len} steps. If an action plan cannot
complete the task within its steps, it is not a valid answer candidate.

4. Assume all plans are related to the task. However, some plans may include errors, inefficiencies,
or invalid actions. Your responsibility is to evaluate each plan thoroughly to determine its
effectiveness.

Task:
{task}

Plans (each represented as a series of actions):
{plan_text}

Question:
Based on the given image (the webpage screenshot), and the task,
which plan (A, B, C, D) would most effectively accomplish the task?

Output format:
Only output your choice of A, B, C, or D.

Do not include any reasoning, explanation, or additional text. Only provide your choice of plan
(either A, B, C, D) in the response.

Figure 16



Real Web Environment Study (Chain-of-Thought Prompting)

You are given an image and a task that needs to be performed based on that image. The image represents what a user is
currently seeing on their screen while attempting to solve the task. You are also provided with four choices of action
plans (each represented as a set of actions) that outline potential steps to accomplish the task.

Your goal is to carefully analyze the image and evaluate the four action plans to decide which one most effectively helps
the user complete the task.

Important Notes:
1. The current screenshot represents the user’s current state or screen. As the user executes an action (e.g., clicking a
button) from any plan, the screen or state may change. You must imagine these transformations and assess the feasibility
of the remaining actions in each plan.

2. Some action plans may include invalid actions that cannot be executed based on the current or subsequent screens. It
is your responsibility to identify and exclude such plans from being valid answer candidates.

3. The task is guaranteed to succeed within the next {plan_len} steps. If an action plan cannot complete the task within
its steps, it is not a valid answer candidate.

4. Assume all plans are related to the task. However, some plans may include errors, inefficiencies, or invalid actions. It
is your responsibility to evaluate them thoroughly.

Task:
{task}

Plans (each represented as a series of actions):
{plan_text}

Question:
Based on the given image (the webpage screenshot), and the task, which plan (A, B, C, D) would most effectively
accomplish the task?

Follow these steps to derive your answer:

1. Understand the Task:
Read the task description to identify the goal and the likely steps required to accomplish it.

2. Analyze the Screenshot:
Examine the visible UI elements and details in the screenshot to determine the current state and what actions are possible.

3. Evaluate the Plans:
Assess each plan step-by-step by simulating the actions in sequence. Carefully check whether each action of a plan
is valid based on the current or subsequent states to determine if that plan can complete the task within the given
{plan_len} steps. Eliminate any plan with invalid, unnecessary, or inefficient actions.

4. Select the Best Plan:
Identify the plan that is valid, efficient, and effectively completes the task.

5. Provide Your Answer:
Briefly explain your reasoning and output your choice (A, B, C, or D).

Output format:
Follow the format below for your response.

REASONING: Provide a concise step-by-step reasoning using the steps outlined above.

OUTPUT: Output your answer choice (’A’, ’B’, ’C’, or ’D’).

Figure 17



Real Web Environment Study (Instruction Prompting) with Action History / Previous Action
Input

You are given an image and a task that needs to be performed based on that image. The image
represents what a user is currently seeing on their screen while attempting to solve the task. Along
with this, you are given the exact set of previous actions the user has taken to reach the current
state depicted in the image.

In addition, you are provided with four choices of action plans (each represented as a set of
actions) that outline potential steps to accomplish the task. Your goal is to carefully analyze the
image, review the previous actions, and evaluate the four action plans to determine which one
most effectively helps the user complete the task.

Important Notes:
1. The current screenshot represents the user’s current state or screen. As the user executes an
action (e.g., clicking a button) from any plan, the screen or state may change. You must imagine
these transformations and assess the feasibility of the remaining actions in each plan.

2. Some action plans may include invalid actions that cannot be executed based on the current or
subsequent screens. It is your responsibility to identify and exclude such plans from being valid
answer candidates.

3. The task is guaranteed to succeed within the next {plan_len} steps. If an action plan cannot
complete the task within its steps, it is not a valid answer candidate.

4. Assume all plans are related to the task. However, some plans may include errors, inefficiencies,
or invalid actions. Your responsibility is to evaluate each plan thoroughly to determine its
effectiveness.

Task:
{task}

Previous actions:
{previous_actions_text}

Plans (each represented as a series of actions):
{plan_text}

Question:
Based on the given image (the webpage screenshot), the previous actions, and the task, which plan
(A, B, C, D) would most effectively accomplish the task?

Output format:
Only output your choice of A, B, C, or D.

Do not include any reasoning, explanation, or additional text. Only provide your choice of plan
(either A, B, C, D) in the response.

Figure 18



Edge Case Test Study (Instruction Prompting)

You are given an image and a task that needs to be performed based on that image. Additionally,
you are given several possible action plans, each describing potential next steps to achieve the task.
Your goal is to select the most effective plan from the options provided. Carefully analyze the
image, and then evaluate each option to decide which one best completes the task.

Task:
{task}

Possible Action Plans:
{plan_text}

Question:
Based on the given image, and the given task, which action plan ({option_text}) would most
effectively accomplish the task?

Output format:
Only output your choice of {option_text}.

Do not include any reasoning, explanation, or additional text.

Figure 19

only 2/19 models achieve an average performance
of ≥50% under the Shuffling Perturbation setting,
while models perform better in the Semantic Pertur-
bation setting. In summary, we conclude that aug-
menting action history offers no significant benefit
in improving VLMs’ plan assessment capabilities.

I Additional Results and Details

In this section, we visualize outputs and include
tables that we could not include in the main paper
due to space constraints. Specifically, we present
more results for: (1) VLMs’ spurious preferences
in Temporal Ordering task (Fig. 24), (2) Unreason-
able quality of GUI-specific models (Fig. 25), (3)
Samples with erroneous responses for Future State
Prediction (Fig. 27) and Real-Web Plan Assess-
ment Analysis (Fig. 26), (4) Comprehensive tables
detailing results for each individual task—Task 1,
Task 2, and Task 3 of the Edge Case Test (see
Tab. 13), as well as Task 1, Task 2, and Task 3
of the Future State Consistency test (see Tab. 11,
Tab. 12), (5) Dataset Statistics summarizing num-
ber of test examples for every configuration of our
paper (see Tab. 10).

J Would VLMs perform perfectly if
Perception error did not exist?

In the error case study for the edge case test (Fig. 4),
we observe that "Perception Error," where VLMs
misinterpret certain visual details in the image,
emerges as a bottleneck for plan identification.
While addressing this issue is beyond the scope
of our work, we explore how VLM performance
changes when provided with accurate ground truth
captions describing the form. Specifically, we aim
to assess whether VLMs can reason about plans
even after getting an accurate and complete textual
description of the form screenshot. For simplic-
ity, we conduct this test using Task 1 from the
Edge Case Test Study and evaluate five VLMs. We
compare performance across three configurations –
Image Only, Caption Only, and Image + Captions.
Our results in Tab. 14 reveal two key findings: (1)
Although adding ground truth captions improves
performance over the Image-Only configuration,
the selected models still fall significantly short of
reasonable performance, and (2) while ground truth
captions provide slight improvement, the Image +
Caption configuration is either worse than Caption-
Only or offers no noticeable advantage. Thus, high-
lighting critical limitations in the reasoning and



Edge Case Test Study (Chain-of-Thought Prompting)

You are given an image and a task that needs to be performed based on that image. Additionally,
you are given several possible action plans, each describing potential next steps to achieve the task.
Your goal is to select the most effective plan from the options provided. Carefully analyze the
image, and think step by step to evaluate each option to decide which one best completes the task.

Task:
{task}

Possible Action Plans:
{plan_text}

Question:
Based on the given image, and the given task, please follow these steps:

1. Image and Task Analysis: Describe relevant elements in the image and clarify the requirements
of the task.
2. Option Evaluation: Go through each action plan ({option_text}) one by one, and describe
why it would or would not help achieve the task. Mention any advantages or limitations of each
option based on the image.
3. Final Choice: Based on your analysis, select the option ({option_text}) that best accomplishes
the task.

Output Instructions:
Your output should follow the below format:

REASONING: Be concise and to the point.

OUTPUT CHOICE: An uppercase letter

Figure 20

planning capabilities of contemporary VLMs.

K Additional Related Work: Importance
of Small Models for Web Planning

While several recent studies have employed propri-
etary models for web agents, our work emphasizes
the use of open-source models, many of which—
despite being small—have been widely adopted
in the web planning literature. For instance, prior
works (Pahuja et al., 2025; Chen et al., 2024; Cheng
et al., 2024) utilize models such as Qwen-VL and
Minicpm, while others leverage models like Phi-
3.5v, Ferret-UI, UIX (LLaVA-based), and CogA-
gent for GUI-specific tasks (Xu et al., 2025; Hong
et al., 2024; Cheng et al., 2024). Unlike models that
solely generate actions, many of these approaches
train models to produce thoughts or reasoning steps

prior to action execution, thereby implicitly re-
quiring planning capabilities. Notably, Qwen2-VL
models have been explicitly trained with planning
and reasoning datasets to support such behavior.

Given the high costs, proprietary constraints, and
privacy concerns associated with large-scale com-
mercial models, the broader research community
is increasingly gravitating toward smaller, open-
access alternatives. Our study aligns with this di-
rection by providing timely insights into the intrin-
sic planning capabilities of vision-language models
(VLMs) that are already seeing practical use in
web-based tasks.

Although resource limitations prevented us from
conducting the full experiment suite on proprietary
models, we conducted additional trials using GPT-
4o-mini to demonstrate the broader potential of



Llama as a judge for Temporal Ordering

You are acting as a judge. The statement below describes in text which image comes
earlier in a sequence. Parse it carefully and decide which picture comes earlier.
Respond strictly with either "Picture 1" or "Picture 2" and no additional text:

Statement:
{output}

Figure 21

Llama as a judge for Future State Prediction

You are provided with a response to the following question:

"Do both plans (Plan A and Plan B) result in the same final state of the form (i.e., just before
clicking Submit)?"

Your task is to analyze the response and determine the answer based on the following criteria:

1. Output "yes" if the response explicitly states that both Plan A and Plan B achieve the same final
state.
2. Output "no" if the response explicitly states that Plan A and Plan B do not achieve the same final
state.
3. Output "unclear" if the response does not clearly state whether Plan A and Plan B achieve the same
final state.

Respond with only the answer: "yes", "no", or "unclear". Provide no additional text.

**Response:**
{response}

**Answer:**

Figure 22



Llama as a judge for Plan Assessment (both Real-World and Edge Case)

You are acting as a judge. The statement below describes in text which Action Plan Option best
accomplishes the task. Parse it carefully.

Your task is to analyze the statement and determine the answer based on the following criteria:

1. Output "A" if the statement states "Plan A" or "Option A" or anything related.
2. Output "B" if the statement states "Plan B" or "Option B" or anything related.
3. Output "C" if the statement states "Plan C" or "Option C" or anything related.
4. Output "D" if the statement states "Plan D" or "Option D" or anything related.
5. Output "unclear" if the statement does not state which Action or Option best
accomplishes the task.

Respond with only the answer: "A", "B", "C", "D", or "unclear". Provide no additional text.

Statement: {response}

**Answer:**

Figure 23

our approach. In this work, we focus on two core
tasks—Temporal Ordering and Plan Assessment
for real-world web environments. For temporal pre-
diction, we utilize the GUIAct dataset and evaluate
a sample of 500 questions from the full set. For
Plan Assessment, we assess model behavior under
the Shuffle Perturbation setting.

L Future Work

As part of our future work to mitigate the limita-
tions, we aim to incorporate the fine-grained skills
and insights highlighted in this work into contem-
porary VLMs. Specifically, each of our tests offers
guidance on the types of tasks and data that could
serve as essential inductive biases and should be in-
cluded during the pre-training phase of VLMs. Our
main focus is on injecting these basic skills into
smaller agents (less than or equal to 7B) rather than
larger ones. This emphasis stems from the belief
that for agentic workflows to achieve widespread
adoption, smaller models are more practical, as
they can be deployed on-device, ensuring user pri-
vacy (since agents will handle end user’s day-to-
day tasks) and enabling faster inference. Therefore,
we call for a collective community effort to address
the fundamental performance shortcomings of such

models, as revealed in our study, through novel task
designs and training.



Task: Find the qualifications for Senior Mechanical Engineer jobs in Espoo, Finland.
Picture 1 Picture 2

Reasoning: To determine the earlier step in the trajectory, we need to understand the logical sequence of actions required to find the qualifications for Senior 
Mechanical Engineer jobs in Espoo, Finland. The first step would likely involve searching for job listings, which is shown in Picture 1. Once job listings are found, the 
next step would be to review the qualifications for those jobs, which is depicted in Picture 2.\n\nPicture 1 shows a job search interface with various job listings, 
indicating that the user is in the process of searching for jobs. Picture 2 shows a detailed job listing for a Senior Mechanical Engineer position, suggesting that the user 
has found a relevant job and is now reviewing the qualifications for that specific position.\n\nTherefore, the earlier step in the trajectory is finding job listings, which is 
shown in Picture 1.\n\n

Output : Picture 1

Task: Find the qualifications for Senior Mechanical Engineer jobs in Espoo, Finland.
Picture 1 Picture 2

Reasoning: To determine the earlier step in the trajectory, we need to understand the logical sequence of actions required to answer the question about the qualifications 
for Senior Mechanical Engineer jobs in Espoo, Finland. The first step would likely involve searching for relevant job listings, which is depicted in Picture 1. Once the job 
listings are found, the next step would be to review the qualifications listed in the job descriptions, which is shown in Picture 2.\n\nPicture 1 shows the search results 
for Senior Mechanical Engineer jobs in Espoo, Finland, which is the initial step in finding relevant job information. Picture 2 displays the detailed qualifications for one of 
the job listings, which is the subsequent step after identifying the job.\n\nTherefore, the earlier step in the trajectory is finding the job listings, which is represented by 
Picture 1.\n\n

Output : Picture 1

(a) Example 1
Task: Find me some information about the book The Girl with the Dragon Tattoo by Stieg Larsson.
Picture 1 Picture 2

Reasoning: The first image provides detailed information about the book \"The Girl with the Dragon Tattoo\" by Stieg Larsson, including the book's cover, title, author, 
and a brief synopsis. This suggests that the user is looking for specific details about the book, such as its content and background.\n\nThe second image, on the other hand, 
shows the interface of the Goodreads website, specifically the \"2024 Reading Challenge\" section. This indicates that the user is engaging with the website to set a reading 
goal for the year 2024, which is unrelated to the specific details of the book \"The Girl with the Dragon Tattoo.\"\n\nGiven the context of the question, which is to 
find information about the book, the first image logically represents an earlier step in the trajectory because it provides relevant information about the book itself. The 
second image is more about the user's engagement with the Goodreads platform and does not contribute to finding information about the book.\n\nTherefore, the earlier 
step in the trajectory is represented by \"Picture 1\".\n\n

Output : Picture 1

Task: Find me some information about the book The Girl with the Dragon Tattoo by Stieg Larsson.
Picture 1 Picture 2

Reasoning: To find information about the book \"The Girl with the Dragon Tattoo\" by Stieg Larsson, one would likely start by searching for the book on the 
Goodreads website. Picture 1 shows the Goodreads homepage with options to search for books, which aligns with the initial step of searching for the book. Picture 2 
shows a detailed book page, which suggests that after finding the book, one would click on it to get more information. Therefore, the earlier step in the trajectory would be 
searching for the book on the homepage.\n\n

Output : Picture 1

(b) Example 2

Figure 24



Task: Which open access publishers have the most journals indexed in Google Scholar.
Picture 1 Picture 2

Reasoning: The first image, \"Picture 1,\" appears to be a screenshot from an academic database or repository, specifically ERIC, which is being used to search for 
information on scientific journal publishing and open access. This suggests that the user is in the process of gathering data or conducting research. The second image, 
\"Picture 2,\" is a screenshot from Google Scholar, which is a search engine for academic literature. Given that the question asks for open access publishers with the most 
journals indexed in Google Scholar, it is reasonable to infer that the user would first use a database or repository like ERIC to find relevant information, and then 
use Google Scholar to search for the specific data needed to answer the question.\n\nTherefore, the earlier step in the trajectory is likely \"Picture 1\" where the user is 
searching for information in ERIC.\n\n

Output : Picture 1

Task: Which open access publishers have the most journals indexed in Google Scholar.
Picture 1 Picture 2

Reasoning: The first image, \"Picture 1,\" appears to be a screenshot from an academic database or repository, specifically ERIC, which is being used to search for 
information on scientific journal publishing and open access. This suggests that the user is in the process of gathering data or conducting research. The second image, 
\"Picture 2,\" is a screenshot from Google Scholar, which is a search engine for academic literature. Given that the question asks for open access publishers with the most 
journals indexed in Google Scholar, it is reasonable to infer that the user would first use a database or repository like ERIC to find relevant information, and then 
use Google Scholar to search for the specific data needed to answer the question.\n\nTherefore, the earlier step in the trajectory is likely \"Picture 1\" where the user is 
searching for information in ERIC.\n\n

Output : Picture 1

(c) Example 3

Figure 24: In the main paper, we find that VLMs are biased towards answering ’Picture 1’ for the temporal ordering
task. Specifically, the mean performance difference across all models, between cases where “Picture 1” is the correct
answer and cases where “Picture 2” is the correct answer, is 46.64% for MCQ and 41.66% for non-MCQ versoins.
Here, we show qualitative results how VLMs tend to rationalize their answer of “Picture 1” with untenable reasons



Main Shuffle Perturb. Semantic Perturb.
INS COT Avg INS COT Avg

Qwen2-VL 2B 41.88 23.01 32.45 52.45 28.67 40.56
Qwen2-VL 7B 56.22 48.3 52.26 87.92 71.69 79.81
Qwen2-VL 72B 79.24 69.05 74.14 95.09 90.94 93.02

Minicpm 55.47 36.22 45.84 83.01 63.01 73.01
Minicpm-o 49.05 39.24 44.14 73.0 70.56 71.78

Phi 3.5 27.92 33.2 30.56 56.6 55.09 55.84
IDEFICS3 43.39 33.58 38.48 80.75 55.47 68.11

DeepSeek VL 28.67 20.0 24.34 38.87 25.66 32.27
Llava OV 0.5B 24.52 8.3 16.41 27.02 8.3 17.66
Llava OV 7B 56.6 41.5 49.05 89.05 75.09 82.07

InternVL2-MPO 46.41 30.56 38.48 90.56 71.32 80.94
Glm 28.3 39.62 33.96 64.52 59.62 62.07

Llava 1.6 - 7B 26.41 30.18 28.30 38.86 46.59 42.73
Llava 1.6 - 13B 30.94 29.43 30.19 52.45 48.3 50.38
Llava 1.6 - 34B 41.50 41.50 41.50 87.16 70.45 78.81
Ferret-UI-Llama 23.1 26.03 24.57 26.03 23.77 24.90

Ferret-UI-Gemma 12.07 21.13 16.60 9.88 21.21 15.55
UIX-Llava 48.3 33.2 40.75 67.54 41.88 54.71
CogAgent 23.86 22.34 23.10 23.77 17.73 20.75

Table 9: Evaluations of 19 VLMs on Plan Selection in Real-Web Environment. In this particular experiment, we
augment VLM input with the history of its previous actions. While we anticipated an improvement in performance
after using information of previous actions, we found that VLMs reaped no substantial benefit from the aforemen-
tioned.

Test Name Configuration Number of Examples

Temporal Ordering - MM-M2W
Total 2018
Order1 1009
Order2 1009

Temporal Ordering - GUIAct
Total 4742
Order1 2371
Order2 2371

Future State Prediction - Long Horizon

Total 3838
Task 1 960
Task 2 1816
Task 3 1062

Future State Prediction - Short Horizon

Total 3358
Task 1 960
Task 2 1336
Task 3 1062

Plan Selection - Edge Case Scenario

Total 1530
Task 1 531
Task 2 500
Task 3 499

Plan Selection - Real Web Environment Total 435

Table 10: Dataset Statistics: Number of examples for
each test and configuration.

Main
Task 1 Task 2 Task 3

Avg.
INS COT INS COT INS COT

Qwen2-VL 2B 73.43 63.64 43.98 49.32 49.62 47.08 54.51

Qwen2-VL 7B 99.27 90.48 50.81 81.27 50.00 57.25 71.51

Qwen2-VL 72B 97.50 97.91 97.66 98.37 99.71 95.76 97.82

Minicpm 52.39 66.67 50.99 64.93 50.00 56.04 56.84

Minicpm-o 70.10 82.25 40.76 67.47 60.64 55.57 62.80

Phi 3.5 87.50 81.77 61.19 62.42 53.86 56.68 67.24

IDEFICS3 53.22 96.56 0.5 87.34 50.28 54.80 57.12

DeepSeek VL 58.85 79.89 44.35 53.02 50.65 39.64 54.40

Llava OV 0.5B 50.00 43.95 50.00 40.78 52.35 48.11 47.53

Llava OV 7B 55.83 87.18 52.14 76.47 60.16 65.72 66.25

InternVL2-MPO 62.91 96.77 20.96 92.04 28.53 72.10 62.22

Glm 50.31 68.64 50.23 57.07 63.46 58.28 58.00

Llava 1.6 - 7B 92.08 82.29 58.91 78.08 44.82 32.16 64.72

Llava 1.6 - 13B 50.00 76.14 50.00 63.46 50.00 47.87 56.25

Llava 1.6 - 34B 91.14 91.87 83.03 81.94 65.91 55.36 78.21

Ferret-UI-Llama 50.00 50.10 50.00 49.88 40.29 50.00 48.38

Ferret-UI-Gemma 69.00 5.72 44.73 2.75 64.23 10.07 32.75

UIX-Qwen2 60.52 70.20 59.94 63.00 32.01 54.80 56.75

CogAgent 50.00 30.93 50.00 32.06 50.00 43.97 42.83

Table 11: Task-wise results for Future State Prediction
in short horizon action scenarios



Task: Select 9 with the slider, click the 2nd checkbox, then hit Submit. Before you click submit, 
ensure that no other checkbox is selected.

Ferret-UI-Gemma Output: A, B, C, D, E is the most effective action plan. It involves moving the 
slider to the right until the slider value decreases by 6 units, then clicking the 2nd checkbox and 
then hitting Submit.

A Move the slider handle to the left until the slider value decreases by 6 units, and then 
click Submit.

B Move the slider handle to the right until the slider value increases by 13. Then, 
uncheck the 3rd checkbox, click the 2nd checkbox and then hit Submit.

C Click the 2nd checkbox and then hit Submit.

D Move the slider handle to the right until the slider value increases by 6. Then, 
uncheck the 2nd checkbox, click the 2nd checkbox and then hit Submit.

E Directly click Submit.

(a) GUI Model Outputs – Irrelevant/Gibberish
Task: Select -4 with the slider, click the 2nd checkbox, then hit Submit. Before you click submit, 

ensure that no other checkbox is selected.

Ferret-UI-Gemma Output: The correct answer is B. Action B: 5000, 5000, 5000, 5000, 5000, 5000, 
5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 
5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 
5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 

A Move the slider handle to the left until the slider value decreases by 11. Then, 
uncheck the 3rd checkbox, click the 2nd checkbox and then hit Submit.

B Move the slider handle to the right until the slider value increases by 5 units, and then 
click Submit.

C Click the 2nd checkbox and then hit Submit.

D Move the slider handle to the left until the slider value decreases by 5. Then, uncheck 
the 2nd checkbox, click the 2nd checkbox and then hit Submit.

E Directly click Submit.

(b) GUI Model Outputs – Irrelevant/Gibberish
Task: Select -6 with the slider, click the 1st checkbox, then hit Submit. Before you click submit, 

ensure that no other checkbox is selected.

Ferret-UI-Llama Output: A. Action plan: Move the slider handle to the left until the slider value 
decreases by 5 units, and then click Submit.

A Click the 1st checkbox and then hit Submit.

B Move the slider handle to the right until the slider value increases by 5 units, and then 
click Submit.

C Move the slider handle to the left until the slider value decreases by 10. Then, 
uncheck the 2nd checkbox, click the 1st checkbox and then hit Submit.

D Move the slider handle to the left until the slider value decreases by 5. Then, uncheck 
the 1st checkbox, click the 1st checkbox and then hit Submit.

E Directly click Submit.

(c) GUI Model Outputs – Wrong option description
Task: Select -7 with the slider, click the 2nd checkbox, then hit Submit. Before you click submit, 

ensure that no other checkbox is selected.

UIX-Qwen2 Output: ….....Action E is the most effective plan as it moves the slider handle to the 
left until the value decreases by 1, clicks the 2nd checkbox, and then hits Submit.\n4. The best plan 
option is **E**.

A Move the slider handle to the right until the slider value increases by 1 units, and then 
click Submit.

B Move the slider handle to the left until the slider value decreases by 2. Then, uncheck 
the 3rd checkbox, click the 2nd checkbox and then hit Submit.

C Click the 2nd checkbox and then hit Submit.

D Move the slider handle to the left until the slider value decreases by 1. Then, uncheck 
the 2nd checkbox, click the 2nd checkbox and then hit Submit.

E Directly click Submit.

(d) GUI Model Outputs – Wrong option description
Task: Select -4 with the slider, click the 3rd checkbox, then hit Submit. Before you click submit, 

ensure that no other checkbox is selected.

CogAgent Output: ….....\n\nThe most effective plan is: \n11. Action A: \n- Move the slider handle 
to the left until the the slider value decreases by 5. Then, uncheck the 33rd checkbox, click the 
333rd checkbox and then hit Submit.

A Move the slider handle to the left until the slider value decreases by 5. Then, uncheck 
the 3rd checkbox, click the 3rd checkbox and then hit Submit.

B Move the slider handle to the right until the slider value increases by 5 units, and then 
click Submit.

C Click the 3rd checkbox and then hit Submit.

D Move the slider handle to the left until the slider value decreases by 11. Then, 
uncheck the 1st checkbox, click the 3rd checkbox and then hit Submit.

E Directly click Submit.

(e) GUI Model Outputs – Wrong option description

Figure 25: In the main paper, we discuss how GUI mod-
els have worse performances than general VLMs. We
now demonstrate qualitative outputs eliciting deteriora-
tion in GUI models’ general reasoning and instruction
following capabilities. More specifically, fig (a), (b)
represent cases where model starts producing gibberish
content and does not choose an option from the given
choices. Fig (c), (d), (e) has examples where model did
choose an option but gave an incorrect description of
what the option actually is in the question.

Main
Task 1 Task 2 Task 3

Avg.
INS COT INS COT INS COT

Qwen2-VL 2B 52.60 51.56 48.95 48.12 49.71 48.39 49.89

Qwen2-VL 7B 84.27 55.75 68.07 38.5 50.0 50.90 57.91

Qwen2-VL 72B 100 57.70 45.81 55.67 84.83 88.32 55.55

Minicpm 50.0 48.00 50.00 2.29 50.00 56.42 42.78

Minicpm-o 50.41 54.08 86.89 40.27 36.15 52.14 53.32

Phi 3.5 74.06 54.27 11.56 34.14 49.71 53.01 46.13

IDEFICS3 50.83 51.97 49.39 34.63 50.00 64.87 50.28

DeepSeek VL 50.00 51.56 30.34 45.26 49.43 40.58 44.53

Llava OV 0.5B 50.00 42.81 50.00 40.91 47.83 48.30 46.64

Llava OV 7B 50.00 51.66 51.10 44.49 49.24 60.73 51.20

InternVL2-MPO 75.62 65.52 39.20 46.21 48.77 67.48 57.13

Glm 50.62 55.20 50.00 43.85 48.68 52.30 50.11

Llava 1.6 - 7B 58.22 56.04 22.19 41.18 41.43 48.68 44.62

Llava 1.6 - 13B 50.00 55.41 50.00 34.58 50.0 47.12 47.85

Llava 1.6 - 34B 72.08 65.729 22.46 48.84 43.97 46.79 49.98

Ferret-UI-Llama 100 49.79 50.0 49.77 49.23 50.00 58.13

Ferret-UI-Gemma 52.36 4.89 44.80 6.55 49.92 6.40 27.49

UIX-Qwen2 51.14 51.04 50.00 44.76 19.20 44.35 43.41

CogAgent 50.00 48.54 50.00 38.21 50.00 42.93 46.61

Table 12: Task-wise results for Future State Prediction
in long horizon action scenarios

Main
Task 1 Task 2 Task 3

INS COT INS COT INS COT

Qwen2-VL 2B 27.11 28.92 26.66 32.20 59.71 45.29

Qwen2-VL 7B 13.74 11.86 67.20 62.40 67.73 69.27

Qwen2-VL 72B 95.29 88.51 83.40 81.40 87.57 58.83

Minicpm 1.6 10.54 42.60 25.00 57.11 65.93

Minicpm-o 26.36 20.15 49.60 32.60 67.33 59.31

Phi 3.5 21.84 12.05 26.00 16.00 50.70 50.50

IDEFICS3 27.11 43.69 59.20 64.00 52.30 59.91

DeepSeek VL 0.9 12.24 13.80 38.60 40.28 33.66

Llava OV 0.5B 14.87 20.52 28.60 22.20 14.87 22.24

Llava OV 7B 19.39 13.93 65.20 53.60 28.05 47.69

InternVL2-MPO 45.38 24.14 75.60 66.20 52.10 57.11

Glm 25.80 28.86 54.00 42.60 60.52 55.22

Llava 1.6 - 7B 26.55 31.45 33.40 41.60 28.05 47.69

Llava 1.6 - 13B 26.36 32.01 24.40 33.60 27.51 30.26

Llava 1.6 - 34B 14.90 11.48 35.60 29.20 70.54 48.49

Ferret-UI-Llama 28.06 23.6 18.40 23.60 16.03 20.64

Ferret-UI-Gemma 10.73 12.42 8.00 12.80 16.43 14.62

UIX-Qwen2 0.3 10.73 37.00 8.00 30.66 24.64

CogAgent 16.57 22.22 41.40 21.80 21.04 19.23

Table 13: Task-wise results for Plan Selection – Edge
case Test



Task:Show me the list of one-way flights today (April 17) from Chicago to Paris

Reasoning: "REASONING: \n1. The task requires showing a list of one-way flights today (April 17) from Chicago to Paris.\n2. The screenshot shows a 
booking form with fields for departure and destination airports, trip type, and departure date.\n3. Plan A starts by clicking the \"Show flights\" button, 
which is not the correct first step since the departure date needs to be set first.\n4. Plan B selects the destination airport first, which is incorrect since the 
departure date needs to be set first.\n5. Plan C starts by clicking the \"Show flights\" button, which is incorrect as the departure date needs to be set 
first.\n6. Plan D starts by clicking the \"Continue\" button, which is not the correct first step since the departure date needs to be set first.\n7. None of the 
plans correctly set the departure date as the first step, which is necessary to complete the task.\n\nOUTPUT: None of the plans (A, B, C, D) effectively 
accomplish the task.\n"

Output Choice: None of the plans (A, B, C, D) effectively accomplish the task.\n

Plan A
1. Click on the Show flights button to view the available flight options.",
2. Click on the Continue button to proceed with the booking process.",
3. Select 17 April 2023 from the available grid cell for the departure date.",
4. Click on the Paris France CDG Charles De Gaulle Airport menu item to select the departure location.",
5. Choose the One way option for the type of trip."

Plan C
1. Click on the Show flights button to view the available flight options.",
2. Click on the Continue button to proceed with the booking process.",
3. Select 17 April 2023 from the available grid cell for the departure date.",
4. Choose the One way option for the type of trip.",
5. Click on the Paris France CDG Charles De Gaulle Airport menu item to select the departure location."

Plan B
1. Click on the Add to Cart link to include the item in your shopping cart.",
2. Click on the Buy a copy link to proceed with purchasing options.",
3. Click on the Gorillaz link to explore more about Gorillaz.",
4. Click on the Gorillaz Gorillaz Artist link to view the artist's page."

Plan D
1. Click on the Continue button to proceed with the booking process.",
2. Select 17 April 2023 from the available grid cell for the departure date.",
3. Choose the One way option for the type of trip.",
4. Click on the Paris France CDG Charles De Gaulle Airport menu item to select the departure location.",
5. Click on the Show flights button to view the available flight options."

(a) Shuffling Perturbation: Example 1

Task: Find a Buick for sale within 250 miles from 26807.

Reasoning: \n1. The task is to find a Buick for sale within 250 miles from 26807.\n2. The screenshot shows a search interface with options to enter 
a location and select a range.\n3. Plan A starts with an irrelevant action (viewing a larger picture of the vehicle) and does not include selecting the 
Buick checkbox.\n4. Plan B also starts with an irrelevant action (viewing a larger picture of the vehicle) and does not include selecting the Buick 
checkbox.\n5. Plan C starts with an irrelevant action (viewing a larger picture of the vehicle) and does not include selecting the Buick checkbox.\n6. 
Plan D includes selecting the Buick checkbox, viewing vehicle details, and selecting the 250-mile range, which are all relevant actions to complete the 
task.

Output: D\n

Plan A
1. Click on the image to view a larger picture of the vehicle.
2. Select the Buick checkbox to filter the vehicle options.
3. Click on the information icon for more details.
4. Click on the View Vehicles button to see available vehicles.
5. Click on the 250 miles from the available options.

Plan C
1. Click on the image to view a larger picture of the vehicle.
2. Select the Buick checkbox to filter the vehicle options.
3. Click on the information icon for more details.
4. Click on the 250 miles from the available options.
5. Click on the View Vehicles button to see available vehicles.

Plan B
1. Click on the 250 miles from the available options.
2. Click on the View Vehicles button to see available vehicles.
3. Click on the information icon for more details.
4. Select the Buick checkbox to filter the vehicle options.
5. Click on the image to view a larger picture of the vehicle.

Plan D
1. Select the Buick checkbox to filter the vehicle options.
2. Click on the information icon for more details.
3. Click on the View Vehicles button to see available vehicles.
4. Click on the 250 miles from the available options.
5. Click on the image to view a larger picture of the vehicle.

(b) Shuffling Perturbation: Example 2

Figure 26



Task: Use the FareFinder to find flights for $150 or less from Dublin to anywhere.

Reasoning:\n1. The task is to find flights for $150 or less from Dublin to anywhere using the FareFinder.\n2. The screenshot shows the FareFinder
interface with fields for \"From,\" \"To,\" and \"Budget,\" and a \"Let's go\" button.\n3. Plan A starts by clicking the \"Let's go\" button, which is not the 
correct first step since the budget needs to be set first.\n4. Plan B starts by selecting the price indicator showing $150, which is the correct first step, 
followed by clicking the \"Let's go\" button, which is the correct second step.\n5. Plan C starts by clicking the \"Let's go\" button, which is incorrect as 
the budget needs to be set first.\n6. Plan D starts by clicking on the \"To\" section, which is incorrect as the budget needs to be set first.

Output: B\n

Plan A
1. Click the Let's go button to continue with the booking process.
2. Select the price indicator showing $150 for further details.
3. Click on the 'Anywhere' icon to proceed with the selection.
4. Click on the 'To' section to explore destination options.

Plan C
1. Click the Let's go button to continue with the booking process.
2. Select the price indicator showing $150 for further details.
3. Click on the 'To' section to explore destination options.
4. Click on the 'Anywhere' icon to proceed with the selection.

Plan B
1. Select the price indicator showing $150 for further details.
2. Click the Let's go button to continue with the booking process.
3. Click on the 'Anywhere' icon to proceed with the selection.
4. Click on the 'To' section to explore destination options.

Plan D
1. Click on the 'To' section to explore destination options.
2. Click on the 'Anywhere' icon to proceed with the selection.
3. Select the price indicator showing $150 for further details.
4. Click the Let's go button to continue with the booking process.

(c) Shuffling Perturbation: Example 3

Task: Use the FareFinder to find flights for $150 or less from Dublin to anywhere.

Plan A
1. Click the Let's go button to continue with the booking process.
2. Select the price indicator showing $150 for further details.
3. Click on the HAPPY HOUR BURGER link for the event on Thursday, April 13, 2023.
4. Click on the 'To' section to explore destination options.

Plan C
1. Click the Let's go button to continue with the booking process.
2. Select the price indicator showing $150 for further details.
3. In the ZIP text box, type \"11101\" as the postal code.
4. Click on the 'Anywhere' icon to proceed with the selection.

Plan B
1. Click on the Flight status link to check the details.
2. Click the Let's go button to continue with the booking process.
3. Click on the 'Anywhere' icon to proceed with the selection.
4. Click on the 'To' section to explore destination options.

Plan D
1. Click on the 'To' section to explore destination options.
2. Click on the 'Anywhere' icon to proceed with the selection.
3. Select the price indicator showing $150 for further details.
4. Click the Let's go button to continue with the booking process.

Reasoning: \n1. The task is to find flights for $150 or less from Dublin to anywhere using the FareFinder.\n2. The previous actions show that the user 
has already entered Dublin as the departure location and is currently selecting the destination.\n3. In the screenshot, the user has selected \"Anywhere\" 
as the destination and set the budget to $150.\n4. Plan A involves checking flight status and selecting a price indicator, which is not relevant to the 
task.\n5. Plan B involves typing an unrelated location and clicking the Let's go button, which is not relevant to the task.\n6. Plan C involves typing a 
postal code, which is not relevant to the task.\n7. Plan D involves selecting \"Anywhere\" as the destination and then selecting the price indicator 
showing $150, which aligns with the task.\n8. Plan D is the only plan that directly addresses the task and can be completed within the given 4 steps.

Output: D\n

(d) Semantic Perturbation: Example 4

Figure 26: Qualitative results for Plan Assessment - Real web scenario. The above figure shows outputs from
Qwen2-VL 72B. Example 1, 2, 3 includes results for Shuffling Perturbation whereas Example 4 is the result for
Semantic Perturbation.



Img Only Img + Cap Cap Only

INS CoT Avg INS CoT Avg INS CoT Avg

Minicpm-o 26.36 20.15 23.26 33.90 20.53 27.21 34.46 20.90 27.68
Qwen2-VL-7B 13.74 11.86 12.81 15.25 3.58 9.42 13.94 9.04 11.49
Phi 3.5 21.84 12.05 16.95 32.77 25.61 29.19 32.96 27.87 30.41
Glm 25.80 28.86 27.33 23.35 22.03 22.69 22.22 24.29 23.26
UIX-Qwen2 0.3 10.73 5.56 4.52 9.04 6.78 3.77 9.04 6.40

Table 14: Performance comparison under different configurations (Img Only, Img + Cap, and Cap Only) across INS,
CoT, and Avg metrics.

Task: Based on your analysis, state whether both plans result in the same state of the form just before clicking Submit. 
Your final answer must be either \"Yes\" or \"No\".

1. Move the slider handle to the left until the slider value decreases by 11.
2. Uncheck the 2nd checkbox
3. Check the 1st checkbox
4. Uncheck the 1st checkbox
5. Hit Submit.

Plan A

Yes No

1. Uncheck the 2nd checkbox
2. Move the slider handle to the left until the slider value decreases by 11.
3. Hit Submit.

Plan B

Reasoning: \n1. Image Analysis: The initial state of the form shows a slider set to 5, the first checkbox 
checked, and the second checkbox unchecked.\n2. Plan Evaluation:\n - Plan A: Unchecks the 2nd 
checkbox (already unchecked), moves the slider to 4, and then hits Submit.\n - Plan B: Moves the slider 
to 4, unchecks the 2nd checkbox (already unchecked), checks the 1st checkbox, unchecks the 1st 
checkbox, and then hits Submit.\n3. State Comparison: \n - After Plan A: The slider is at 4, the first 
checkbox is checked, and the second checkbox is unchecked.\n - After Plan B: The slider is at 4, the 
first checkbox is unchecked, and the second checkbox is unchecked.\n4. Final Answer: The states of the 
form just before clicking Submit are not the same after executing Plan A and Plan B.

Output: No\n

(a) Example 1
Task: Based on your analysis, state whether both plans result in the same state of the form just before clicking Submit. 

Your final answer must be either \"Yes\" or \"No\".

1. Move the slider handle to the left until the slider value decreases by 10.
2. Move the slider handle to the left until the slider value decreases by 1.
3. Hit Submit.

Plan A

Yes No

1. Move the slider handle to the left until the slider value decreases by 11.
2. Hit Submit.

Plan B

Reasoning: \n1. Image Analysis: The initial state of the form shows a slider set to 10, a checked 
checkbox, and a Submit button.\n2. Plan Evaluation:\n - Plan A: \n - Move the slider handle to the left 
until the slider value decreases by 10: The slider value becomes 0.\n - Move the slider handle to the left 
until the slider value decreases by 1: The slider value remains 0.\n - Hit Submit: The form is submitted 
with the slider value at 0 and the checkbox checked.\n - Plan B: \n - Move the slider handle to the left 
until the slider value decreases by 11: The slider value becomes -1.\n - Hit Submit: The form is 
submitted with the slider value at -1 and the checkbox checked.\n3. State Comparison: \n - Just before 
clicking Submit in Plan A, the slider value is 0 and the checkbox is checked.\n - Just before clicking 
Submit in Plan B, the slider value is -1 and the checkbox is checked.\n4. Final Answer: The states of the 
form just before clicking Submit are not the same for both plans.

Output: No\n

(b) Example 2
Task: Based on your analysis, state whether both plans result in the same state of the form just before clicking Submit. 

Your final answer must be either \"Yes\" or \"No\".

1. Check YqT0E
2. Uncheck YqT0E
3. Hit Submit

Plan A

Yes No

1. Uncheck ksT0NIO
2. Check YqT0E
3. Check ksT0NIO
4. Uncheck YqT0E
5. Hit Submit

Plan B

Reasoning: \n1. Image Analysis: The initial state of the form shows checkboxes for ksT0NIO, YqT0E, 
FP, 7K, yxnEg7k, and T2R9b1. ksT0NIO and T2R9b1 are checked, while the others are unchecked.\n2. 
Plan Evaluation:\n - Plan A: \n - Uncheck ksT0NIO: ksT0NIO becomes unchecked.\n - Check YqT0E: 
YqT0E becomes checked.\n - Check ksT0NIO: ksT0NIO becomes checked again.\n - Uncheck YqT0E: 
YqT0E becomes unchecked.\n - Hit Submit: The final state before hitting Submit is ksT0NIO checked, 
YqT0E unchecked, and the rest unchanged.\n - Plan B: \n - Check YqT0E: YqT0E becomes checked.\n -
Uncheck YqT0E: YqT0E becomes unchecked.\n - Hit Submit: The final state before hitting Submit is 
YqT0E unchecked, and the rest unchanged.\n3. State Comparison: \n - After Plan A: ksT0NIO checked, 
YqT0E unchecked, and the rest unchanged.\n - After Plan B: YqT0E unchecked, and the rest 
unchanged.\n - The state of ksT0NIO is different in the final states of Plan A and Plan B.

Output: No\n

(c) Example 3

Figure 27: Qualitative results for Future State Prediction.
The above figure shows outputs from Qwen2-VL 72B.
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