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A B S T R A C T

Automatic facial action unit (AU) detection from video is a long-standing problem in facial expression anal-
ysis. Existing work typically poses AU detection as a classification problem between frames or segments of
positive and negative examples, and emphasizes the use of different features or classifiers. In this paper,
we propose a novel AU event detection method, Cascade of Tasks (CoT), which combines the use of dif-
ferent tasks (i.e., frame-level detection, segment-level detection and transition detection). We train CoT
sequentially embracing diversity to ensure robustness and generalization to unseen data. Unlike conven-
tional frame-based metrics that evaluate frames independently, we propose a new event-based metric to
evaluate detection performance at the event-level. The event-based metric measures the ratio of correctly
detected AU events instead of frames. We show how the CoT method consistently outperforms state-of-the-
art approaches in both frame-based and event-based metrics, across four datasets that differ in complexity:
CK+, FERA, RU-FACS and GFT.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Facial expressions convey varied and nuanced meanings. Small
variations in the timing and packaging of smiles, for instance,
can communicate politeness, enjoyment, embarrassment, or social
discomfort [1,2]. To analyze information communicated by facial
expressions, Ekman and Friesen proposed the Facial Action Cod-
ing System (FACS) [3]. FACS describes facial activity in terms of
anatomically based action units, which can occur alone or combine
to represent all possible facial expressions. Action units (AUs) have a
temporal envelope that minimally include an onset (start) and offset
(stop) and may include change in intensity. Researchers have defined
33 to 44 AUs, depending on FACS version [4].

In computer vision, automated AU detection has become an active
area of research [6–15] and has been applied to marketing, mental
health, instructional technology, and media arts [16–20]. Despite its
descriptive power [5], automatic AU detection is challenging: non-
frontal pose and moderate to large head motion complicate facial
image registration; the temporal scale of facial actions varies consid-
erably; individual differences occur in shape and appearance of facial
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features; and many facial actions are inherently subtle. Due to the
thousands of possible combinations of 30-40 or more AUs, detection
typically is decomposed to a binary classification problem on each
AU.

Existing AU detection methods broadly fall into one of three
types: frame-level detection, segment-level detection, and transi-
tion detection. Frame-level detection independently evaluates each
video frame for the occurrence of one or more AUs [8,11,13,21–24].
Segment-level detection seeks to detect contiguous occurrences of
AU that ideally map onto what manual FACS coders perceive as an
event [12,25–27]. Transition detection seeks to detect the onset and
offset of each segment, or event [28]. See [29,30] for recent surveys.

Most approaches to AU detection are frame-level detectors,
which consider each video frame as independent. Because this
assumption ignores the inherent auto-correlation of behavioral data,
detection tends to be noisy with classifiers firing on and off in prox-
imal frames. By contrast, human observers do not evaluate video
frames individually. Rather, they perceive AU as events that have
a beginning (onset), an end (offset), and a certain duration. Con-
sequently, manual FACS coding requires significant effort to first
perceive an AU event and then identify its precise onset and offset.
To identify such events, researchers rely on segment-level detection.
Often, it is relatively easy to detect the temporal segment in the mid-
dle of an AU event with high intensity or large facial movement,
yet the transition points between AU inactivation and activation are
more subtle and difficult to detect. We seek to automatically detect
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AU events, including onsets and offsets, with high fidelity to human
perception.

To achieve this goal, we propose a Cascade of Tasks (CoT). CoT
detects AU events including their onsets and offsets, by sequen-
tially integrating the three AU detection tasks: frame-level detection,
segment-level detection, and detection of onsets and offsets. Fig. 1
illustrates the CoT process. The first task detects AU at the frame-
level. The results of this task tend to be noisy, or less reliable, because
it fails to exploit the temporal dependencies among proximal
frames.

The second task combines the output of the frame-level detection
with new segment-level features with a segment-based classifier
(see Fig. 1 second row). The segment-level detector gives a rough
location of the AU event and reduces the frame-level false posi-
tives, but is imprecise in the boundaries (i.e., onset and offset). The
third task addresses this problem. By integrating the three tasks, CoT
provides a more robust and precise detection of AUs than previous
approaches.

Our contributions are two-fold. 1) To the best of our knowledge,
CoT is the first approach to integrate multiple tasks for AU detec-
tion. Most other algorithms for AU detection emphasize different
features or a classifier, or combine them with ensemble-type meth-
ods to solve a single task. However, our approach combines different
tasks.

2) CoT fully recovers AU events instead of isolated AU frames or
incorrectly parsed segments.

To evaluate AU detection performance at event-level, we propose
a new event-based metric, as opposed to conventional frame-based
metrics that evaluate frames independently.

2. Previous work

We broadly categorize AU detection approaches into three types
of task: frame-level detection, segment-level detection and transi-
tion detection. These approaches largely differ on the methods for
registration, feature representation, and classifier learning. Here we
review recent work on AU detection. Refs. [6,7,29–31] offer more
complete surveys.

The first AU detection challenge (FERA) [7] indicates that most
approaches, including the winning one, were frame-based. Frame-
level methods detect AU occurrences in individual frames by extract-
ing geometric or appearance features to represent each frame,
which are then fed into static classifiers (e.g., SVM [8,32] or
AdaBoost [11,13]). Geometric features contain information of facial
feature shapes, including landmark locations [22,32,33] and geom-
etry of facial components [34]; appearance features capture texture
changes of the face, such as wrinkles and furrows, and can be typ-
ically represented by Gabor [11,35], LBP [24,36,37] and DAISY/SIFT
descriptors [13]. A notable trend in this area is fusing various fea-
tures/classifiers to generate more accurate and robust results [38,39].
For example, Tariq et al. [40] concatenated image features, includ-
ing SIFT, Hierarchical Gaussianization and optical flow, as input to
a SVM classifier. Later, Tariq et al. [9] used a log sum model to fuse
the outputs of classifiers trained separately with different low-level
image features.

In their study of multilayer architectures of texture-based image
feature descriptors (filters), Wu et al. [21] showed that adding a
second layer of nonlinear filters consistently improved performance.
This approach represents a special way to fuse feature descriptors.
Almaev and Valstar [41] proposed a temporal extension to the multi-
layer appearance features (LGBP-TOP). More recently, Jiang et al. [42]
proposed a decision-level fusion strategy to combine region-level
classifiers. First, domain knowledge regarding FACS AU definition is
used to define a face region. Second, a region-specific classifier is
trained for each region. Finally, a weighted sum combines outputs of
these classifiers.

Segment-level approaches seek to incorporate temporal infor-
mation of facial action, and to detect AU as a set of contiguous
frames. To capture temporal information, dynamic features have
been used to measure motions on a face [43,44], such as rais-
ing mouth corners. Recent work on exploiting dynamic features
includes bag of words [12] and temporal extensions to LBP, LGBP and
LPQ [20,23,37,41,45]. Another approach models the AU state change
over time using temporal classifiers or models. For example, Chang et
al. [25] use hidden conditional random fields to link the AU state with
underlying emotions in facial expression sequences. At each time

Task 1: Frame detection

Task 2: Segment detection

Task 3: Transition detection

...

onset

Cascade of Tasks (CoT)

Ground truth
Frame detection

Ground truth
Segment detection

Ground truth
CoT detection

Ground truth
Onset detection
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Fig. 1. Detection of AU 12 (smile) from its onset to offset using our proposed CoT method. In the plots to the right above, thick gray lines indicate ground truth and thin lines
indicate prediction results. First, CoT detects AU 12 in individual frames (Task 1). Because this step assumes that individual frames are independent, it is prone to error. Next,
CoT uses the responses of the frame-level detector and segment-based features to detect a segment for AU 12 (Task 2). Finally, CoT more precisely estimates the onset and offset
frames by learning transition detectors (Task 3).
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step, inference is made incrementally based on previous inferences.
Similarly, Tong et al. [27] use Dynamic Bayesian Networks to model
the semantic and temporal relationships between AUs. Simon et al.
[12] train segment-based SVM and detect AU segments in image
sequences by using dynamic programming.

In general, frame-level detectors are shown to be able to detect
subtle AU events because of the sensitivity to each frame. How-
ever, they are prone to noise due to lack of temporal consistency.
Segment-level methods, on the other hand, better detect AUs than
frame-level approaches and better approximate human perception.
However, compared with frame-level training data, segment-level
training data are scarce. Moreover, AU segments can be temporally
complex and are difficult to model. Consequently, segment-level
approaches are often less discriminative and cannot detect subtle AU
events. In this work, we use frame-level detection output to augment
segment-level training data. This results in segment-level detectors
with better discriminative power.

Recently, Walecki et al. [46] proposed a Variable-state Latent
Conditional Random Field model for segment expression analysis,
which can automatically select optimal latent states (nominal or
ordinal).

In addition to frame-level and segment-level approaches, an
important yet relatively unexplored task is to detect only AU tran-
sitions (i.e., onsets and offsets). However, transition detection is
challenging due to subtle changes between AU and non-AU frames.
To account for these subtle changes, previous approaches have relied
on additional information, such as an AU apex location [28] manually
labeled by a user, to accurately detect transitions.

Besides the above approaches that detect AU activation (i.e., inac-
tivation and activation), other works analyze AU events by explicitly
detecting their constituent temporal phases (i.e., neutral, onset, apex
and offset) [45,47–52]. This method provides a more precise and
nuanced framework. Pantic and Patras [48] proposed to use geomet-
ric based features and temporal rule-based reasoning to recognize
temporal phases of AU events. Later, Valstar and Pantic [49,51] pro-
posed a hybrid model of SVM and HMM that combined the SVM’s
discriminative power and HMM’s ability to model time to recognize
AU and divide temporal phases.

More recently, motion-based feature and spatial-temporal fea-
tures [45,50] have been used to detect AU and temporal phases. In
addition, Conditional Ordinal Random Field [52] was used to account
for ordinal relations between temporal phases of an AU event.

In this work we focus on AU activation detection for its simplicity
and wide use. Following Ref. [28], we use “onset“ and “offset” to
refer to exact frames where transitions between AU inactivation and
activation occur.

In other words, onset and offset indicate the beginning onset
frame and the ending offset frame. Previous works used the terms to
indicate two temporal phases [45,47–52].

Therefore, the transition (onset and offset) detection in CoT can
be viewed as one aspect to the overall AU activation problem, while
in Refs. [45,47–52] the onset and offset detections are two of four
detection goals.

CoT also relates to Multitask Learning (MTL) [53], which defines
multiple related tasks and improves learning for one task by using
the information contained in the training data of other tasks. How-
ever, there are several notable differences. First, in MTL each task
can have different objectives, while in CoT all three individual tasks
are various aspects of one overall task (i.e. AU event detection).
Second, the principal goal of MTL is to improve generalization per-
formance by sharing representation among tasks [53], while CoT’s
goal is to improve the performance of the overall task by combining
the three individual tasks roughly at decision-level. Third, MTL trains
tasks in parallel, using a shared representation. CoT performs tasks in
sequence where a subsequent task benefits from the preceding task
by using its output rather than sharing feature representation.

3. Cascade of Tasks (CoT)

Unlike previous AU detection methods that combine features and
classifiers for one particular task, Cascade of Tasks (CoT) sequentially
integrates three different tasks: 1) Frame-level detection for detect-
ing AU presence/absence on bases of information extracted from a
single frame; 2) segment-level detection for detecting AU segments
from contiguous frames; and 3) transition detection for recognizing
transitions between AU and non-AU frames.

Generally, we first perform frame-level detection and detect an
AU event at segment-level. Results are then refined by transition
detection.

This order of tasks is based on the assumption that the output
format of event-based detection is more desirable than frame-based
results by Human Computer Interaction, animation and other appli-
cations. Frame-based results tend to be noisy with classifiers firing
on and off in proximal frames, whereas event-based results are tem-
porally smoother. Conducting frame-level detection first allows us
to use subsequent tasks to enforce temporal smoothness. We also
assume that, given the same training expression sequences, train-
ing data for frame-level are most ample among the three tasks.
In addition, various techniques have successfully represented facial
expression images at the frame-level. On the contrary, segment-level
training data are relatively scarce and are much more difficult to rep-
resent. Results of frame-level detection are then used to augment
segment-level training data in both feature representation and train-
ing sample weighting. In this way, the proceeding task in the cascade
makes each subsequent task easier. Finally, we assume that subtlety
of transition in facial expressions complicates transition detection
and yields unstable results. Therefore, we only use the transition
detection to refine segment-level detection results.
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Fig. 2. Example from the RU-FACS dataset [11]: (a) a video of subject 77, (b) frame detection result in thin orange line and ground truth (GT) in thick gray line. (c) A segment score
matrix for frame + segment (FS) detection. The higher the score is, the more likely that there is an AU in this segment. (d) Event score matrix for FS + transition (FST) detection.
Using the transition score in (e) as a refinement, FST detector ( ) fires closer to the GT. (f) Detected segments. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)



X. Ding et al. / Image and Vision Computing 51 (2016) 36–48 39

3.1. Frame-level detection

For frame-level detector we use a Support Vector Machine (SVM)
trained on appearance features (SIFT descriptors) following Ref. [13].
We train the SVM using a leave-one-subject-out strategy. These
frame-level detectors offer reasonable predictions for frames with
the AU presence, but often are prone to noise due to the lack of tem-
poral consistency. Fig. 2 (a) and (b) illustrates a frame-based detector
on a video of 601 frames that contains an AU 12. Observe that the
frame-level detector detects correctly the frames where the AU is
present (153 – 398 frames) but has many false positives. While the
frame-level detector may contain a large number of isolated false
detected frames, they are fast and easy to train. We will use the
output of the frame-level detector (ffrm) to improve the subsequent
task (i.e., segment-level detection).

3.2. Segment-level SVM

To eliminate isolated false detections while preserving the sen-
sitivity of frame-level detectors, we will use the outputs of the
frame-level detection in combination with new segment-based
features.

3.2.1. Segment-level feature
We divide each segment evenly into three sub-segments, and

compute for each sub-segment a temporal bag of words [12] with
geometric features [34], as a complement to the appearance features
used in the frame-level detector.

The geometric features used here are a set of predefined geo-
metric measurements based on facial landmarks, including distances
between facial landmarks and facial components, as well as heights
and angles of facial components. Fig. 3 shows several examples of the
geometric features. xU

1 and xU
2 are distance between brows and eyes.

xU
3 , xL

1 and xL
2 are heights of eye, lip and teeth. xL

3 is angle of mouth
corner.

In our experiment, the facial landmarks are defined as in Xiong
and De la Torre [54].

Introducing these geometric features promotes diversity among
the tasks and hence produces more robust AU detection (as will
be shown in Section 5). For each sub-segment, we also incorpo-
rate the statistics of the output scores from the frame-level detector
ffrm. In particular, we include the maximum, minimum, mean and
median over the frames that constitute the sub-segment. The final
segment-level representation is a concatenation of the histograms
of temporal words and frame score statistics from the three sub-
segments.

3.2.2. Segment-level detector
Given the segment-level features and the prediction scores from

the frame-level detectors, we train the segment-level detector using
a weighted margin SVM [55]:

min
w,n k

1
2

||w||2 + C
∑

k

vkn k (1)

s.t.
yk

vk
w�x(S[sk, ek]) ≥ 1 − n k,

n k ≥ 0, k = 1, . . . , n,

where n is the number of training segments and {nk}n
k=1 are the

slack variables. x(S[sk, ek]) denotes a segment-level feature for the
kth segment, S[sk, ek], starting in the sth

k frame and ending in the eth
k

frame. To simplify the notation, we concatenate the segment fea-
tures x(S[sk, ek]) with 1 to compensate for the offset. yk ∈ {−1, 1}
denote the labels. {vk}n

k=1 are confidence weights that give more
importance to some segments than others. The higher the vk the
more important the segment will be in the classification process.
Recall that in segment-level detection, the positive segments are
the manually labeled AU events (of different length and intensity).
The negative segments are sampled segments at random locations
and temporal scales, and typically outnumber positive segments. For
each segment S[sk, ek], we compute the confidence weight as the
averaged absolute value of the frame-level detection scores, that is
vk = 1

ek−sk+1
∑

i∈[sk ,ek]|f i
frm|, where f i

frm is the output of the frame-level
detector in ith frame. With this definition of confidence weights, we
give more importance to the segments that are more likely to contain
many frames where the frame-level detector returns higher scores.
Please note that the confidence calculated here is frame-level confi-
dence. It is easy to compute and works well in practice. It can give
us a hint of how confident we think a segment contains an AU event.
However, it is not exactly AU event confidence. Given a segment
S[sk, ek], the decision value of segment-level detector is denoted as
fseg(S[sk, ek]) = w�x(S[sk, ek])/vk.

Segment-level detectors achieve more robust decision on con-
tiguous frames, but often mis-detect subtle AU events due to insuf-
ficient positive events for training, e specially in the onset and
offset. Fig. 2 (c) illustrates the score matrix (601 × 601) of the
segment-level detector on a video of 601 frames. Each entry (i, j)
of the matrix corresponds to the segment-level score that starts in
the ith frame and ends in the jth frame. The higher the score the
more likely the segment contains an AU. In this particular case, the
ground truth solution (GT ()) is located at (153,398). However, the

distance 
(inner brow)

height
(lip)

distance 
(outer brow)

height
(teeth)

angle
(mouth corner)

height
(eye)

Fig. 3. Examples of geometric feature. xU
1 and xU

2 are distance between brows and eyes. xU
3 , xL

1 and xL
2 are heights of eye, lip and teeth. xL

3 is angle of mouth corner.
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segment-based detector (FS detector) ( ) finds the maximum score
at (140,526). The segment-level detection (blue dashed line in Fig. 2
(f)) fires in a region that covers both the true AU and the subsequent
speech related facial movements. In order to improve the detec-
tion around the onset/offset, we will add the transition detection
task.

3.3. Transition detection

As discussed above, segment-level detections are often inaccurate
in the boundaries (onsets and offsets) of AU events. In this section, we
propose a transition detection to refine boundaries of the segments
previously detected.

We train two transition detectors, one for onsets and the other for
offsets, using linear SVM.

As discussed before, in this work we choose to focus on AU acti-
vation detection. Accordingly, onset and offset are referred to exact
frames where transitions between AU inactivation and activation
occur, instead of temporal phases. To be precise, they are beginning
onset frame and ending offset frame. Therefore, the transition detec-
tors are trained to detect the frames in between two contiguous time
periods of AU inactivation and activation, instead of AU intensity
increase or decrease. For this reason, a multiple-apex AU event, as
well as a single-apex AU event, ha ve only two transition frames (i.e.
beginning and ending), and are treated as one AU event.

We denote the detectors as fon and foff for onset and offset
respectively. We collected positive samples by extracting segment-
level features in segments centered in the offsets and onsets. We
selected a window of 6 frames before each onset/offset and 6 frames
after, so our segments are of 13 frames. Negative samples are ran-
domly selected as segments of different length that do not con-
tain positive labels. Fig. 2 (e) shows an example of onset detector
scores (green dotted line) and offset detector scores (purple dot-
ted line). As it can be seen in Fig. 2 (e) transition detectors are
prone to noise and contain many false positives. However, a high
response appears around the true onset, which allows CoT to refine
the boundaries of detected segments with this partially correct
information.

We linearly combine the transition and segment detection scores.
Specifically, for any given segment S[s, e], we define the event score
as fevent(S[s, e]) = afseg(S[s, e]) + bfon(s) + (1 − a − b)foff(e).

The combining parameters a and b indicate confidence on detec-
tors and are learned by cross-validation. In practice, AUs with larger
facial movements, e.g., AU 12, tend to have larger values on the
parameters for transition detectors.

Fig. 2 (d) shows the event score matrix of all possible segments in
the input video. The largest score entry ( ) provides a better estimate
of the ground truth ( ), that are superimposed, compared to the one
obtained by the segment-level score matrix without transition scores
(Fig. 2 (c)).

In Fig. 4, we show several qualitative results for various values
of combining parameters, a and b. We use the same video sequence
example as in Fig. 2, where onset and offset detection scores and
other related information can be seen. In the figures, ground truth
segment is marked , while maximum score segments are marked
with. Fig. 4 (a) shows fseg alone. Fig. 4 (b) and c) show s effects of
adding onset and offset detection s into the score matrix. Fig. 4 (d)
shows a n example of result with appropriate combining parameters,
while Fig. 4 (e) shows a n undesirable result when giving the noisy
transition (onset) detection too many weights. Comparing among
sub-figures in Fig. 4 reveals the importance of both the transition task
and appropriate parameter choices.

To detect multiple AU events in a given video, we apply
dynamic programming (DP) [56] to the event score matrix. Recall
that the original DP solution [56] could return a long segment
that merged multiple events as a long event. However, using the
transition score provides more accurate information about where
the true boundaries are, and CoT avoids this under-segmentation
problem.

4. An efficient implementation of CoT

In this section, we describe an efficient implementation of CoT.
As discussed in Section 3.3, DP can be used to segment AU events in
image sequence by finding a global optimal segmentation. However,
DP is computationally expensive to run it in large scale, especially
when the sequences are long and relatively small portion of frames
contain AUs. This section proposes an efficient temporal detection
algorithm using the branch-and-bound (B&B) algorithm rather than
the exhaustive DP. We follow a similar approach as Chu et al. [57].

The main intuition behind B&B is to avoid evaluating the seg-
ments where no AUs are possible. To search for all the segments with
positive segment detection score in a image sequence, we param-
eterize the possible set of segments as [slow, shigh, elow, ehigh], where
slow and shigh are smallest and largest values for the indexes of the
segment’s start. Similarly, elow and ehigh are the smallest and largest
values of for the indexes of the segment’s end. Thus, for an image
sequence from frame 1 to n, the set of all possible positions of a
segment is represented as [1, n, 1, n]. With the parameterization, we
explain below the two steps of branching and bounding in the B&B
approach.

4.1. Branching

The branching step splits a large candidate set into disjoint
subsets. We first compare the intervals between slow to shigh and
elow to ehigh. Then we select the larger interval and split it into
halves. For example, if elow to ehigh is a larger interval, the candi-
date set R = [slow, shigh, elow, ehigh] is split into two subsets: R1 =
[slow, shigh, elow, � elow+ehigh

2 �] and R2 = [slow, shigh, � elow+ehigh
2 � + 1, ehigh],
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Fig. 4. Event scores for various values of combining parameters. The three numbers in parentheses stand for (a,b, 1 − a − b), which are weights for fseg , fon and foff respectively.
Transition detection scores and other related information can be seen in Fig. 2.
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where � • � denotes to round towards the nearest smaller or equiva-
lent integer.

4.2. Bounding

The bounding step calculates the upper bound of segment detec-
tion score for each segments set R = [slow, shigh, elow, ehigh]. To
improve the speed of the bounding process, we modify two aspects
of the segment-level feature representation. First, we do not divide
the segment into three sub-segments but compute the BoW using
the whole segment. Second, we do not use the statistics on the detec-
tion score (e.g, minimum, maximum, median), but use the mean of
the frame detection score.

Please note that these two modifications to segment-level fea-
ture representation are applied in both model training and segment
searching, and we separately train a segment-level SVM model ded-
icated to CoT with B&B efficient search.

After these two modifications, it is straightforward to rewrite the
segment detection score as a sum of positive and negative terms:
fseg( • ) = f +

seg( • ) + f −
seg( • ), where f +

seg( • ) sums the prediction values
from frames with positive contribution whereas f −

seg( • ) adds the neg-
ative ones. An upper bound of the segment set R can be written as:
f̂seg([slow, shigh, elow, ehigh]) = f +

seg(S[slow, ehigh]) + f −
seg(S[shigh, elow]). This

upper bound fulfills the two necessary conditions listed in Ref. [58].
First, it is larger or equal to the maximal segment score among all
possible segments in the segment set. Second, it is exact when there
is only one segment in the segment set.

With the branch and bound procedures explained above, we can
perform efficient search for AU segments on a given image sequence.
The procedure is shown in Algorithm 1. During the search, we main-
tain a priority queue P of candidate segment sets in given image
sequence with n frames. The top state Rtop is retrieved as the segment
set that has the maximal upper bound f̂seg in P. We repeatedly split
(Branching) Rtop into disjoint subsets and retrieve new top state Rtop.
This iteration ends when the top state Rtop only contains one single
segment S[s, e]. If fseg(S[s, e]) is larger than 0, we first output S[s, e] as a
detected AU segments, then re-initialize priority queue P and repeat
the search. One way to re-initialize priority queue P is to remove all
the detected AU segments from search range. Suppose that k AU seg-
ments are detected so far, denoted as {S[si, ei]}k

i=1, 1 ≤ s1 < e1 <
s2 < e2 . . . < sk < ek ≤ n. We can re-initialize P with states
[1, s1 −1, 1, s1 −1], [s1 +1, e2 −1, s1 +1, e2 −1], . . . , [ek +1, n, ek +1, n].
Any segment set that has slow > shigh or elow > ehigh is removed from P.
The search is repeated until the segment score of detected segment
fseg(S[s, e]) is less than or equal to 0.

The branch-and-bound search detects AU segments {S[si, ei]}i

with positive segment scores. To improve the boundary accuracy of
detected segments, we perform a local search centered at each start-
ing frame si and ending frame ei, by using the transition detectors
described in Section 3.3. Within a predefined radius (13 frames in

our experiment) at each transition frame, the frame with maximal
transition score is set as the final transition frame.

5. Experiments

We evaluated CoT on four datasets, the extended Cohn – Kanade
(CK+) [33], GEMEP-FERA (FERA) [7], RU-FACS [11] and Sayette
Group Formation Task (GFT) [59].

5.1. Experimental settings

This section describes the feature extraction methods, the train-
ing/test setup and the methods used for comparison.

5.1.1. Datasets
CK+ contains 593 facial expression sequences from 123

participants.
Most of them are posed facial expressions, while a small portion

contains non-posed facial expressions.
Sequences vary in duration between 4 and 71 frames and the tem-

poral structure of facial movements is predetermined. Each sequence
begins with a neutral face and ends at peak intensity. Increases in AU
intensity are monotonic.

Pose is frontal with relatively little head motion.
In FERA, we used the image sequences from the FERA training set

of 87 portrayals from 7 trained actors.

Algorithm 1. Branch-and-bound search.

Please note that although we only use image sequences in our
experiment, FERA dataset also contains speech data.

Average duration is a little longer than 60 frames. AUs occur dur-
ing emotional speech and have multiple apexes. Increases in AU
intensity are not necessarily monotonic. Pose is primarily frontal
with small to moderate change in head movement.
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Fig. 5. Two synthetic detections for the metrics F1-Frame, Event Agreement (EA) [66] and F1-Event. (a) shows ground truth (gray thick line) and two detections (thin lines). In
F1-Frame, det1 scores higher although it has multiple false positives and misses a whole event. EA favors det2 as it is more desirable in detecting AU events. In (b), F1-Event
curve reflects boundary misalignment in det2, which is ignored in Event Agreement.
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Table 1
F1-Frame on CK+ dataset.

Frame Seg CoT

AU CLMa EF MKL LF JSC F FS FST

1 75 64.0 64.9 66.1 53.6 66.5 73.9 76.2
2 75 61.0 73.2 57.1 64.6 72.0 74.2 76.3
4 73 67.4 64.8 76.6 62.5 69.2 77.0 78.5
6 70 60.3 74.7 71.3 63.8 72.8 66.4 70.3
7 60 50.7 62.2 58.5 43.2 52.6 61.8 63.4
12 78 81.9 84.1 82.7 80.8 85.5 81.7 86.8
15 75 63.1 71.2 79.8 54.9 73.1 72.3 71.0
17 77 76.6 86.1 76.4 75.3 82.6 83.2 85.9
Average 72.9 65.6 72.6 71.0 62.3 71.8 73.8 76.1
Overall – 66.3 72.7 71.2 62.1 71.7 74.6 77.0

Highest scores in each row are indicated with bold font.
a For each AU, Chew et al. [32] reported multiple results from different features. We

selected the best ones and compute the average F1.

RU-FACS is more challenging than the other two datasets. It con-
sists of facial behavior recorded during interviews of about 2 minutes
duration. Participants show small to moderate pose variation and
speech-related mouth movements. Compared with the above two
datasets, RU-FACS is more natural in timing, much longer, and the
AUs are at lower intensity. For technical reasons, we selected from
29 of 34 participants that were available to us with sequence length
of about 7000 frames.

GFT dataset records real life social interactions among three-
person groups in less constrained contexts. The videos were
recorded by separate wall-mounted cameras faced each subject.
We selected 50 image sequences of 50 subjects. Each image
sequence has around 5400 frames. The videos include moderate-
to-large head rotation and frequent occlusion, as results of the
subjects frequently turned toward and away from each other
and drank beverage. The facial movements are spontaneous and
unscripted.

5.1.2. Face registration
For the CK+ and RU-FACS datasets person-specific Active

Appearance Model [60] tracking of 66 facial landmarks was available.
For FERA and GFT datasets, we used the recently proposed super-
vised descent method [54]1 to track 49 landmarks. All tracked facial
features points were registered to a reference face by a similarity
transformation.

5.1.3. Features
At frame level we extracted the geometric features [34] and

appearance features (SIFT descriptor) [13]. See Section 3 for
segment-level features.

5.1.4. Training/test spit
We used a leave-one-subject-out strategy in the CK+ and FERA

dataset s . In RU-FACS, in order to compare with previously published
results, we split the subject list into 19 subjects for training and 10
subjects for test. For more details on the training/testing spilt see Ref.
[8]. In GFT, we randomly split subjects into 10 parts. We iteratively
use each part of subjects as test set and the remaining as training set.

5.1.5. Frame-based methods to compare
We compared with three approaches that fuse shape [34] and

appearance features [13]. For all methods we used the Radial Basis
Function (RBF) kernel for shape features and concatenated features,
and the Histogram Intersection Kernel (HIK) for SIFT features. The

1 www.humansensing.cs.cmu.edu/intraface .

Table 2
F1-Frame on FERA dataset.

Frame Seg CoT

AU EF MKL LF JSC F FS FST

1 57.6 61.1 54.9 50.9 55.9 62.5 64.2
2 49.4 54.4 52.6 49.0 49.8 56.0 57.2
4 43.6 45.4 47.2 44.3 36.8 46.7 46.6
6 62.3 67.0 72.8 70.1 66.0 72.1 72.9
7 61.3 65.1 67.0 66.0 61.5 65.5 67.4
12 71.5 75.4 77.9 76.8 70.8 77.0 78.3
15 38.9 44.3 37.5 33.3 38.0 44.6 46.7
17 30.1 36.7 34.9 30.7 33.4 38.7 38.6
Average 51.8 56.2 55.6 52.6 51.5 57.9 59.0
Overall 52.9 58.6 57.7 54.5 54.4 60.2 61.4

Highest scores in each row are indicated with bold font.

first method, Early Fusion (EF) [40], fuses features by concatenating
feature vectors into a longer vector. Because different features have
different range values, we normalized them to have zero mean and
unitary variance. The second method, Late Fusion (LF) [9] combines
outputs from classifiers trained on different features. Because the
strength of features varies drastically across AUs, weighted averaging
was used to obtain late fusion result, the weights were estimated by
cross-validation. The third method for comparison was Multiple Ker-
nel Learning (MKL) [61] that jointly estimates the SVM parameters
and weights the contributions of different features.

5.1.6. Segment-based methods to compare
For segment-based methods, we implemented the Joint Segmen-

tation and Classification (JSC) [56]. Note that JSC can be seen as
segment detection in CoT without the input of the frame-level detec-
tor. Comparing JSC and FS reveals the contribution of the frame-level
detector to the segment-level detector. Temporal words were con-
structed for the shape and appearance features separately, and then
two kinds of segment-level feature vectors were concatenated. We
used a linear SVM for the JSC.

5.1.7. Sequence learning methods to compare
We also implemented a hybrid SVM/hidden Markov model

(HMM) approach as one sequence learning method. For each AU,
we train a frame-based SVM model by using both geometric and
appearance features, and a HMM with two states (i.e. activation and
inactivation). This hybrid approach has been successfully applied
in facial expression analysis [49] and speech recognition [62]. The
idea is to combine SVM’s discriminative power and HMM’s ability to
model time.

Specifically, the emission probabilities of HMM are computed
based on SVM output with Platt scaling [63]. The state transition
probabilities and a priori probabilities of HMM are estimated from
training data. Because of this, datasets that depict real life social

Table 3
Event Agreement on FERA dataset.

Frame Seg CoT

AU EF MKL LF JSC F FS FST

1 40.2 52.3 22.6 56.2 49.5 65.5 65.3
2 49.5 49.2 25.1 66.4 42.5 63.6 71.4
4 29.4 29.0 33.9 53.6 39.4 49.6 48.9
6 45.7 53.8 42.9 67.5 51.7 67.7 64.6
7 38.4 47.4 61.1 63.4 45.7 57.8 63.6
12 56.4 65.0 67.8 73.6 70.2 78.1 79.9
15 32.6 37.7 14.8 38.6 35.7 46.7 48.6
17 29.7 40.6 25.2 53.0 42.7 59.3 58.1
Average 40.2 46.9 36.7 59.0 47.2 61.0 62.5
Overall 39.2 46.3 32.5 58.8 47.2 61.4 62.9

Highest scores in each row are indicated with bold font.

http://www.humansensing.cs.cmu.edu/intraface
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Table 4
F1-Frame on RU-FACS dataset.

Frame Seg CoT

AU EF MKL LF JSC F FS FST

1 27.5 46.1 23.1 43.8 43.8 45.8 49.7
2 38.1 34.2 38.3 42.8 33.4 47.5 47.1
4 15.5 17.8 24.6 35.4 24.7 35.4 36.5
6 47.8 54.1 50.7 50.5 46.2 53.5 56.2
12 63.4 72.5 70.6 68.7 69.9 73.4 77.5
14 19.0 38.4 23.0 53.2 41.2 57.7 59.2
15 26.8 42.4 32.0 34.1 29.0 38.0 43.0
17 37.1 38.3 42.9 38.9 29.2 40.5 42.5
Average 34.4 43.0 38.1 45.9 39.7 49.0 51.5
Overall 37.4 49.1 40.7 52.3 43.9 56.0 58.4

Highest scores in each row are indicated with bold font.

interactions are preferred. During test, the most likely AU state path
of each input video is determined by a standard Viterbi algorithm.
We conducted this hybrid method experiment on GFT dataset, and
denoted it as HMM in our experiment.

Please note that a two-state HMM model is certainly not the most
representative model for this task. In future work we plan to include
HCRF-kind of models, which allow active or inactive class to have
multiple (latent) states.

5.1.8. SVM
For the linear and single kernel SVM we used the LIBSVM [64]

and for MKL the SimpleMKL [65]. We did standard grid-search on the
cross-validation parameters (including the C on the SVM).

5.2. Evaluation metrics

We first reported results using conventional metrics such as F1-
Frame score. However, we argue that for many applications the F1-
Frame score is less meaningful than an event-based metric. Therefore
results are also reported in newly proposed event-based metrics.

5.2.1. F1-Frame
F1-Frame is widely used (e.g., [7]) in AU detection literature. It

is defined as F1-Frame = 2 • FR • FP
FR+FP , where FR is the frame-level

recall and FP is the frame-level precision. F1-Frame ignores tempo-
ral information and fails to reflect event-based performance. As an
illustration, a synthetic detection example on 100 frames is shown
in Fig. 5. Two detections (det1 and det2) are shown along with
ground truth. Note that det1 misses one event and generates multi-
ple false positives, while det2 detects the correct number of events
and roughly recovers their temporal locations. However, F1-Frame
of det1 is 0.79 (recall = 26

37 ≈ 0.70, precision = 26
29 ≈ 0.90), which

is higher than 0.75 of det2. With this example we want to illustrate
that the F1-Frame metric can miss important information, and our
argument is that several evaluation metrics should be used.

Table 5
Event Agreement on RU-FACS dataset.

Frame Seg CoT

AU EF MKL LF JSC F FS FST

1 21.7 56.7 31.3 36.6 25.1 38.7 47.5
2 23.6 37.1 35.7 45.7 23.3 53.1 52.7
4 6.6 15.0 13.3 36.4 8.0 28.5 33.7
6 19.0 41.7 53.7 68.8 27.5 71.1 71.2
12 49.5 65.8 71.4 71.4 48.7 75.9 70.5
14 15.2 20.3 14.3 62.6 35.3 65.6 68.6
15 12.6 28.4 24.1 39.1 22.6 53.3 59.7
17 20.3 26.7 33.2 35.5 17.5 40.4 44.1
Average 21.1 36.5 34.6 49.5 26.0 53.3 56.0
Overall 20.1 38.4 32.2 49.8 25.0 53.1 56.7

Highest scores in each row are indicated with bold font.

Table 6
F1-Frame on GFT dataset.

Frame Seg CoT

AU EF MKL LF JSC F FS FST

1 26.5 23.3 28.0 23.8 23.1 28.6 30.0
2 24.2 25.3 27.3 25.5 25.0 33.7 33.6
6 68.6 71.1 69.5 71.9 70.4 74.0 73.7
7 68.6 69.3 69.4 69.7 68.4 73.2 73.1
10 69.8 72.6 71.9 70.4 68.7 73.3 73.3
11 41.4 39.8 41.2 40.2 39.7 41.4 43.0
12 69.6 71.6 72.1 68.3 67.0 73.5 73.6
14 69.6 75.5 62.5 65.6 64.6 66.5 66.9
15 25.4 30.2 29.0 30.5 29.8 33.6 33.3
17 39.2 46.4 45.3 36.1 36.8 42.1 47.6
23 31.4 30.6 33.7 30.3 30.2 29.4 29.6
24 29.8 28.8 32.5 28.2 27.0 32.4 34.3
1 + 2 21.2 21.6 23.9 22.7 21.5 29.1 33.7
6 + 7 67.2 66.8 64.0 66.9 65.6 70.5 70.3
12 + 14 64.8 68.5 67.4 67.1 65.6 72.5 72.9
Average 47.8 49.4 49.2 47.8 46.9 51.6 52.6
Overall 54.4 58.7 56.4 56.0 54.5 59.9 60.2

Highest scores in each row are indicated with bold font.

In AU detection, the numbers of positive samples and negative
samples are often highly imbalanced. This is known as the skew
problem. In GFT dataset, because the videos record facial expres-
sion from real-life conversations, the skew problem is particularly
severe. To address this problem, besides the metrics described above,
we also reported results using a newly proposed frame-level F1
score: skew-normalized F1 score [67], denoted as F1-Norm. F1-Norm
is computed from a weighted confusion matrix that balancing the
number of positive and negative frames. Reporting results using both
standard and skew-normalized F1 minimized confounds from highly
imbalanced dataset, as suggested in Ref. [67]. We will refer to the
normalized F1 as F1-Norm.

5.2.2. Event Agreement
To model the event-based performance, a metric called Event

Agreement (EA) was proposed in Ref. [66].
EA is defined as the percentage of agreed events between two

annotations, which is: Event Agreement = Total Number of Agreed Events
Total Number of Identified Events .

If an event in one annotation has overlap with other events from
the other annotation, this event is called an agreed event.

In AU detection scenario, ground truth sequence and detection
label sequence are two annotations, and EA measures the percentage

Table 7
Event Agreement on GFT dataset.

Frame Seg CoT

AU EF MKL LF JSC F FS FST

1 19.4 19.1 19.3 40.1 18.8 36.4 43.3
2 20.6 22.1 21.7 35.6 24.1 35.8 36.0
6 53.3 48.2 47.6 68.2 48.2 68.6 72.5
7 47.0 51.2 45.3 65.6 49.5 69.1 70.8
10 57.6 53.8 61.2 74.5 63.0 72.2 75.5
11 32.7 34.1 37.3 40.6 33.8 39.2 41.2
12 52.5 54.7 53.9 71.7 60.2 73.7 76.0
14 69.6 65.5 68.9 74.9 74.4 73.6 73.8
15 24.3 27.3 27.5 39.6 26.5 41.6 41.0
17 49.4 51.2 45.4 42.0 47.5 42.3 45.4
23 35.2 33.6 37.2 38.6 33.1 36.8 37.5
24 29.3 29.0 30.3 42.0 29.4 45.2 47.4
1 + 2 15.4 22.7 21.9 34.9 22.8 36.0 38.7
6 + 7 52.4 48.8 65.1 66.2 50.5 69.8 71.0
12 + 14 56.3 53.2 49.3 69.1 57.1 72.0 74.2
Average 41.0 41.0 42.1 53.6 42.6 54.2 56.3
Overall 41.2 43.0 43.0 55.5 43.5 55.3 57.1

Highest scores in each row are indicated with bold font.
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Table 8
F1-Norm on GFT dataset.

Frame Seg CoT

AU EF MKL LF JSC F FS FST

1 59.8 53.8 65.0 55.9 56.0 60.7 62.0
2 55.1 50.5 48.7 51.7 51.7 52.4 52.4
6 74.3 78.7 76.6 79.3 78.0 80.4 79.4
7 73.2 73.7 74.3 74.0 72.8 76.4 76.1
10 73.3 75.8 75.1 72.9 71.2 75.4 75.0
11 59.9 54.8 51.5 55.0 54.7 58.6 62.9
12 77.1 77.6 78.9 73.3 72.0 77.4 77.3
14 64.5 70.0 59.1 62.4 61.3 63.5 64.1
15 56.3 52.0 50.1 49.2 52.3 48.7 48.7
17 47.6 56.5 55.1 42.2 43.2 48.5 56.9
23 54.9 43.2 56.7 42.0 42.9 38.9 39.1
24 52.4 48.9 56.9 45.8 45.8 51.5 55.4
1 + 2 61.0 50.4 53.3 50.1 50.5 53.4 60.7
6 + 7 74.7 75.5 67.6 75.1 73.9 76.9 76.1
12 + 14 72.1 77.4 78.0 74.8 73.4 78.4 78.4
Average 63.7 62.6 63.1 60.2 60.0 62.7 64.3
Overall 68.1 71.0 68.3 66.8 65.8 69.2 69.6

Highest scores in each row are indicated with bold font.

of events that are correctly detected (overlapped with ground truth
events).

For example, in the det2 (bottom figure of Fig. 5 (a)), there is an
overlap between the ground truth event [a, c] and the detected event
[b, d], therefore EA considers that the event is correctly detected
(even if the overlap is minimal). In this case, EA for det2 is 2+2

2+2 = 1.
This is because, considering the thick line as ground truth two events
are correctly detected (assuming a minimal overlap). Then, consid-
ering the thin line as ground truth two events are correctly detected.
The EA is the ratio of events detected considering each of the signal
as ground truth over the total number of events (in the two signals).
For det1 (top figure in Fig. 5 (a)), the EA is 1+4

2+6 ≈ 0.63.

5.2.3. F1-Event curve
A major problem for EA to be used as a measure for AU detection,

is that a single frame of overlap between the detected AU event and
ground truth is considered as an event agreement. For example, in
Fig. 5, although det2 gets full score in EA, it is not a perfect detection,
especially in transition regions. To address this issue, we propose a
novel event-based metric: F1-Event = 2 • ER • EP

ER+EP , where Event-based
Recall (ER) is the ratio of correctly detected events over the true
events, while the Event-based Precision (EP) is the ratio of correctly

detected events over the the detected events. Unlike EA, F1-Event
considers that there is an event agreement if the overlap is above a
certain threshold, which can be set depending on specific applica-
tions. For the purpose of comparison the F1-Event curve is generated
by varying the overlap threshold. For example, in Fig. 5 (b), F1-Event
curves for det1 and det2 are shown. det2 for most thresholds has
higher F1-Event score, except in the regions with extremely high
threshold. This is because detected events of det1 are shorter and
once they are agreed they tend to get a high overlap ratio. It is inter-
esting to note that when the overlap threshold is zero, F1-Event is
very close to EA, as they are both “averaging” ER and EP.

5.3. Results

We reported results across all evaluation metrics (F1-Frame, EA,
F1-Event). We also reported intermediate results, F (frame detection
result) and FS (frame and segment detection s without transition), in
order to analyze the contribution of each task. To show the detec-
tion performance for all AUs, we reported the Average and Overall F1
scores. The Average F1 corresponds to the mean value of F1 scores
for all AUs. The Overall F1 was calculated from an overall confusion
matrix. The overall confusion matrix was computed by summing
confusion matrices of all AUs. By doing so, we implicitly assigned
larger weights to the AUs that appear more frequently. Because CK+
does not contain complete AU events, event-based metrics (i.e., EA
and F1-Event) were not used in CK+.

In addition, we tested efficient implementation of CoT on GFT
dataset, which has relatively long image sequence durations. Thus
we reported CoT results using both DP and B&B segmentation tech-
niques, denoted as CoT_BB and CoT_DP respectively.

5.3.1. F1-Frame
Results are shown in Table 1 (CK+), Table 2 (FERA), Table 4 (RU-

FACS) and Table 6 (GFT). We also included the detection results on
CK+ reported by Chew et al. [32] using Constrained Local Mod-
els (CLM). First, the final result of CoT (FST) outperforms all the
other methods. In terms of overall F1-Frame, on CK+, the difference
between FST and the second best method (MKL) is 4.3; on FERA, the
difference between FST and the second best method (MKL) is 2.8;
on CK+, the difference between FST and the second best method
(JSC) is 6.1. Second, in our experiments the methods using multiple
features did not necessarily perform better than the methods using
single feature. This might be due to the redundancy of the features
and possible normalization artifacts. For frame-based methods, MKL

EF MKL LF JSC F FS FST
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Fig. 6. Overall F1-Event on (a) FERA and (b) RU-FACS dataset s . Overlap threshold varies from 0.01 to 1. Solid and dotted lines denote segment- and frame-based methods,
respectively.
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Fig. 7. F1-Event curves on GFT dataset. Overall F1-Event curves are shown in (a) and curves for each AU are shown in (c – p). (b) shows performance of CoT with efficient
implementation (CoT_BB). Overlap threshold varies from 0.01 to 1. Solid and dotted lines denote segment- and frame-based methods, respectively.
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Table 9
Comparison between CoT_DP, CoT_BB and HMM on GFT dataset.

F1-Frame EA F1-Norm

AU DP BB HMM DP BB HMM DP BB HMM

1 30.0 28.0 27.5 43.3 47.5 42.4 62.0 61.3 60.7
2 33.6 31.8 25.3 36.0 36.7 42.2 52.4 51.2 55.4
6 73.7 74.1 67.9 72.5 78.5 71.0 79.4 81.4 73.2
7 73.1 74.6 68.0 70.8 73.7 68.4 76.1 78.2 72.2
10 73.3 74.7 69.4 75.5 73.7 72.0 75.0 77.1 72.5
11 43.0 42.3 40.5 41.2 44.6 44.6 62.9 63.6 58.1
12 73.6 73.1 70.6 76.0 75.6 72.8 77.3 78.6 77.6
14 66.9 69.0 67.3 73.8 65.3 73.7 64.1 65.7 62.8
15 33.3 30.7 25.3 41.0 33.7 41.2 48.7 43.7 55.3
17 47.6 44.6 38.7 45.4 32.1 42.4 56.9 54.0 47.1
23 29.6 25.5 30.0 37.5 24.8 50.5 39.1 32.7 52.0
24 34.3 27.8 30.9 47.4 35.4 45.2 55.4 46.0 55.6
1 + 2 33.7 32.4 22.4 38.7 37.3 37.0 60.7 57.9 62.5
6 + 7 70.3 71.1 67.7 71.0 71.3 71.6 76.1 79.1 74.7
12 + 14 72.9 72.1 65.5 74.2 72.8 66.9 78.4 79.8 72.7
Average 52.6 51.5 47.8 56.3 53.5 56.1 64.3 63.3 63.5
Overall 60.2 60.5 54.1 57.1 53.4 56.1 69.6 71.1 67.2

Highest scores in each row are indicated with bold font.

is the most stable and EF typically gets the lowest scores (even lower
than F that only uses SIFT features). The results using F1-Norm are
shown in Table 8 for GFT.

5.3.2. Event Agreement
Results are shown in Table 3 (FERA), Table 5 (RU-FACS) and

Table 7 (GFT). First, the advantage of segment-based methods (JSC,
FS, FST) over frame-based methods (EF, MKL, LF, F) is clear. On FERA
and RU-FACS, mean overall EA differences between segment-based
and frame-based methods are 19.8 and 24.3, respectively. Second, FS
consistently outperforms JSC. This shows how frame detection helps
in segment detection stage. Third, because EA does not consider the
overlap ratio, the performance improvement done by using the tran-
sition task is not well reflected with the metric. This explains why
under EA the advantage of FST over FS is insignificant, and in some
cases when transition detection is highly noisy, FS is even better.

5.3.3. F1-Event curve
For FERA and RU-FACS, results are shown in Fig. 6 (a) and (b). First,

the top three lines on both datasets are segment-based methods
(solid lines), which best shows segment-based method’s advantage
in detecting AU events. Second, because most AU events in RU-FACS
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are complete, opposed to lots of incomplete events in FERA, RU-
FACS contains more AU transitions. Hence transition detection (only
in FST) plays a more important role, which is revealed by the gap
between the top two curves. In some cases in FERA, false transition
detection even results in worse FST results than FS.

For GFT dataset, we shown F1-Event curves of overall and each
AUs in Fig. 7. Fig. 7 (c – p) show curves for each AUs. Most AUs show
similar pattern with overall figure Fig. 7 (a). However, two notable
exceptions are AU 17 and AU 23. One reason behind this is that GFT
dataset contains lots of short events of AU 17 and AU 23. In fact, the
median event length for AU 17 and AU 23 is 9 and 10, which are
respectively the shortest and second shortest among all AUs. Mean-
while, the median event length for all AUs is 22. This shows that
when the AU event length is short, CoT’s performance becomes close
to or even worse than frame-based methods.

Across the above three metrics, CoT (FST) consistently performed
the best among all AU detection methods for comparison. An increas-
ingly performance improvement within CoT was observed while
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Overlap Threshold

F
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 E
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Fig. 9. Overall F1-Event of CoT_DP, CoT_BB and HMM on GFT dataset. Overlap
threshold varies from 0.01 to 1.
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new task(s) being integrated. This improvement is more obvious on
RU-FACS and GFT where more complete AU events were present.

5.3.4. Three approaches in segmenting sequence
In our experiment, we included three dynamic approaches for

modeling time of AU events and segmenting test sequences, which
are DP, B&B and HMM. In Table 9 and Fig. 9, we show performance
of the three approaches. Overall, CoT_DP and CoT_BB perform better,
while these three methods generate comparable results.

It is interesting to note that in terms of F1-Event curve (Fig.
9), CoT_DP performed better when the overlap threshold is small
(between 0 and 0.6), while CoT_BB performed better when the
overlap threshold is higher (0.6 to 1). One reason of CoT_DP’s per-
formance drops quicker in high overlap area is the limitation on
the length of the search segments. Because CoT_DP uses exhaustive
search, in our implementation of CoT_DP, a maximum search length
has to be set for computational feasibility. The maximum search
length was set to be 200 frames through our experiment. Meanwhile,
CoT_BB does not have this limitation.

In addition, to demonstrate the efficiency, we reported the com-
putation time of CoT_BB (the efficient implementation) and CoT_DP
in Fig. 8. The results were computed using a standard laptop with
2.8 GHz dual core CPU and 4 G B RAM. The AU event searches are
performed on sequences with different lengths in GFT dataset. As
can be seen, the computation time for CoT_DP increases linearly with
sequence length, while computation time of CoT_BB is invariant of
sequence length. To make this situation more clear, we show CoT_DP
with three different maximum search segment lengths.

6. Conclusion

Most previous approaches to AU detection are concerned with
detecting occurrence in single frames and thus ignore the coherence
of AU events that can span multiple frames. We proposed a method
to detect facial AU events from image sequences. In our method,
three complementary detection tasks are sequentially combined.
Experiments on four datasets that differ in complexity show that
our method outperformed state-of-the-art alternatives in each case.
The improved AU detection relative to state-of-the-art was achieved
by combining tasks rather than by increasing computational com-
plexity. The idea of using a cascade of detection tasks of varying
granularity is not limited to facial AU detection. Future work could
apply this approach to other detection applications with temporally
continuous data, such as human gesture detection.
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