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• Novel study to classify simulated Movements of Interest (MOIs) by
action recognition.

• Acquired a novel 7-class simulated seizure MOI dataset acted by 8
epileptologists.

• Image-based vs. skeleton-based action recognition are compared for
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Abstract

Epileptic seizure classification based on seizure semiology requires automated,
quantitative approaches to support the diagnosis of epilepsy, which affects
1% of the world’s population. Current approaches address the problem on a
seizure level, neglecting the detailed evaluation of the classification of the un-
derlying action features, also known as Movements of Interest (MOIs), which
are critical for epileptologists in determining their classifications. Moreover,
it hinders objective comparison of these approaches and attribution of per-
formance differences due to datasets, intra-dataset MOI distribution, or ar-
chitecture variations.
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Objective evaluation of action recognition techniques is crucial, with
MOIs serving as foundational elements of semiology for clinical in-bed ap-
plications to facilitate epileptic seizure classification. However, until now,
there were no MOI datasets available nor benchmarks comparing different
action recognition approaches for this clinical problem. Therefore, as a pilot,
we introduced a novel, simulated seizure semiology dataset carried out by
8 experienced epileptologists in an EMU bed, consisting of 7 MOI classes.
We compare several computer vision methods for MOI classification, two
image-based (I3D and Uniformerv2), and two skeleton-based (ST-GCN++
and PoseC3D) action recognition approaches.

This study emphasizes the advantages of a 2-stage skeleton-based action
recognition approach in a transfer learning setting (4 classes) and the multi-
scale challenge of MOI classification (7 classes), advocating for the integration
of skeleton-based methods with hand gesture recognition technologies in the
future. The study’s controlled MOI simulation dataset provides us with
the opportunity to advance the development of automated epileptic seizure
classification systems, paving the way for enhancing their performance and
having the potential to contribute to improved patient care.

Keywords: Action recognition, Transfer Learning, Epilepsy, Semiology
Dataset, Diagnosis Support

1. Introduction

Monitoring and classification of patient activity in epilepsy monitoring
units (EMUs) play a pivotal role in the diagnosis of epileptic seizures, a
condition affecting approximately 1% of the global population (Fiest et al.,
2017; Begley et al., 2022). Automated diagnostic support systems are in-
creasingly crucial, particularly in EMUs. Our group has been a pioneer in
R&D of such systems, where quantitative seizure semiology-based diagnosis
and evaluation hinge on identifying specific seizure Movements of Interest
(MOIs) that are symptomatic of different epilepsy syndromes. The quantita-
tive MOI concept was introduced in 2012 within our first 2D vs. 3D approach
report (Cunha et al., 2012), where for instance, Frontal Lobe Epilepsy (FLE)
is often characterized by hyperkinetic MOIs with rapid and large proximal
movements, whereas Temporal Lobe Epilepsy (TLE) typically involves au-
tomotor MOIs with slower, distal, repetitive motions (e.g. hand, and finger
movements) (Lüders et al., 1998; Noachtar & Borggraefe, 2009; Noachtar &
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Peters, 2009).

Figure 1: Overview of this work: comparing image-based (Uniformerv2 (Li et al., 2022)),
I3D (Carreira & Zisserman, 2017)) and skeleton-based (ST-GCN++ (Duan et al., 2022a),
PoseC3D (Duan et al., 2022b)) Movement Of Interest (MOI) classification methods on
a seven-class simulated seizure semiology dataset with VitPose(Xu et al., 2022) skeleton
extraction. (EMU - Epilepsy Monitoring Unit)

The development of automated epilepsy classification systems is hindered
by the absence of standardized benchmark datasets, leading to a fragmented
research landscape (Karácsony et al., 2024; Ahmedt-Aristizabal et al., 2024).
Current top-performing approaches consider a deep learning action recogni-
tion approach with transfer learning (Karácsony et al., 2022; Pérez-Garćıa
et al., 2021; Karacsony et al., 2020; Hou et al., 2021), most of them focusing
on full seizure analysis (Pérez-Garćıa et al., 2021; Hou et al., 2021; Moro
et al., 2023), classifying only smaller snippets of the seizures (Karácsony
et al., 2022; Hou et al., 2022; Pérez-Garćıa et al., 2021; Moro et al., 2023),
and then aggregating it to seizure level (Pérez-Garćıa et al., 2021; Moro et al.,
2023), without specifically addressing MOI classification, critical for distin-
guishing between epilepsy types such as FLE and TLE (Noachtar & Peters,
2009).

The utilized clinical datasets (Ahmedt-Aristizabal et al., 2024) are pri-
vate and relatively small, as only a part of each seizure contains the MOIs
with classification value, with an unknown distribution between the seizures,
introducing an unknown imbalance of the underlying temporal-spatial fea-
tures. They address slightly different setups and classification problems, such
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as FLE vs TLE (Karácsony et al., 2022), or Epileptic Seizures (ES) vs Psy-
chogenic Non-Epileptic Seizures (PNES) (Hou et al., 2021, 2022), introducing
dataset-specific biases. Besides seizure and patient-specific features, these in-
clude a different distribution of clinical challenges, such as blankets on the
patients (TLE likely stays on, at least partially, FLE the patient likely kicks
off most of the blanket), and clinicians surrounding the scene (PNES likely
less interaction with the patient, ES likely more interaction with the patient).
This complexity hinders objective, quantitative comparisons of automated
classification approaches, making it challenging to discern performance im-
provements attributable to new architectural approaches from those arising
from dataset representation variances, occlusions, and other challenges. Thus
in this study, a controlled MOI simulation dataset was collected, as described
in Sec. 2.1, enabling rapid development and objective comparison of MOI
detection and classification approaches. Furthermore, this dataset enables
the development of more explainable seizure classification methods in the
future, as it enables the core differentiating features, MOIs, to be classified,
following the clinical practice.

State-of-the-art Deep Learning (DL) RGB video-based action recognition
is categorized into image-based, dominated by vision transformers (ViTs)
and Convolutional Neural Networks (CNNs), and skeleton-based, primar-
ily using Graph Convolutional Networks (GCNs) or CNN-based methods
(Sun et al., 2022). Image-based approaches excel in automatically learning
from raw videos, potentially enhancing accuracy by leveraging comprehen-
sive video data, but suffer from high computational demands and extensive
data requirements (Sun et al., 2022). Conversely, skeleton-based methods are
efficient, require less computational power and data, and are robust to envi-
ronmental changes, yet rely heavily on skeleton extraction quality and may
miss non-skeletal details like facial expressions or gestures (Sun et al., 2022).
To extract these skeletons, one of the best performing 2D Human Pose Esti-
mation (HPE) methods from monocular videos, complying with the common
EMU setup, are ViT-based approaches such as VitPose (Xu et al., 2022).

2. Materials and Methods

2.1. Dataset description and acquisition

A simulated seizure semiology dataset was recorded in an EMU bed,
without blankets or other occlusions obstructing the camera, with our Neu-
roKinect4K system described in (Karácsony et al., 2024). This controlled
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scenario enables the determination of the most effective architecture for
MOI classification without the influence of additional environmental features.
The movement sequences were designed and simulated by eight experienced
epileptologists who have already seen and classified these MOIs countless
times, ensuring a high level of accuracy in imitating these semiologies.

This dataset, created within a controlled clinical setting, aims to ensure a
good balance between its limitations and advantages. It is designed to simu-
late seizure semiologies while removing unrelated clinical challenges, such as
the presence of clinicians and blankets that often obstruct views in clinical
settings. This provides clearer, unobstructed observations of MOI manifesta-
tions. Moreover, the dataset maintains a balanced representation of samples
of the semiologies, a task usually unachievable in clinical settings due to
the limited availability and visibility of certain seizure and movement types,
such as hyperkinetic movements. This control is crucial as it can significantly
influence performance outcomes.

Simulating a complete seizure pattern could pose challenges; however,
MOIs, being smaller and well-defined segments, allow for effective emula-
tion. Conducted by a group of seasoned clinicians, the dataset ensures high
relevance along with considerable complexity and variability in movements.
Although this dataset has its strengths, it’s crucial to recognize that it does
not encompass the full spectrum of variability in epileptic seizures. Instead,
it primarily focuses on representing the key aspects of movement-based clas-
sification in this field, capturing variations in movement size and speed. Nev-
ertheless, when it is compared to other real-world epileptic seizure datasets, it
offers a great number and high variability of MOIs. This is significant because
gathering comprehensive data on real-world epileptic seizures is both time-
consuming and resource-intensive, as no publicly available clinical datasets
currently exist. As the first dataset and approach to MOI classification,
the novelty and benefits of this acquired dataset substantially outweigh the
potential drawbacks of a slightly reduced complexity and variability when
compared to clinical MOIs.

The video data was acquired with an Azure Kinect camera, in verti-
cal 4K resolution (2160x3840, 30 fps), following our early geometric EMU
video-EEG scene study from 2009 (Cunha et al., 2010), where the camera is
mounted from the ceiling above the patient’s feet facing the bed, frequently
also used by other groups (Karácsony et al., 2024; Hou et al., 2022; Moro
et al., 2023). The recorded simulated semiologies consisted of seven classes
of MOIs, in two groups, (a) large MOIs included (1) 95 Hyperkinetic, (2) 85
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Bilateral tonic, and (3-4) sign of four, with 92 right or 88 left arms extended
and the (b) hand MOIs included (5-7) manual automatism with 88 left, 90
right or 113 both hands. In total 651 samples (26,048 frames total) were
utilized, with a minimum of 9, a maximum of 217, and on average of 39.95
frame per sample. For the ground truth labels a neurologist (N.F.) labeled
the start and end times of each simulated MOIs as if they were part of a
clinical seizure. The included MOIs are some of the more common MOIs
present in epileptic seizures, thus chosen to evaluate the feasibility of MOI
classification and to guide future studies. While significantly more MOIs ex-
ist, we had to limit our selection to these due to the time availability of the
staff, still, these classes provide a solid foundation, as most automatic seizure
classifications, the closest comparable methods, only include 2 or 3 classes.
The recording parameters and dataset metrics are summarized in Tab. 1,
and all participants signed an informed consent. This data acquisition setup
provided a controlled dataset in the target domain, both in terms of actions
and scenery.

Table 1: Table of dataset main metrics, (So4 - Sign of 4, ext. - extended, Autom. -
Automotor, # - Number of)

(a) Dataset

# Subjects 8
# Classes 7
Total # samples 651
Length of actions (frames)
average±std (min/max)

39.95±24.60
(9/217)

Total # frames 26,048
Sensor Azure Kinect
fps 30

Resolution
2160x3840
(vertical 4K)

Size of video data 1.35 GB

(b) Class distribution

classes #Samples group
So4, right arm ext. 92

a
So4, left arm ext. 88
Hyperkinetic 95
Bilateral tonic 85
Autom., both hands 113

bAutom., left hand 88
Autom., right hand 90

2.2. 2D Human Pose Estimation and object detection

For the skeleton-based approaches individuals were detected in every
frame with YOLOX-x (Ge et al., 2021; Chen et al., 2019), a well-established
object detection architecture. Each frame was resized to an input resolution
of (640x640), keeping the original aspect ratio and padding, and bounding
box detections were provided on the original frames. Then from inside these
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detected bounding boxes the human poses were estimated with VitPose-H, in
the standard 17 keypoints COCO format (Lin et al., 2014). For the HPE the
frames were extracted and resized to the input resolution of (256x192), still
keeping the original aspect ratio and padding (Xu et al., 2022; MMPose Con-
tributors, 2020) (Fig.2). This processed the 4K video segments (NxHxWxC;
Nx2160x3840x3) to a 2D skeleton sequence (NxKPxXYP; Nx17x3), where
N is the number of frames, H and W are the height and width of the video,
C is the 3 RGB channels, KP is the number of keypoints, XYP is the x,y
coordinates and keypoint probabilities. .

2.3. Action recognition architectures

Four action recognition architectures were evaluated on the semiology
simulation dataset representing the two main approaches for action recogni-
tion, UniFormerV2 (Li et al., 2022) and Inflated 3D ConvNet (I3D) (Carreira
& Zisserman, 2017) representing image-based, ST-GCN++ (Duan et al.,
2022a) and PoseC3D (Duan et al., 2022b) representing skeleton-based ap-
proaches. The implementations were adapted and extended from the pre-
existing mmaction2 codebase (MMAction2 Contributors, 2020). The details
of the training parameters are provided in Tab. 3 and the details of the
pre-training datasets in Tab. 2

Table 2: Main dataset metrics of the pre-training data of the action recognition architec-
tures (NC - Not Controlled; NTU RGB+D 60 Xsub - The NTU RGB+D 60 dataset in a
cross-subject test setting)

Dataset Modality # Classes # Videos # Subjects
NTU RGB+D 60 Xsub (Shahroudy et al., 2016; Duan et al., 2022a) RGB-D, skeleton 60 57K 40
Kinetics 400 (Kay et al., 2017) RGB 400 306K NC
Kinetics 710 (Li et al., 2022) RGB 710 660K NC

I3D. is a well-established 3D CNN based architecture, that was already uti-
lized in epileptic seizure action classification. It was pre-trained on ImageNet
(Deng et al., 2009) and Kinetics 400 (Kay et al., 2017). It samples uniformly
from the input video 32 frames with a 224x224 input resolution.

UniFormerV2. is a modern, ViT-based, state-of-the-art performance archi-
tecture, that utilizes a CLIP-ViT (Radford et al., 2021) backbone. It was
pre-trained on Kinetics-710 an action recognition dataset composed of Kinet-
ics 400/600/700 (Kay et al., 2017; Carreira et al., 2018; Smaira et al., 2020)
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as described in (Li et al., 2022). In this study specifically, the UniFormerV2-
L/14 (CLIP-ViT-L/14 backbone) was utilized with a uniform 32-frame sam-
pling from the input video with a 224x224 input resolution.

ST-GCN++. is one of the top performing Spatial-Temporal Graph Convolu-
tional Network pre-trained on NTURGB+D-60-Xsub skeleton action recog-
nition benchmark (Shahroudy et al., 2016; Duan et al., 2022a), it was trained
with a uniformly sampled 2D COCO joint skeleton sequences (Lin et al., 2014;
MMAction2 Contributors, 2020), with a sequence length of 100 (MMAction2
Contributors, 2020).

PoseC3D. is a 3D CNN based approach operating on 3D heatmap volumes
of the 2D joint skeletons. The skeleton sequences are uniformly sampled to a
sequence with a length of 48, then each skeleton is converted to a 17x56x56
heatmap and stacked in the sequence. It was pre-trained on NTURGB+D-60-
Xsub skeleton action recognition benchmark (Shahroudy et al., 2016; Duan
et al., 2022a), the same dataset as the above ST-GCN++ implementation.

2.4. Experiments and validation setup

Two main scenarios were set up for the experiments. The first included
the 4 classes of (a) large MOIs, in which setting all architectures were eval-
uated, while the combination of (a) large MOIs and (b) small hand MOIs,
consisting of 7 classes, was only evaluated with image-based approaches,
as the skeleton-based approaches only include the main joints of the body.
Therefore, this latter setting aims to evaluate the limitations of image-based
approaches to additionally distinguish these relatively small gestures.

All experiments were set up in a transfer learning setting, and pre-trained
weights were utilized, with only the action classification heads reinitialized.
The pre-training datasets of the skeleton-based approaches were the same
(NTURGB+D-60-Xsub) and the image-based approaches had overlapping
pre-training datasets (Kinetics 400 and 710), (Sec. 2.3), which provides
a relatively fair comparison between them. The backbones’ weights were
frozen for I3D, Uniformerv2, and PoseC3D except for the last 1, 2, and 1
layer respectively. ST-GCN++ backbone pre-trained weights were utilized,
however, the backbone was not frozen, as it has a relatively low number of
parameters it still benefited from a fully unlocked training, without instantly
overfitting, as opposed to the other architectures.
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2.4.1. Training

Training of each architecture was following the original training setup,
additionally utilizing weighted loss to address the remaining slight class im-
balances and adjusted learning rate schedules and batch sizes for our dataset
and compute resources (Tab. 3). The learning rate (lr) of each architec-
ture was scaled proportionally to the original pre-training batch size and the
actual training batch size. lrtrain = lrorig ∗ batchsizetrain

batchsizeorig

Table 3: Summary of model and training parameters (cls - class, cv - cross validation, e.
- epochs, G - Giga, GB- Gigabyte, h - hours, M - Million, Params. - Parameters, seq. -
sequence)

Model Input type batch
Params.
(M)

FLOPs
(G)

GPUs (VRAM)
GPU hours
1 cv run

I3D
Video

(32x224x224x3)
3x16

32.22 127
4cls: 3xRTX2080ti (11GB) 3x2 h (100e.)

3x16 7cls: 3xRTX2080ti (11GB) 3x3.5h (100e.)

Uniformerv2
Video

(32x224x224x3)
3x3

354 2561
4cls: 3xRTX2080ti (11GB) 3x11 h (300e.)

2x16 7cls: 2xRTX6000ada (48GB) 2x56.5h (300e.)

ST-GCN++
2D Skeleton seq.

(100x17x3)
1x16 1.38 1.95 1xGTX1080ti (11GB) 1x10 min (100e.)

PoseC3D
2D Skeleton heatmaps

(17x48x56x56)
1x16 2.00 20.6 1xGTX1080ti (11GB) 1x1.5h (100e.)

2.4.2. Validation

Validation of each experiment was carried out with an 8-fold, Leave One
Subject Out (LOSO) cross-validation approach. Namely, the samples from
5 and 2 subjects were utilized for training and validation sets respectively
during the training, early stopping was utilized based on the best f1 vali-
dation score. Then this architecture with the best f1 validation score was
tested on the 1 hold-out test subject, to ensure the generalizability and cross-
subject independence of the approaches validation. Then this was repeated
for each subject, with the subjects organized in a circular list. In the results,
the average of the test metrics from the 8-fold LOSO are provided for each
experiment.

3. Results

3.1. 2D Human pose estimation

The 2D HPE approach successfully estimated the 2D poses even in chal-
lenging scenarios, with unusual poses, significant self-occlusion, and from
an uncommon viewpoint. As no ground truth joint coordinates were avail-
able this was confirmed by visual inspection. Nevertheless, to provide insight
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into the performance some of these more challenging scenarios and estimated
poses are displayed in Figure 2.

(a) Hyperkinetic (b) Bilateral tonic (c) So4 rax (d) So4 lax

Figure 2: 2D pose estimation results for the following MOI: (a) Hyperkinetic, (b) Bilateral
tonic, and Sign of four with the (c) right or (d) left arm extended classes (So4 rax or
So4 lax)

3.2. Action recognition

The detailed results of the 8-fold LOSO cross-validation mean test met-
rics are presented in Tab. 4, including f1 score, accuracy, sensitivity, and
specificity.

3.2.1. Image-based approaches

Image-based approaches mean test f1 score of the (a) 4 class setting was
0.84±0.21 and 0.91±0.13, for the I3D and Uniformerv2 architectures respec-
tively, with Uniformerv2 achieving a 0.91 mean f1 test score, 0.07 larger
than I3D architectures. However in the (b) 7 class setting this f1 score was
0.83±0.12 and 0.72±0.19 respectively, for I3D and Uniformerv2, with I3D
having the performance advantage with a 0.11 higher mean f1 test score than
the trained Uniformerv2 architectures. The performance drop was mainly
introduced by the confusion introduced by the additional classes of the (b)
hand MOIs group as represented on the confusion matrices on Fig. 3.
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Table 4: Summary of quantitative results of the 8 fold LOSO cross-validation mean test
metrics on the simulated semiology dataset. Architectures highlighted in bold represent
the best-performing models under the given setup.

(a) 4 class results

Model Modality f1 score Accuracy Sensitivity Specificity
I3D Video 0.84±0.21 86.11±17.08% 85.83±16.91% 95.39±5.61%
Uniformerv2 Video 0.91±0.13 92.96±9.07% 92.68±10.17% 97.65±3.29%
ST-GCN++ Skeleton 0.91±0.1 91.23±9.81% 91.34±9.83% 97.08±3.29%
PoseC3D Skeleton 0.94±0.09 94.18±8.52% 93.97±8.52% 98.08±2.80%

(b) 7 class results

Model Modality f1 score Accuracy Sensitivity Specificity
I3D Video 0.83±0.12 85.50±10.09% 84.78±10.61% 97.54±1.71%
Uniformerv2 Video 0.72±0.19 74.99±17.37% 74.84±17.05% 95.82±2.91%

3.2.2. Skeleton-based approaches

Skeleton-based approaches both outperformed the image-based approaches
in the 4 class setting, achieving mean test f1 scores of 0.91±0.1 and 0.94±0.09
for the ST-GCN++ and PoseC3D architectures respectively. Furthermore,
they achieved a lower standard deviation of the f1 test scores across the 8
LOSO validation folds, than the image-based approaches.

4. Discussion

The recorded simulated dataset marks a pioneering step in enabling ob-
jective and quantitative assessment of epileptic seizure-related MOI classifi-
cation within a clinical context. It provides the largest collection of MOI sam-
ples and unlike previous studies that lacked control over the distribution of
MOI representations within the seizure videos and temporo-spatial features
representation, this dataset allows for a direct comparison of classification
strategies and the different snippet-level feature extraction strategies on the
MOIs. When comparing the proposed MOI-based methods with seizure-level
classification approaches, they have the significant advantage of enabling a
more granular and interpretable classification, mirroring the cognitive pro-
cesses used by epileptologists. Although, in end-to-end seizure level models
these MOIs are implicitly learned from the full seizures during training, their
distribution in the training dataset remains unknown and uncontrolled. As
a result, these end-to-end models may overfit to certain MOIs while failing
to capture others that are well documented in the clinical literature. In con-
trast, MOI-based approaches ensure that MOI distributions are explicitly
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(a) I3D (b) Uniformerv2

Figure 3: Example confusion matrices of the end-to-end architectures, I3D and Uni-
formerv2 in the 7 class setting, a LOSO fold with an f1 score of 0.81 and 0.8 respectively
(so4 rax,so4 lax - Sign of 4 right, left arm extended; ton b - Bilateral tonic, auto bh,
auto rh, auto lh - Automotor both, right or left hands)

known and can be controlled during training. On the other hand, this ap-
proach requires more granular labeling work ahead of time, which makes it
more challenging to acquire due to the limited availability of clinical staff.

In the proposed transfer learning setting, utilizing only a limited dataset,
our evaluation of four action classification approaches revealed that skeleton-
based methods excelled in a 4-class scenario. These methods are not only
more lightweight compared to image-based approaches, making them ideal
for smaller datasets, but also benefit from incorporating ViTs for HPE. This
setup focuses on relevant extracted features, offsetting the demand for ex-
tensive training data to HPE, where large datasets can tackle most clinical
challenges. Furthermore, skeleton-based approaches ensure accurate action
classification by isolating patient movements from external influences like
bystanders and clinicians.

While image-based approaches had the advantage of being able to address
the 7 class setting, including the smaller MOIs, their performance was highly
limited by the significantly lower relative resolution of the small hand MOI
features compared to the full-body MOIs. Therefore, their practical perfor-
mance might be misleading, as the class confusion distribution was much
higher between the small movements. This could be problematic especially
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if they would be utilized in seizure classification settings as a snippet-level
feature extractor. This highlights the multiscale classification challenge of
epileptic seizures. Uniformerv2 performed worse than I3D on the 7 class
setting, likely because ViT-based architectures are significantly more data-
hungry than 3D CNNs, thus it is worth considering that for limited-sized
datasets with more classes, the more lightweight architectures might per-
form better.

This study acknowledges limitations, notably the variance in pre-training
dataset sizes between image-based and skeleton-based architectures, with
Kinetics datasets being substantially larger than those used for skeleton-
based methods.

The skeleton-based approaches are particularly promising, including their
ability to quantify movements. Furthermore, considering clinical in-bed sce-
narios, skeleton-based approaches enable preserving patient privacy, which is
essential for international research collaborations, by providing an efficient
way to share anonymized clinical data. This can be crucial for up-scaling
the number of clinical collaborations, and acquiring large and diverse clinical
datasets. Moreover, these methodologies have broad applicability in various
in-bed patient activity monitoring scenarios, from intensive care and neuro-
critical care units to home sleep monitoring, which we discuss in (Karácsony
et al., 2024).

In the future, we are expanding our dataset with more diverse simulated
MOI classes and integrating hand gesture and facial expression recognition.
Given the limited availability of clinical staff for labeling, we envision an it-
erative human-in-the-loop learning approach: first, training and evaluating
models on an extended simulation dataset, then using these pre-trained mod-
els to pre-label patients’ seizure data with MOI classes for the clinicians to
validate and correct. Through ongoing retraining and validation, the model
improves while accelerating the validation process. Eventually, this strat-
egy may accelerate real-world clinical validation and enhance diversity of the
dataset to enable future diagnosis support applications.

5. Conclusion

In conclusion, a novel simulated seizure semiology dataset was acquired,
representing seven classes of MOIs commonly appearing in epileptic seizures.
To the best of our knowledge this dataset is the first of its kind, the largest,
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and controlled for environmental features by excluding occlusions, thus pro-
viding a fair platform to compare action recognition approaches in this do-
main. Utilizing this dataset, skeleton-based and image-based approaches
were trained in a leave-one-subject-out (LOSO) manner. Among these ap-
proaches, the skeleton-based PoseC3D achieved an average F1 score of 0.94
in the 4-class, larger MOI setup. When small hand MOIs were included,
extending to 7 classes, the image-based I3D approach achieved an average
F1 score of 0.83. The acquired MOI simulation dataset enabled the objective
and controlled comparison of DL action recognition approaches in the clinical
setting of epileptic seizure classification applications. This opens opportu-
nities for the future to train and evaluate these approaches on real-world
clinical seizure MOIs, the building blocks of seizures, leading to more inter-
pretable classification approaches, and it provides a controlled training source
for real-world applications. After further validation, this could potentially
lead to networks that are not only effective but also more interpretable.

Currently, the extracted skeleton dataset is only available for request from
the corresponding authors.
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