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Abstract. As extended reality (XR) is redefining how users interact
with computing devices, research in human action recognition is gain-
ing prominence. Typically, models deployed on immersive computing de-
vices are static and limited to their default set of classes. The goal of
our research is to provide users and developers with the capability to
personalize their experience by adding new action classes to their device
models continually. Importantly, a user should be able to add new classes
in a low-shot and efficient manner, while this process should not require
storing or replaying any of user’s sensitive training data. We formal-
ize this problem as privacy-aware few-shot continual action recognition.
Towards this end, we propose POET: Prompt-offset Tuning. While ex-
isting prompt tuning approaches have shown great promise for continual
learning of image, text, and video modalities; they demand access to
extensively pretrained transformers. Breaking away from this assump-
tion, POET demonstrates the efficacy of prompt tuning a significantly
lightweight backbone, pretrained exclusively on the base class data. We
propose a novel spatio-temporal learnable prompt offset tuning approach,
and are the first to apply such prompt tuning to Graph Neural Networks.
We contribute two new benchmarks for our new problem setting in hu-
man action recognition: (i) NTU RGB+D dataset for activity recogni-
tion, and (ii) SHREC-2017 dataset for hand gesture recognition. We find
that POET consistently outperforms comprehensive benchmarks. 4

Keywords: 3D Skeleton Activity Recognition · Extended Reality (XR)
· Continual Learning · Prompt Tuning.

1 Introduction

A key input modality to virtual, augmented and mixed reality (often together
termed as extended reality, XR) devices today is through recognizing human

4 Source Code at https://github.com/humansensinglab/POET-continual-action-
recognition

https://github.com/humansensinglab/POET-continual-action-recognition
https://github.com/humansensinglab/POET-continual-action-recognition
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Fig. 1: Proposed POET method continually adapts skeleton-based human action
recognition models pretrained on a pre-defined set of categories to new user cate-
gories with few training examples. Users can thus expand the capabilities of XR
systems with novel action classes by providing a few examples of each new class. We
discard the user-sensitive data as soon as the model is updated on the new categories.

activity and hand gestures based on body and hand pose estimates. Recogniz-
ing human actions5 facilitates seamless user interactions in head-mounted XR
devices such as the Meta Quest 3 and Apple Vision Pro. If the provided action
recognition models are static, then developers and users are limited to a pre-
defined set of action categories. With the growing use of such devices in new
contexts and the increasing demand for personalized technology delivery, there
is an impending need to enable the action recognition models in such systems to
adapt and learn new user actions over time. Defining their own action categories
allows users to customize their experience and expand the functionality of their
XR devices. Addressing this need is the primary objective of this work.

Adapting human action models to new user categories over time faces a few
challenges. Firstly, the model must be capable of learning new actions with mini-
mal amount of training data so users can add new classes by providing just a few
training examples per class. Secondly, due to the increasing use of XR devices
for personal assistance, there is a need for privacy preservation in user action
recognition-based pipelines [2,14]. Hence, the adaptation of such action recogni-
tion models to new user categories must also be ‘data-free’, i.e., it cannot store
and replay previously seen user training data in subsequent continual sessions.
Considering these requirements, we leverage the recent success of ‘data-free’
prompt-based learning [49] and propose a new spatio-temporal prompt offset
tuning approach to efficiently adapt the default model without finetuning.

Human action recognition systems are moving to skeleton-based approaches,
especially in applications that require low-shot action recognition capabilities
such as medical action recognition [27,56]. Skeletons offer a robust and compact
alternative to videos in such low-shot regimes, due to their relatively low di-
mensionality and lesser variance under background conditions. While there have
been a wide variety of efforts in skeleton-based human action recognition over
the years [36, 52, 53], there have been fewer efforts on adapting such models to
newer user categories. Efforts like [1,22] attempted to continually learn new user
5 We use human action as an umbrella term for both hand gesture and body activity in this work

for ease of presentation.
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categories over time in skeleton-based human action recognition, but relied on
fully-supervised data for the new classes. On the other hand, few-shot learning
works [27, 46, 56] adapt a pretrained skeleton-based action recognition model to
new data, but without explicitly retaining past categories. In this work, we seek
to learn new user categories in trained human action models with very few labeled
samples for the new classes, while being data-free (not storing samples from pre-
viously trained categories). Fig 1 summarizes our overall objective. One could
view our setting as privacy-aware few-shot continual learning for skeleton-based
action recognition.

To this end, we propose a prompt offset tuning methodology that can be in-
tegrated with existing backbone architectures for skeleton-based human action
recognition. Our learnable (soft) prompts are selected from a shared knowledge
pool of prompts based on an input instance dependent attention mechanism.
In particular, we propose prompt selection using an ordered query-key match-
ing that enables a temporal prompt frame order selection consistent with the
input instance. We show that such an approach allows us to learn new user
categories without having to store data from past classes, without overwriting
the pre-existing categories. To the best of our knowledge, this is the first effort
on leveraging prompt tuning for skeleton-based models, as well as on spatio-
temporal prompt selection and tuning.
Our key contributions are summarized below:

– We formalize a novel problem setting which continually adapts human action
models to new user categories over time, in a privacy aware manner.

– To address this problem, we propose a novel spatio-temporal Prompt OffsEt
Tuning methodology (POET). In particular, it is designed to seamlessly plug-
and-play with a pretrained model’s input embedding, without any significant
architectural changes.

– Our comprehensive experimental evaluation on two benchmark datasets brings
out the efficacy of our proposed approach.

2 Related Works

2.1 Prompt Tuning

The idea of prompting, as it originated from Large Language Models (LLMs),
is to include additional information, known as a text prompt, to condition the
model’s input for generating an output relevant to the prompt. Instead of ap-
plying a discrete, pre-defined ‘hard’ language prompt token, prompt and prefix
tuning [20,23] formalized the concept of applying ‘soft prompts’ to the input. A
set of learnable parameters are prepended (concatenated) to the input text and
trained along with the classifier while keeping the backbone parameters frozen.
Similar to prompt tuning of LLMs, recent works have popularized prompt tuning
of ViTs [16] as an effective way of adapting large pretrained models to down-
stream tasks [49,57]. However, it remains unexplored and undefined (to the best
of our knowledge) for non-transformer architectures such as GNNs.
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2.2 Prompt Tuning for Continual Learning

Prompt tuning provides a simple and cost-effective way of learning task-specific
signal condensed into ‘soft prompts’. For continual learning, training a set of
prompts for each sequential task provides a natural alternative to storing privacy
violating exemplars and replaying them. Training task-specific prompts for each
sequential task is straightforward when authors assume access to task identity at
both train and inference time, like in Progressive Prompts [34]. However, if task
identity is unavailable at inference, the model will not know which task’s prompts
or classifier to use for evaluating a test sample. In this respect, S-prompts [47] and
A-la-carte prompt tuning (APT) [4] learn an independent set of prompts for each
domain/task and employ a KNN-based search for domain/task identity at test
time. Since these methods learn stand-alone prompts for every task, the prompt
feature space is task-specific, and there is no forgetting of old knowledge when
learning new tasks (by design). At the same time however, these ‘no forgetting’
prompts cannot share knowledge across tasks.

This leads to another ideology for continual prompt tuning, i.e., treat each
prompt unit as being a part of a larger shared (knowledge) pool of prompts.
Then the desired number of prompt units can be selected from the pool, condi-
tioned on the input instance itself [41,48,49]. Given the scarcity of new data in
our setting, we hypothesize that sharing of knowledge will benefit new tasks and
draw inspiration from this line of works. Most recently, Adaptive Prompt Gener-
ator (APG) [42] challenges the intensive ImageNet21K pre-training assumption
as it prompts a ViT pretrained only on the continual benchmark’s base class data
(similar to us). However, they use replay and knowledge distillation-style ‘anti-
forgetting learning’, in addition to using prompts. Even though our backbone is
trained only on the base classes, we propose a simple prompt tuning-only
strategy to counter forgetting. This implies that a prompt strategy is all we need
to continually add new action semantics in a few-shot manner.

2.3 Few-Shot Class Incremental Learning

FSCIL is a challenging continual learning setting where a model overfits to
new classes, with the simultaneous heightened (often complete) forgetting of old
knowledge as soon as the base model is fine-tuned on few-shot data [10,43]. Since
the backbone feature extractor is the only source of previously seen knowledge,
if it is updated, knowledge is lost forever. Typically, existing works decouple the
learning of (backbone) feature representations from the classifier by learning the
model only on the base data and relying on non-parametric class-mean classifiers
for classification in subsequent steps [13,31,55]. This leads to a feature-classifier
misalignment issue [32, 51] because new class prototypes are extracted from a
backbone representation trained only on the base classes. We hypothesize that
optimizing input prompt vectors along with a dynamically expanding parametric
classifier on top of a frozen backbone can alleviate this misalignment issue. Our
work not only provides a fresh perspective into FSCIL, but to our best knowledge
is also the only work not designed for and evaluated on image benchmarks.
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3 Preliminaries

Skeleton Action Recognition Using Graph Representations. Our input
X ∈ RT×J×3 is a video sequence of T frames, each frame containing J joints
of the human body (25 joints) or hand skeleton (22 joints) in 3D Cartesian
coordinate system. Such a skeleton action sequence is naturally represented as
a graph topology G = {V, E} with V vertices and E edges. Graphs are modeled
using Graph Neural Networks (GNNs) [12], which can either be sparse graph
convolutional networks (GCN) or fully connected graph transformers (GT). Our
main model (a GNN) is defined as f(X) = fc ◦ fg ◦ fe(X) (as also shown in
Fig. 2). Input X is first passed through an input embedding layer fe to get an
embedding of human joints Xe = fe(X),Xe ∈ RT×J×Ce , with feature dimension
Ce. Xe is further passed to a graph feature extractor fg composed of a stack
of convolutional layers (in GCNs) or attention layers (in GTs), and finally a
classifier fc which predicts the action class label y. In POET, we propose to
attach learnable parameters PT (called prompt offsets) to the embedding Xe.

Problem Definition. Given a default (pre)trained model deployed on a user’s
device, we would like to extend this model to new action classes over T subse-
quent user sessions (also called tasks) {US(1), ...,US(T )}6. In each user session

US(t), the model learns a dataset D(t) = (Xt
i,y

t
i)
|D(t)|
i=1 of skeleton action sequence

and label pairs provided by the user, Xt
i ∈ RT×J×3, yti ∈ RY(t)

. In each session,
the user typically provides a few training instances F (e.g. F ≤ 5) for each of the
N new classes being added, such that |D(t)| = NF . The base (default) model’s
session UB(0) is assumed to have a large number of default action classes Y(0)

trained on sufficient data D(0), which is most often proprietary and cannot be
accessed in later user sessions. In each session, the user adds new action classes
such that, Y(t) ∩ Y(t′) = ∅,∀t ̸= t′7. Due to the aforementioned privacy con-
straints, in any training session US(t), the model has access to only D(t); after
training this data is made inaccessible for use in subsequent sessions (no exem-
plar or prototypes stored). After training on every new session US(t), the model
is evaluated on the test set of all classes seen so far ∪t

i=0Y(i). The challenge is to
alleviate forgetting of old classes while not overfitting to the user-provided new
class samples. One could view our setting as privacy-aware few-shot continual
action recognition, a problem of practical relevance in human action recognition
– which has not received adequate attention.

4 Methodology: Prompt Offset Tuning (POET)

Overview. We propose to prompt tune a base GNN model f(.) by prompts PT

to address our overall objective. As shown in Fig. 3, for each input instance X,
corresponding prompts PT are selected from a pool of prompt parameters, using
an input-dependent query and key attention mechanism. The selected prompts

6 User sessions may be spaced at arbitrary time intervals.
7 We make this assumption considering this is a first of such efforts; allowing for overlapping action

classes and users to ‘update’ older classes would be interesting extensions of our proposed work.
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are added to the input feature embedding (and hence the term ‘prompt offsets’),
before forwarding to the feature extractor and classifier (shown in Fig. 2).
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Fig. 2: POET: Prompt-offset
Tuning proposes to offset the
input feature embedding Xe of
the main model by learnable
prompt parameters PT for
privacy-aware few-shot contin-
ual action recognition. We ex-
plain prompt selection mecha-
nism in Fig. 3.

To this end, our method, POET uses the same
number of prompts as the number of temporal
frames in the input, to maintain temporal consis-
tency between the prompt and the input. Focus-
ing solely on prompt offsets allows us to adapt the
model to subsequent user sessions without having
to update the input embeddings or the feature ex-
traction backbone. Our prompt selection mecha-
nism is learnable and trained along with the clas-
sifier to make this method simple and efficient.

What are Prompt Offsets? Learnable (or soft
[20]) prompts are parameter vectors in a continu-
ous space which are optimized to adapt the pre-
trained frozen backbone fg to each continual task.
We define our spatio-temporal prompt offsets PT

as a set of T prompts (same in number as skeletal
frames in input), each prompt Pi having length
equal to the number of joints in a frame J and
feature dimension same as input feature embed-
ding Xe, i.e., Pi ∈ RJ×Ce .

Existing prompt tuning efforts, for example in
image classification, focus on concatenating learn-
able prompts to the input token sequence in trans-
former architectures [16, 20]. Even though trans-
formers can be generalized to graphs [7,11,29], it is non-trivial to attach prompts
to a GNN. This is because transformers can be viewed as treating sentences or
images as fully connected graphs where any word (or image patch) can attend
to any other word in the sentence [12]. However, our input is a spatio-temporal
graph skeleton of the human joint-bone structure with its own edge connectivity.
Concatenating prompts along spatial or temporal dimensions would affect the
graph semantics, and also affect standard training strategies such as a forward
pass or backpropagation (especially in GCNs). Hence, we attach the selected
prompts PT to the corresponding input feature embedding Xe via a prompt
attachment operator fp(.). The class logit distribution y is thus obtained as:

y = f(X,PT) = fc ◦ fg ◦ fp(fe(X),PT) (1)

In every user session t > 0, the classifier output dimension expands by N to
accommodate the new action classes. Unlike most existing continual prompt
tuning works, our feature extractor backbone fg is trained only on the base class
data D(0) and is never fine-tuned on classes from new user sessions US(t), t > 0.
After the base session training, parameters of fg, fe are frozen.

Prompt Pool Design. As stated in Sec. 2.2, to encourage knowledge sharing
across user sessions, we choose to construct a single prompt pool P which encodes
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Fig. 3: Selection of our prompts PT: Input-dependent query q is matched with keys K using
sorted cosine similarity to get an ordered index sequence (si)

T
i=1 of the top T keys. This ordered

index sequence is used to select the corresponding ordered prompt sequence PT from prompt pool
P. We add PT to Xe, thereby adding an offset to it. Our experimental evaluation confirms that
such an additive spatio-temporal prompt offset can balance the plasticity to learn new classes from
a few action samples, while maintaining stability on previously learned classes.

knowledge across the sessions:

P = {P1, ..Pi, ...,PM}, Pi ∈ RJ×Ce ;M = #prompts at time t (2)

For selecting prompts from this pool (Fig. 3), we construct a bijective key-value
codebook, treating prompts in the pool P as values and defining learnable key
vectors K = {k1, ..,ki, ..,kM},ki ∈ RCe . A cosine similarity matching γ(.)
between the query q and keys K is used to find indices of the T closest keys Z,
which in turn are used to select prompts from the pool:

Z = argmax
T

γ(fq(X),K) (3)

This quantization process is enabled by a query function fq(.), which is a pre-
trained encoder that maps an input instance X to a query q as:

q = fq(X) = fQA ◦ f ′g ◦ f ′e(X), fq : RT×J×3 −→ RCe (4)

where the query adaptor fQA is a fully connected layer mapping the f ′g output
dimension to the desired prompt embedding dimension Ce.

Coupled Optimization in User Sessions t > 0. Typically, the argmax op-
erator in Eq. 3 decouples the optimization of keys from the prompt pool and
main model as it prevents backpropagation of gradients to the keys (also seen
in earlier works such as [48, 49]). However, this approach does not work for our
setting, even more so since we assume no large-scale pre-training of our base
model. Due to the lack of off-the-shelf availability of large-scale models for skele-
tal action data, our query function fq is pretrained only on base class data D(0).
Hence, it becomes important that fq is updated as the model learns new classes.
As shown in red boxes in Figs. 2 and 3, we propose to couple this optimization
process such that the overall cross-entropy loss for new tasks updates: (i) the
classifier fc, (ii) selected prompts in P, (iii) selected keys in K, as well as (iv)
query adaptor fQA. We achieve this by approximating the gradient for K and
fQA by the straight-through estimator reparameterization trick as in [3,44]. We
freeze the query feature extractor layers f ′g, f

′
e in t > 0 to prevent catastrophic

forgetting of base knowledge in fq. Our cross-entropy loss is hence given by:



8 P. Garg et al.

min
θfQA

,θK ,θP,θfc
L(f(X,PT),y) (5)

To move queries closer to their aligned T keys during training, we use a vector
quantization clustering loss inspired from VQ-VAE [44] as:

max
θfQA

,θK
λ
∑
i∈Z

γ(fq(X),Ki) (6)

where λ is the clustering loss coefficient. Our end-to-end optimization thus es-
tablishes a prompt optimization framework which is amenable to prompt tuning
when extensive pre-training is not possible. This sets the foundation for our
spatio-temporal prompt selection module, described next.

Spatio-Temporal Prompt Selection. In order to ensure that our learned
prompts respect temporal information in the input video sequence, we choose
the number of selected prompts to be equal to the number of frames in the input

(A) Prompt Pool Collapse

(B) POET, Expand Pool with R prompts

𝑈𝑆 ! , 𝑀 = 72 𝑈𝑆 " , 𝑀 = 72

Prompt Index Prompt Index

𝑈𝑆 ! , 𝑀 = 70, 𝑅 = 6 𝑈𝑆 " , 𝑀 = 88, 𝑅 = 6

Prompt Index Prompt Index

Fig. 4: M > T Case: Prompt Pool Col-
lapse. (Top) Certain prompt indices remain un-
used across user sessions. (Bottom) Our POET
pool expansion strategy alleviates pool collapse.

video T . After coupling the prompt
pool and keys, we observed in our ini-
tial experiments with pool size M > T
that the same set of prompts get se-
lected across training iterations and
user sessions (Fig. 4A). More con-
cretely, as the vector quantization loss
(Eqn 6) brings the query close to
the selected keys, the same set of
active prompts get selected and op-
timized in each iteration, not using
other prompts at all. This is similar to
the well-known issue of ‘codebook col-
lapse’ in VQ-VAE [9, 50, 54]. Based on this observation, we design two prompt
pool update mechanisms in user sessions t > 0 as below:
1. Case 1, M = T∀t: No pool expansion, Algorithm 1. All prompts are selected

in all tasks. But the order of their selection (si)
T
i=1 varies with each input

instance as we replace Eq. 3 by sorting the cosine similarity before selecting
the top T indices as follows:

Z = argsort
(si)Ti=1

γ(fq(X),K) (7)

In Fig. 5, we visualize the positions occupied by indices in this (sorted) ordered
key index sequence (si)

T
i=1. Entropy increase across tasks t = 1 to t = 4

(bottom row of figure) shows that our selection mechanism learns to select a
unique temporal code for all inputs.

2. Case 2, M = T + (R ∗ t), t > 0. Expand pool with R prompts. We also
propose an order-aware prompt pool expansion strategy (Appendix B) that
selects prompts from an expanded pool in a temporally coherent manner, for
t > 0. This alleviates prompt pool collapse as shown in Fig. 4B.

Prompt Offset Attachment. Since concatenation is not meaningful for graph
data, we use addition as our choice for the prompt attachment operator as:
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fp(Xe,PT) = Xe +PT (8)

Hence, we call our approach as prompt offset tuning. We also study this empiri-
cally through experiments that support this choice in Sec. 6.

Interpreting Prompt Offset Tuning of GNNs. Our additive prompt offsets
are open to interpretation, as shown in Fig. 5. (i) Adding our selected prompts
PT to input feature embedding Xe acts like an input-dependent transformation
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Fig. 5: Here we visualize the order (si)
T
i=1 in which the M =

64 prompts in the pool are selected at train time, across 4 user
sessions US(t). X-axis: prompt index, Y-axis: index position in selected
sequence. Top: The no sorting case uses the default sequence (hence
diagonal matrices), giving equal importance to all prompts. Bottom
(Our Method): Even though the same 64 prompts are selected and
updated, the ordering is temporally unique and consistent with input.

for spatio-temporal joints.
(ii) As our prompts
have same size as Xe,
it can also be thought
of as a learned prompt
encoding, bearing sim-
ilarity with learnable
position encoding works
[12, 24, 26]. Our pur-
pose is different how-
ever as prompt off-
sets seek to dynami-
cally condition the in-
put for adapting the
backbone continually,
instead of learning positions. (iii) POET also bears similarity with auto-decoders
like DeepSDF [30] which learn latent codes for each style or shape and use
relevant codes along with a frozen decoder at inference. (iv) Prompt tuning
can also be thought of as a parameter isolation technique for continual learn-
ing [28, 34, 35, 38]. POET’s ordered prompt selection as seen in Fig. 5 learns to
isolate the relevant sequence of prompts for each input action sequence.

Algorithm 1 POET at Train Time, t > 0 (Case 1 M = T , No pool expansion)
Input: Query function fq , keys K = {kj}Tj=1, prompt pool P = {Pj}Tj=1; main model fe, fg , fc
Initialize: P,K from t − 1; Expand fc by N new classes. Initialize fc as: (i) copy fold

c weights,
(ii) fnew

c ←Mean(fold
c )

Freeze: query layers f ′
g, f

′
e; main model layers fe, fg

for epochs and batch (Xt
i,y

t
i)

NK
i=1

do
1. Get query feature q (Eq. 4) ; Compute γ(.) b/w query q and keys K

2. Sort γ(.); Get ordered key index sequence (si)
T
i=1 (Eq. 7)

3. Read pool memory P in order (si)
T
i=1 → Get prompt offsets PT

4. Get Xe; Add PT to it (Eq. 8); get prediction y from prompted input (Eq. 1)
5. Use cross entropy loss (Equation 5) to update fQA,K,P, fc
6. Use clustering loss (Equation 6) to update fQA and K

end // See t = 0 training protocol in Algorithm 2 in Appendix

5 Experiments and Results
Datasets. We evaluated our method on well-known action recognition datasets8:
(i) activity recognition on the NTU RGB+D dataset [39]; and (ii) hand gesture
8 The datasets used in this work were accessed and processed at and by CMU. They

were not accessed, processed, stored, or maintained at Meta.
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recognition on the SHREC-2017 dataset [40]. As we introduce a new problem
setting in human action recognition, we contribute two new benchmarks to the
community for this setting, on the NTU RGB+D and SHREC-2017 datasets.

For the NTU RGB+D dataset, we divide the 60 daily action categories into
40 base classes, learning the remaining 20 classes in subsequent user sessions.
In few-shot learning parlance, our protocol is 4-task 5-way 5-shot, i.e. 5 novel
classes using 5 user training instances in 4 user sessions. Each input 3D skeleton
sequence has 64 temporal frames, each consisting of 25 body keypoints, such
that x ∈ R64×25×3. We use the spatio-temporal GCN, CTR-GCN [8], as the
architecture for NTU RGB+D, where we choose the joint input modality for
better interpretability of prompt tuning.

For SHREC-2017, we divide the 14 fine-grained hand gesture classes into 8
base classes and 6 classes learned in subsequent user sessions. This is done in a 3-
task 2-way 5-shot protocol, i.e. 2 novel classes using 5 user training instances in 3
user sessions. For each input instance of SHREC-2017, we use 8 temporal frames
each having 22 hand keypoints, such that input x ∈ R8×22×3. We use a fully-
connected graph transformer backbone, DG-STA [7] for SHREC-2017. We select
DG-STA due to easily reproducible code and to validate if our method POET
works equally well across graph convolutional networks and graph transformers.
Evaluation Metrics. Following earlier work in similar settings [31], we report:
(i) Average accuracy ‘Avg ’ of all classes seen so far, and (ii) Harmonic Mean AHM

between ‘accuracy only on Old classes’ and ‘accuracy only on New classes’ after
learning each new user session. Note that the average accuracy tends to be biased
towards the base session T (0) performance due to more number of base classes.
A higher AHM implies better stability-plasticity trade-off between new task per-
formance and old tasks’ retention. Unlike many earlier CIL efforts, we report
accuracy for both Old and New classes in each user session for transparency.
Implementation Details. We observe that a key source of forgetting in our
setting is from the classifier as the logits tend to become heavily biased towards
the few-shot samples of new classes. We use a cosine classifier for activity recog-
nition experiments on CTR-GCN. For gesture recognition on the lightweight
DG-STA, we use a standard fully-connected layer as classifier, but freeze old
class parameters in the classifier by zeroing their gradients. We attach prompts
after the 1st layer of DG-STA and 1st CTR-GC block of CTR-GCN. For both
datasets, we have equal or higher learning rates in user sessions when compared
to the base model’s training in order to accommodate new knowledge in the
model (for better plasticity). For exact implementation details (including learn-
ing rates, epochs, hyperparameter analysis, and backward forgetting metric),
see Appendix A. In earlier efforts that more generally tune prompts for class-
incremental learning [41, 45, 47–49], it is common to rely on an ImageNet21K
pretrained ViT [37] or CLIP [33] as the backbone. However, such backbones do
not exist for skeleton-based human action recognition. Our base feature extractor
is hence trained on the base session dataset itself without any pretraining, mak-
ing this one of the first efforts of prompt tuning without extensive pretraining
(scale of data 3-5 times lower order of magnitude).
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Results. Since there are no existing baselines for our proposed setting in skeletal
action recognition, we compare our method by adapting continual learning (CL)
baselines to skeletal data in Sec 5.1, Tables 1, 2. We first compare POET with
prompt tuning based class-incremental learning (CIL) approaches originally de-
signed for images (L2P [49], CODA-P [41], APT [4]) and find that it has very
low performance on new classes as they do not update their query function.
We find any fine-tuning or knowledge distillation based approaches (LWF [25],
EWC [17], LUCIR [15]) lead to rapid forgetting of base knowledge as the model
overfits to user’s few-shots. We also compare with multiple variants of Feature
Extraction (FE) to check if prompts truly have merit (POET=FE+Prompts)
and provide upper bound baselines. In Sec 6, we first show the importance of
prompts in POET by removing the prompts. We discuss the value of our cou-
pled optimization, query function update and ordered key index selection in our
prompt selection ablation Tab 3. We also study the impact of proposed additive
prompt tuning as compared to other possible prompt attachments fp in Tab 4.

5.1 Comparison with State-of-the-Art

POET sets the SOTA on existing prompt tuning works (Tab 1,2). We
adapt three standard CIL works that prompt tune ViTs for images - L2P [49],
CODA-P [41] and APT [4] to our setting. L2P and CODA-P share prompt pool
across tasks (similar to us), whereas APT learns task-specific prompts. L2P de-
couples the optimization of keys from the prompt pool and concatenates the
selected prompts. Since concatenation is not defined for our GNN backbone, we
adapt these SOTA to our setting by concatenating along the temporal dimen-
sion (L2P*, CODA-P*). CODA-P [41] couples keys with the prompt pool by
using a cosine similarity weighing over all prompts in the pool, forming a ‘soft
prompt selection’, different from our ‘ordered hard prompt selection’. In APT,
we train prompt-classifier pairs for each continual task separately (ˆ denotes
task-specific), and use task identity at test time. See details in Appendix A.
These methods by design rely on extensively pretrained (ImageNet21k) query
functions which does not require updates; and require full supervision on new
classes, perhaps explaining their poor ‘New’ accuracy in our few-shot setting.
Standard Continual learning Baselines. We compared with two well estab-
lished knowledge-distillation approaches, learning without forgetting (LWF) and
LUCIR. Both of them perform poorly on both old and new classes. EWC [17]
learns better on new but does not retain old knowledge. We conclude that any
CL method that fine-tunes the backbone feature representation in subsequent
sessions t > 0 will not be able to retain base/old class knowledge (a finding
consistent with existing FSCIL literature for images [10,43]). We also adapt and
compare with one of the latest FSCIL baselines ALICE [31], originally developed
for image classification benchmarks on our gesture recognition benchmark in Ta-
ble 2. Note the high retention of base task performance (due to non-parametric
classifier on top of frozen base model). However, it suffers from poor plasticity
and adaptation to new classes. This is the issue of feature-classifier misalignment
that we hoped to alleviate through prompt tuning.
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Table 1: Activity Recognition Results (%, ↑), Comparison with SOTA: NTU RGB+D [39]
dataset on CTR-GCN [8] backbone. After training on each incremental task, we report Average of all
classes seen so far (‘Avg’). We also report (i) AHM , (ii) old classes accuracy (‘Old’), (iii) new classes
accuracy (‘New’) in the last session. We report Mean and STD across 10 sets of 5-shots. POET
achieves the best stability-plasticity trade-off across all baselines indicated by the AHM = 56.3%.
POET also has the highest Avg across all user sessions outside of upper bound baselines in orange.

UB(0) US(1) US(2) US(3) US(4)

Method Base (↑) Avg (↑) Avg (↑) Avg (↑) Old (↑) New (↑) Avg (↑) AHM (↑)
Upper Bounds
Joint (Oracle) 88.4 79.0 71.0 66.8 63.5
Joint POET (Oracle) 67.2
FE, Task-Specificˆ 88.4 70.1 ± 2.6 52.5 ± 5.8 44.8 ± 5.0 70.3 ± 2.1 46.7 ± 2.0 NA NA
FE+Replay 88.4 82.4 ± 1.1 78.2 ± 1.2 74.5 ± 1.2 73.1 ± 1.0 43.3 ± 3.3 70.6 ± 1.2 54.3 ± 2.6

Continual Linear Probing
FE 88.4 72.0 ± 1.1 60.4 ± 2.4 47.7 ± 2.1 40.0 ± 1.6 51.0 ± 2.3 40.9 ± 1.4 44.8 ± 1.1

FE, Frozen 88.4 76.1 ± 1.0 52.4 ± 4.1 38.3 ± 2.7 28.4 ± 1.6 22.4 ± 4.5 27.9 ± 1.4 24.8 ± 3.0

FE+Replay† 88.4 72.0 ± 1.5 59.5 ± 4.0 58.7 ± 2.8 56.7 ± 2.5 34.7 ± 5.6 54.9 ± 2.7 42.8 ± 4.4

FT 88.4 6.2 ± 1.4 4.3 ± 1.5 2.8 ± 1.0 0.2 ± 0.5 36.0 ± 10.1 3.2 ± 0.8 0.3 ± 1.0

Standard Continual Learning
LWF [25] 88.4 6.2 ± 1.5 2.8 ± 0.7 3.7 ± 1.3 0.0 ± 0.0 38.9 ± 8.8 3.2 ± 0.7 0.0 ± 0.0

EWC [17] 88.4 6.6 ± 1.5 4.1 ± 1.4 3.1 ± 0.9 0.0 ± 0.0 42.1 ± 9.5 3.5 ± 0.8 0.0 ± 0.0

Experience Replay 88.4 35.1 ± 8.3 50.6 ± 5.0 60.6 ± 5.4 54.6 ± 6.5 43.7 ± 14.6 53.7 ± 7.1 47.8 ± 11.2

Experience Replay† 88.4 6.2 ± 1.5 9.0 ± 2.6 11.2 ± 3.0 10.9 ± 2.6 34.6 ± 7.9 12.9 ± 3.0 16.3 ± 3.5

LUCIR [15] 87.9 4.3 ± 2.1 4.1 ± 1.3 2.7 ± 0.8 0.2 ± 0.4 26.0 ± 9.2 2.3 ± 0.9 0.4 ± 0.8

Continual Prompt Tuning
CODA-P [41]* 87.4 76.1 ± 1.0 66.7 ± 1.3 58.6 ± 2.7 56.5 ± 2.9 0.5 ± 0.4 51.8 ± 2.7 1.1 ± 0.7

L2P [49]* 88.6 78.9 ± 0.1 71.0 ± 1.0 64.2 ± 0.1 62.0 ± 0.7 0.0 ± 0.0 56.8 ± 0.6 0.0 ± 0.0

APT [4]ˆ 86.6 27.3 ± 1.6 30.8 ± 3.4 37.6 ± 2.3 NA 33.4 ± 2.0 NA NA

POET (Ours) 87.9 82.3 ± 0.6 76.8 ± 0.9 68.4 ± 0.7 57.2 ± 1.0 55.8 ± 5.9 57.1 ± 1.1 56.3 ± 3.2

Fine-tuning (FE) and Feature Extraction (FE) Baselines. We implement
standard continual learning baselines to understand stability-plasticity trade-offs
in our new benchmarks. In all these baselines, we expand the classifier output
dimension by N new classes. In ‘FT (Fine-Tuning)’, we tune all model param-
eters on cross entropy loss of new task. FSCIL is challenging for this modality
as old task performance sharply reduces to zero starting from US(1) as model
overfits to user’s few-shots. ‘FE (Feature Extraction)’9 differs from FT as
we freeze the feature extractor to preserve base knowledge. This serves as a
competitive baseline in our findings. In ‘FE, frozen’, we zero out the gradients
of previous class weights in classifier fc to prevent forgetting from the classifier.
‘FE’ and ‘FE, Frozen’ exhibit different New-Old trade-offs in Tables 1, 2 because
the scale of pretraining is different (gesture more lightweight than activity).
Upper-bound baselines, top section Tables 1, 2. In ‘Joint (oracle)’ ex-
periment, we train on all task data at the same time in a multi-task (non-
sequential) manner. Training POET in a multi-task manner (‘Joint POET’)
outperforms ‘Joint Oracle’ demonstrating the strength of our approach. In ad-
dition to these generalist upper bounds, we point out that ‘FE, Task-specificˆ’
is a competitive specialist upper bound. In this, we perform feature extraction
from base model to each task individually, storing separate task-specific models
(US(0) → US(i), i > 0). POET outperforms ‘New’ accuracy compared with this
baseline, achieving a forward transfer on each t > 0. This indicates that prompt

9 ‘FE’ is the same as ‘w/o prompts’ in Table 3. We highlight key baselines in gray color.
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Table 2: Gesture Recognition Results (%, ↑), Comparison with SOTA: SHREC 2017 [40]
dataset on DG-STA [7] graph transformer backbone. Reporting mean and standard deviation across
5 runs. POET achieves best AHM = 56.2%.

UB(0) US(1) US(2) US(3)

Method Base (↑) Avg (↑) Avg (↑) Old (↑) New (↑) Avg (↑) AHM (↑)
Joint (Oracle) 88.8 79.4 ± 0.7 77.3 ± 2.1 70.9 ± 1.2 62.4 ± 0.4

FT 88.8 20.3 ± 0.8 12.4 ± 2.1 0.0 ± 0.0 85.8 ± 9.4 13.4 ± 1.5 0.0 ± 0.0

FE 88.8 62.7 ± 2.4 41.9 ± 6.9 17.5 ± 5.1 77.3 ± 8.8 26.8 ± 3.4 28.5 ± 6.4

FE, Frozen 88.8 71.3 ± 1.9 61.4 ± 2.7 44.7 ± 3.2 54.5 ± 6.7 46.2 ± 2.7 49.1 ± 4.3

LWF [25] 88.8 20.2 ± 1.4 12.5 ± 1.0 0.0 ± 0.0 88.4 ± 13.7 13.8 ± 2.1 0.0 ± 0.0

L2P [49]** 88.8 20.3 ± 5.9 10.5 ± 4.8 8.2 ± 4.0 6.9 ± 8.5 7.9 ± 3.9 7.5 ± 5.5

CODA-P [41]** 87.7 15.6 ± 4.5 11.6 ± 1.9 7.9 ± 1.8 14.1 ± 21.4 8.8 ± 2.4 10.1 ± 3.2

ALICE [31] 92.1 72.4 ± 5.7 63.3 ± 7.6 62.5 ± 6.8 11.9 ± 9.9 54.6 ± 6.9 20.0 ± 8.1

POET (Ours) 91.9 73.2 ± 3.7 61.9 ± 1.8 45.9 ± 2.6 72.4 ± 7.1 50.0 ± 1.6 56.2 ± 1.6

tuning benefits New performance due to the pre-existing knowledge in the shared
knowledge pool. Avg in sessions 0 < t < 4 indicates New for task-specificˆ .
Experience Replay Baselines, Tab 1. Even though our privacy-aware set-
ting prohibits previous data replay, we compare with ‘Experience Replay’
(store and replay 5-samples of base and incremental sessions) and ‘Experi-
ence Replay†’ (replay only previous incremental sessions) for completeness.
‘FE+Replay’ serves as the best upper bound (even better than Experience
Replay as we are freezing backbone in addition to replay). It is noteworthy that
POET (which is FE+prompts) learns an implicit ‘data-free’ form of prompt pool
memory, and yet has a better AHM trade-off as compared to explicitly stored
and replayed samples from previous classes in FE+replay.

6 Ablation Studies and Analysis
Importance of prompts in POET. First, we consider the contribution of
prompt offsets in POET. Since we only attach prompts to address continual
learning in POET, removing prompts gives the Feature Extraction (FE) baseline
(‘w/o prompts’, Table 3) where the backbone is frozen after base training and
only the classifier is expanded and updated on classification loss of new classes.
POET improves both, ‘Old’ (↑ 20.1%) and ‘New’ (↑ 10.6%) marked in blue.

Table 3: Prompt Selection Mechanism Analysis
on NTU RGB+D dataset (%, ↑): ‘w/o’ denotes re-
moving that component from POET, numbers in brack-
ets are wrt POET (M = T ) experiment. ‘Avg’ accuracy
is biased towards ‘Old’ classes accuracy, AHM is good
indicator of trade-off between ‘New’ and ‘Old’.
NTU RGB+D UB(0) US(1) US(2) US(3) US(4)

Method Base Avg Avg Avg Old New Avg AHM

w/o prompts 88.4 74.5 66.3 49.5 39.2 (-20.1) 46.8 (-10.6) 39.9 42.7
w/o coupled optim. 88.0 82.8 75.3 65.8 56.5 ( -2.8) 51.3 ( -6.1) 56.1 53.8
w/o clustering loss 85.5 81.6 74.3 64.5 62.0 (+2.7) 18.2 (-39.2) 57.0 28.1
w/o QA update 87.9 82.8 77.4 69.1 59.4 (+0.1) 52.8 ( -4.6) 58.7 55.9
w/o sorting 88.2 82.2 75.2 68.8 59.9 (+0.6) 46.6 (-10.8) 58.8 52.4
POET (M > T ) 87.9 82.7 77.2 68.8 60.3 (+1.0) 54.4 ( -3.0) 59.8 57.2
POET (M = T ) 87.9 82.8 76.8 68.6 59.3 57.4 59.2 58.3

Prompt Selection Mechanism.
In Table 3, we investigate our
prompt selection mechanism and
optimization choices. The ‘w/o
coupled optim.’ experiment is
a direct comparison of our addi-
tive prompt attachment with the
de-coupled optimization in L2P
[49]. Updating key parameters
but keeping only query adaptor
QA frozen after UB(0) training (‘w/o QA update’) reduces ‘New’ only per-
formance of US(4) by 4.6% as the query function stays fixed at base session
learning and is not discriminative towards new classes. ‘W/o clustering loss’
from Eq. 6, performance drops starting from UB(0) itself. The only difference
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between the experiment ‘w/o sorting’ and ‘POET (M=T)’ is that we do not
sort the cosine similarity before selecting top T indices (same as Fig 5). The
10.8% ↑ in ‘New’ performance validates that our prompt selection mechanism is
learning to chose a distinct temporal ordering for prompt tuning of new input
samples. With pool expansion (‘POET, M > T ’), we get more flexibility in the
stability-plasticity trade-offs depending on how many new prompts we attach.
For R = 6, ‘Old’ is improved. In Table 3, we keep POET’s additive prompt
attachment and only vary prompt selection.
Prompt Attachment Mechanism. In Table 4, we keep our end-to-end opti-
mization and ordered prompt selection as a constant and ablate prompt shape
and attachment operator fp(.). Drawing a parallel with transformers which con-
catenate prompts along the token dimension, we conduct experiments concate-
nating prompts along the (i) temporal dimension of the skeleton input feature
embedding Xe (‘CONCAT temporal’ ) and (ii) feature dimension Ce (‘CON-
CAT feature’ ). We find that addition works better than concatenation and

Table 4: Prompt Attachment Analysis (%,
↑): The best prompt attachment choice fp(.) is
Adding #prompts same as #input frames (T=64).
NTU RGB+D UB(0) US(1) US(2) US(3) US(4)

Method Base Avg Avg Avg Old New Avg AHM

CONCAT temporal, T ′ = 64 88.6 70.3 62.4 49.8 33.6 50.5 35.1 40.3
CONCAT feature, T ′ = 64 87.7 82.4 75.5 66.9 57.1 41.5 56.0 48.1
Cross Attention, T ′ = 64 82.9 77.4 72.2 65.0 57.1 32.3 55.0 41.2
ADD, T ′ = 1 88.7 73.3 62.7 45.5 33.7 47.0 34.8 39.3
ADD, T ′ = 64 (Ours) 87.9 82.8 76.8 68.6 59.3 57.4 59.2 58.3

cross attention. We also verify our hy-
pothesis that selecting the same num-
ber of prompts as the input temporal
dimension (T = 64 for NTU RGB+D
and T = 8 for SHREC-2017) yields
better results as compared to adding
the same prompt frame to each input
embedding frame (‘Addition T ′ = 1’ ).

7 Conclusions and Future Work

The problem of continually adapting human action models to new user cate-
gories over time has gained prominence with the rising availability of XR de-
vices. However, this setting poses unique challenges: (i) the user may be able
to provide only a few samples for training, and (ii) accessing data from earlier
sessions may violate privacy considerations. We hence propose a method based
on prompt offset tuning to address this problem in this work. Prompt tuning to
address learning over newer tasks has been attempted in recent years. However,
these works have: (1) typically been designed for image-based tasks, (2) relied on
strongly pretrained transformer backbones, (3) required full supervision for new
tasks, and (4) exclusively applied prompt tuning to transformer architectures.
This work departs from these four characteristics. Our work demonstrates that
prompt offset tuning is a promising option to evolve and adapt skeleton-based
human action models to new user classes. The careful design of each component
of the proposed methodology finds validation in the promising results across
well-known skeleton-based action recognition benchmarks. Our ablation stud-
ies and analysis corroborate our design choices in our implementation. Looking
ahead, it will be interesting to explore how our approach and its design choices
adapt when a “generalist backbone" trained on a large corpus of action recog-
nition data becomes accessible. Extending our method for differential privacy is
another interesting direction of future work.
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A Implementation Details

A.1 Training Details

We use the same hyperparameters across all experiments for the NTU RGB+D
activity recognition benchmark (in Tables 1, 3, 4 of the main paper, and Supple-
mentary Table 1 and Figure 6). In the SHREC 2017 gesture benchmark also, all
our experiments follow the exact same hyperparameter combination and learning
strategy in Table 2 and Figure 7.

Activity recognition on NTU RGB+D benchmark. In the base session UB(0), we
train the CTR-GCN [8] backbone for 50 epochs with initial LR=0.1. We use a
batch size of 64 as in the original paper. Every continual user session US(t) is
trained for 5 epochs with an initial LR=0.1.

Gesture recognition on SHREC 2017. We train DG-STA [7] model in the base
session UB(0) for 300 epochs and initial LR=0.001, using batch size 32 and
dropout set to 0.2 (default hyperparameters from the DG-STA paper). It is
updated for 30 epochs in each user session US(t), starting with initial LR=0.01.

We select higher initial LRs in continual sessions t > 0 because starting with
a lower learning rate as compared to base session (as is standard practice in
continual learning to prevent catastrophic forgetting) renders limited plasticity
and the model is completely unable to learn new knowledge. Our choice enables
learning of new knowledge from the few user samples, and we can study the
model’s stability-plasticity trade-offs, optimizing for a balance between the two.
The continual session learning rates given above are used to update the (i) the
classifier fc, (ii) selected prompts in P, and (iii) selected keys in K. But for
updating query adaptor fQA, we use a learning rate of 0.01, in t > 0 for both
benchmarks. At the same time, we freeze all other layers in the query model. We
find this adapts query adaptor to new tasks without overwriting existing base
knowledge. In each continual session t > 0, we use a batch size of 25 for NTU
RGB+D, as there are 5 new classes each having 5 training samples (single batch
per epoch). Similarly, batch size is 10 for SHREC 2017 with 2 new classes with 5
training samples each. For the clustering loss coefficient in Eq. 6, we use λ = 0.1
for all experiments.

A.2 Base Session UB(0): Prompt Instantiation and Training

Prompt instantiation, CTR-GCN: CTR-GCN is a spatio-temporal graph
convolutional network architecture with 10 multi-scale temporal convolutional
(TCN-GCN) layers followed by an average pool over the spatial and temporal
dimensions, and a final linear classification layer. The output feature dimension-
ality of the first four layers (L1-L4) is 64 channels, next four (L5-L8) is 128 and
final two layers (L9 and L10) have 256 channels. An input skeleton sequence has
64 temporal frames, each consisting of 25 body joints, such that x ∈ R64×25×3.

The input embedding after layer L1 is xe ∈ R64×25×64, such that Ce = 64.
We start from a prompt pool P = {Pj}Tj=1 of size M = T = 64. Each prompt in
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the pool Pj ∈ R25×64 is designed to match the spatial and feature dimensions of
the input embedding xe. There are M = 64 keys, each having feature dimension
kj ∈ R64. Query adaptor fQA maps a feature embedding of size 256 (from the
last layer of query model f ′g) to Ce = 64 for feature dimension compatibility
with the keys and prompts. We select T = 64 prompts from the pool. After
instantiating the prompt and key parameters, we train the prompt pool P, keys
K, query adaptor fQA, along with all main model parameters fg, fc, fe on the
base session data D(0) as per Algorithm 2.

Prompt instantiation, DG-STA: DG-STA is a fully connected graph trans-
former architecture with multi-head spatial and temporal attention layers. For
every input skeleton hand gesture sequence, we use 8 temporal frames, each hav-
ing 22 hand joint coordinates such that input is x ∈ R8×22×3. Output of the
transformer’s input embedding layer fe is xe ∈ R8×22×128. As DG-STA expects
a fully connected spatio-temporal graph across all joints in all frames, this is
reshaped to a size xe ∈ R176×128 before passing it to the first attention layer of
the transformer. We add our prompt to this reshaped embedding. We start from
a pool of size M = 8 prompts. As DG-STA is a transformer architecture, the
output feature dimensionality remains constant (at 128) and the query adaptor
input and output dimensions are the same (Ce = 128). The base session here is
also trained using Algorithm 2.

A.3 Classifier Update Protocol in US(t), t > 0

Existing related work such as in few-shot class-incremental learning learn non-
parametric classifiers by extracting class-mean prototypes, and do not expand
the classifier with any new weights. However, we need to expand and train the
classifier in order to obtain the error gradients for updating the prompts. We

Algorithm 2 Initialization & Training of Prompts, t = 0

Input: Model fP (.) = fP
c ◦ fP

g ◦ fP
e (.), pretrained only on base UB(0) data.

Initialize:
1. Main model f as: fe ← fP

e , fg ← fP
g , fc ← fP

c .
2. Prompt pool P = {Pj}Tj=1, Keys K = {kj}Tj=1 from U(0, 1).
2. Query function model fq as: f ′

e ← fP
e , f ′

g ← fP
g . fQA is randomly initialized.

Freeze: Query function layers f ′
g, f

′
e.

for epochs and batch in base dataset (X0
i ,y

0
i )

|D(0)|
i=1 do

1. Get query feature q (Eq. 4) ; Compute γ(.) b/w query q and keys K
2. Sort γ(.); Get ordered key index sequence (si)

T
i=1 (Eq. 7)

3. Read pool memory P in order (si)
T
i=1 → Get prompt offsets PT

4. Get Xe; Add PT to it (Eq. 8); get prediction y from prompted input (Eq. 1)
5. Use cross entropy loss (Equation 5) to update prompt associated parameters

fQA,K,P and all main model parameters fg, fc, fe.
6. Use clustering loss (Equation 6) to update fQA, K.

end
Freeze: Main model feature extractor fg, input embedding layer fe for time t > 0.
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Table 1: Experimenting with different classifiers for NTU RGB+D. Here, we
report the task-specific accuracy for each task the model has learnt so far, after learning
every new task. Notice the sharp forgetting of the intermediate ‘New-Old’ tasks
in regular classifier and our improvement using a cosine normalized classifier. Note, we
are using a dynamically expanding parametric classifier in all experiments.

US(0) US(1) US(2) US(3) US(4)

Activity Base US(0) US(1) US(0) US(1) US(2) US(0) US(1) US(2) US(3) US(0) US(1) US(2) US(3) US(4) Avg
Regular, Freeze 89.2 73.5 72.5 71.3 2.1 63.8 65.3 0.0 0.0 52.9 58.7 0.0 0.0 0.0 48.9 43.1 (-16.1)
Regular, Tune 89.2 80.9 64.9 67.4 22.1 34.4 57.2 6.32 24.3 26.9 45.0 4.6 20.9 13.3 21.4 35.2 (-24.0)
Cosine (Ours) 87.9 84.9 65.3 83.2 56.0 45.8 78.2 36.3 34.5 60.0 71.3 18.5 19.8 46.2 57.4 59.2

observe that a key source of forgetting is from the classifier as the logits tend to
become biased towards the few-training samples of new classes. For SHREC/DG-
STA, we observe that fine-tuning the entire classifier leads to a significant drop
in performance of old classes (experiment ‘FE’ in Table 2 of main paper). This
is because the frozen backbone is trained only on 1146 training samples from
the 8 base session classes. Hence, the SHREC backbone exhibits low stability
for retaining old knowledge, when updated on new data in subsequent sessions
t > 0. To alleviate this, we use a simple classifier update trick wherein after
expanding the classifier in every continual session t > 0, we turn the gradients
of the old parameters in the classifier to zero before the error backpropagation.
This trick has also been shown to work in prior continual prompt tuning works
L2P [49], CODA-P [41].

We observe that this trick proves sub-optimal in the NTU RGB+D (CTR-
GCN) dataset. In Table 1, we evaluate performance on each usr session indi-
vidually after learning every new user session. We observe that both, freezing
(‘Regular, Freeze’) or finetuning (‘Regular, Tune’) of old class parameters
in classifier suffers from poor stability-plasticity trade-offs. We observe that the
intermediate tasks (US(1), US(2), US(3)) learnt using few shot data particularly
suffer severe forgetting as soon as the next task is learnt. This is not the case
for US(0) performance in incremental sessions t > 0 because the base feature
extractor is trained on sufficient data in the activity benchmark (26,731 sam-
ples) and frozen henceforth, retaining performance on the base task US(0) even
in t > 0. We call this the ‘New-old forgetting’. To address the biasing of logits
towards new classes, we replace the main model’s linear classification layer fc
with a cosine normalization classifier θTc as:

p(x) =
exp(η < θTcifg(x) >)

Σjexp(η < θTcjfg(x) >)
(1)

where η is a learnable scale parameter we learn in the base session and freeze
in subsequent sessions. Also, in incremental sessions, we initialize the new-class
parameters in the classifier as mean of previous class parameters. Notice the
significant boost in performance across all tasks US(i) in the cosine normalized
classifier in Table 1.
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A.4 Analyzing Where to Attach Prompts

We study the impact of attaching our prompt offsets at different main model
layers in CTR-GCN in Figure 1. As mentioned in Sec A.2, output feature di-
mensionality (number of channels) of the first four layers in CTR-GCN is the
same, Ce = 64. We desire that the feature dimension size of the (i) prompt
parameters, (ii) key parameters, and (iii) query adaptor be consistent with the
main model feature embedding dimension at the layer being prompted. Hence,
we only prompt the first four layers for a fair comparison as results may vary
with variation in size of feature dimension being prompted. We created a sepa-
rate 30% validation set from the training data of t ≥ 1 classes for this analysis.
Our findings in Figure 1 indicate that the highest ‘New’ task performance at the
end of all four user sessions is achieved by prompting layer L1. We select layer
L1 across all experiments in the paper.
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Fig. 1: Empirical analysis to study the impact of the layer at which our prompt is
attached. Y-axis shows ‘Old’ and ‘New’ classes accuracy after Task 4 (after learning
all 60 classes). We add a prompt of size PT ′ ∈ R64,25,64 to different layers {1, 2, 3, 4}
of CTR-GCN, evaluated on the NTU RGB+D validation set. We select layer L1 due
to its high performance on new classes.

A.5 Additional Dataset Details

The NTU RGB+D dataset has been collected from Microsoft Kinect V2 sensors
from three different camera viewpoints by annotating 40 human users. The 60
classes consist of 40 daily action categories (drinking water, reading, writing,
etc.), 9 health-related actions (coughing, sneezing, headache, etc.), and 11 mutual
actions (handshaking, pushing another person, walking towards another person,
etc.). NTU RGB+D has 40,320 training and 16,560 testing samples across 60
classes. We use the first 40 daily action classes as the base model data, and
update on 5× 5 = 25 training samples in each of the 4 incremental session. The
base model is trained on 26731 training samples from the 40 base classes.

The SHREC 2017 dataset has 14 fine-grained hand gestures captured using
the short-range Intel Real Sense Depth, from 28 human subjects in second-person
view. There are 1980 training and 840 testing samples. The base model for this
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benchmark is trained on 1146 training samples from 8 classes, and updated on
2× 5 = 10 training samples in each of the 3 incremental session.

Given the relatively small sizes of both datasets, we follow a class-incremental
setting in our work, viz., our user sessions include new classes over time, not
necessarily new users. Evaluating our work on user-specific continual streams is
left as future work for larger datasets where this is feasible.

Class splits in user sessions. There are two existing continual benchmarks
for 3D skeleton-based action recognition: The experimental protocol of NTU
RGB+D based class incremental benchmark [22] involves a single continual ses-
sion, learning 50 classes in the base session, and 10 new classes in a single-
incremental session. We consider this to be limiting and too simplistic to study
our problem setting on. Moreover, their code is not publicly available. On the
other hand, the more recent data-free class incremental learning for hand gesture
benchmark [1] learns 8 classes in base session and updates the model on a single
class over 6 incremental sessions. We believe that this too does not lend itself
to our setting, when there are only 5-shots for training each continual class and
the base model is trained on small-scale data.

A.6 Adaptation of Baselines to Problem Setting

Adapting Learning to Prompt (L2P): We experiment with selecting T ′ = 4
and T ′ = 64 (same as POET) for this comparison on CTR-GCN backbone.
We find the results with 4 prompts marginally better, hence we report those in
Table 3 of main paper. We experiment with both temporal concatenation and
spatio-temporal concatenation followed by remapping. For DG-STA, we select 8
prompts from a pool of size M = 10, each prompt (22, 128); and concatenate this
prompt of size (8, 22, 128) along the spatio-temporal dimension 176 of the input
embedding (176, 128). We map this back to (176, 128) using a fully connected
layer. In experiments where we remap using FC layer, we update this layer as
well in future incremental sessions. To update the expanded classifier, we make
logits of previous classes -inf, same as the classifier training protocol used in L2P,
Dual-P and CODA-P.

Adapting CODA-P: For activity recognition on CTR-GCN backbone, we con-
struct a 4 dimensional CODA-prompt of size (100, T’, 25, 64), such that the
prompt component dimension of 100 gets collapsed after weighing and we can
concatenate prompt of size (T’, 25, 64) along the temporal or rolled out spatio-
temporal dimension (same as L2P). The size of memory buffer (T’) is kept
consistent with L2P experiments.

For gesture recognition on DG-STA backbone, [41] tunes a ViT-B/16 pre-
trained on ImageNet-1K architecture instead of prompt tuning. This refers to
concatenating half of the prompt to K and V of the MSA layer instead of
concatenating along the token dimension. However, we don’t have the luxury to
modify the input embedding size or assume that the backbone is a transformer.
Also for a fair comparison with L2P, we concatenate a fixed sized prompt to the
input embedding and use a fully connected layer to map the feature dimension
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back to default input embedding size of (176, 128). Hence, sizes are as follows:
initial prompt size (100, 5, 128), Attention (100, 128), Key (100, 128), each have
100 prompt components. After alpha weighting, fixed sized prompt P (5, 128)
gets concatenated along joint dimension. We don’t update query adaptor in this
experiment. We implement all loss functions, including the orthogonality loss as
is. Also, note that we attach prompts only at the input embedding layer for fair
comparison of the prompting strategy.
Adapting ALICE [31]: For training the base session, we add a projection
head to the feature extractor before the classification layer. Like the paper, we
use two augmentations of every input and losses from the two augmentations
are averaged before backpropagation. We use angular penalty for training the
classifier. After base session learning, the projection head and classification layer
are discarded, only learning feature extractor. Next, we use cosine distance and
class-wise mean to generate class-prototypical feature vectors from the feature
extractor’s output. These prototypes are used for nearest mean classification.
For incremental steps, no training is done. Only new class means are computed
and evaluation is performed.
Adapting LUCIR [15] and EWC [17]: We initialize model from previous
checkpoint, such that classifier has random weights for new classes and previous
classifier weights are copied over to previous class parameters in the classifier.
Cross entropy loss is computed between logits from all the classes and current
task ground truth labels. All regularization loss terms are implemented as pro-
posed in their respective papers. For LwF [25], we use a λ = 1.0.

B Additional Results

B.1 POET’s Effectiveness in Learning New Knowledge while
Mitigating Catastrophic Forgetting

Table 2: POET Ablation Table: We exhaustively study the contribution of various
POET components towards mitigating forgetting of old knowledge (Old) as well as
learning new knowledge (New).

Prompt Prompt
Selection

Prompt Integration UB(0) US(4)

Ablation (Operator, #Prompts) Base (↑) Old (↑) New (↑) Avg (↑) AHM (↑)

POET (Ours) ✓ ✓ ADD T 87.9 57.2 ± 1.0 55.8 ± 5.9 57.1 ± 1.1 56.3 ± 3.2

Importance of prompts in POET
POET w/o Prompts 87.9 60.8 ± 0.5 (+3.6) 18.4 ± 1.0 (-37.4) 57.3 ± 0.4 28.3 ± 1.1

POET w/o C.U.P. ✓ ✓ ADD T 89.2 45.5 ± 1.4 (-11.7) 53.6 ± 3.7 (-2.2) 46.2 ± 1.2 49.1 ± 1.5

POET w/o {Prompts, C.U.P.} 88.4 40.0 ± 1.6 (-17.2) 51.0 ± 2.3 (-4.8) 44.8 ± 1.1 40.9 ± 1.4

POET w/o {Prompts, C.U.P.,
Freezing}

88.4 0.2 ± 0.5 (-57.0) 36.0 ± 10.1 (-19.8) 3.2 ± 0.8 0.3 ± 1.0

Impact of Ordered Selection
POET w/o Ordered Selection ✓ ✓ ADD T 88.2 59.9 ± 1.1 (+2.7) 52.5 ± 4.2 (-3.2) 59.3 ± 0.9 55.9 ± 2.2

Relative importance of our Prompt
Selection versus Prompt Integration
POET Selection w/o Addition ✓ ✓ Cross-Attend T 82.9 57.0 ± 2.0 (-0.2) 31.0 ± 4.8 (-24.8) 54.9 ± 1.8 39.9 ± 4.0

POET Addition w/o Selection ✓ Standalone ADD T 88.6 58.8 ± 3.2 (+1.6) 54.0 ± 3.4 (-1.8) 58.4 ± 1.2 56.2 ± 2.2

POET Addition w/o Selection ✓ Standalone ADD 1 88.2 56.9 ± 1.1 (-0.3) 54.7 ± 5.3 (-1.1) 56.7 ± 1.2 55.7 ± 3.1

POET w/o {Selection, Addition} ✓ Standalone Cross-Attend T 43.3 25.6 ± 1.3 (-31.6) 5.0 ± 4.1 (-50.8) 23.9 ± 1.2 7.8 ± 4.9
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How Well Does POET Mitigate Catastrophic Forgetting? In this section
we dive deeper into understanding how our proposed Prompt Offset Tuning
methodology mitigates catastrophic forgetting in our few-shot class incremental
setting for action recognition. We report mean and standard deviation across 10
experimental runs (10 sets of few-shots) for robustness ablation. The ‘Old’ only
accuracy gives a direct comparison of the forgetting.

Our classifier expands in each continual session and fine-tuning the entire
classifier on cross entropy loss of new classes leads to erosion of previous class
weights in the classifier. ‘C.U.P.’ refers to our classifier update protocol used to
prevent forgetting from the classifier. We use a cosine normalized classifier for
NTU RGB+D dataset (see Sec. A.3 which helps mitigate forgetting from the
classifier as shown by the 11.7% ↓ in ‘Old’ class performance of ‘POET w/o
C.U.P.’, w.r.t. POET.

In ‘POET w/o Prompts’, we simply remove our prompts altogether, keep-
ing the cosine normalized classifier to observe the prompt only affect. While
Old performance is slightly better, the backbone doesn’t learn new knowledge
as shown by 37.4% ↓ in ‘New’ class performance. If we remove both prompts
and classifier update protocol ‘POET w/o Prompts, C.U.P.’, we get vanilla
Feature Extraction without any freezing or regularizing of classifier weights. It
suffers in both Old and New classes. Further, as highlighted in the main paper as
well, freezing our backbone during the continual user sessions t > 0 is of prime
importance given our few-shot setting where the overfitting to few training sam-
ples exacerbates the overwriting of existing knowledge, leading to a complete
washout of previous knowledge as seen by the 0.2 Old performance.

Notice, in the absence of our ordered prompt selection, New performance suf-
fers by 3.3% as the same prompts are selected and updated everytime. In POET,
we ensure the prompts get selected in the right temporal sequence, learning new
temporal semantics for new classes hence enabling better adaptation to new
classes.

Finally, within prompts, we replace our prompt selection mechanism com-
pletely by standalone T prompts or a single prompt. This shows how POET’s
spatio-temporal temporally consistent selection mechanism helps learn new or-
derings of T prompts as compared to attaching prompts without selecting them
using an input dependent query. We also use cross attention along the temporal
dimension as attachment operator fp(.) and find addition consistently outper-
forms. ‘POET w/o Selection, Addition’ experiment shows the importance
of our design choices as unsuitable selection and integration mechanisms can be
fatal to continual learning performance.

Backward Forgetting Metric (BWF): In addition to these results, we report
the average forgetting metric [5,6] after the model has been trained continually
on all user sessions (after US(4)) as:

Fk =
1

k − 1

k−1∑
j=1

fk
j (2)
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Table 3: Backward Forgetting Metric (%, ↓): Here we present BWF after user
session US(4). POET significantly mitigates forgetting on old classes.

US(4)

Method Forgetting (↓)

FE+Replay -0.90 ± 0.65

FE 52.83 ± 2.09

FT 54.08 ± 9.17

FE, Freeze 34.02 ± 0.83

POET (Ours) 29.91 ± 0.34

where fk
j is the forgetting on previous task ‘j’ after the model is trained with

all the few-shots up till task k:

fk
j = max

l∈{1,...,k−1}
al,Bl,j

− ak,Bk,j
(3)

In effect, this is the same as difference in performance of each previous task ‘j’
at the end of US(4) from when the task was first introduced (New in US(j)).

Role of number of few-shots in continual learning: We also vary the num-
ber of few shots used for training per new class in continual sessions in Fig 2.
The Feature Extraction baseline reduces to zero AHM because the Old class per-
formance reduces to zero. We find our prompt offsets in POET (=FE+Prompts)
significantly help retain old class performance as compared to Feature Extrac-
tion, without any explicit forgetting measure due to our ordered prompt selection
and clustering loss. It can be noted that our method is particularly well suited
for very few training samples per user (<15) and may require additional explicit
regularization or freezing of prompt pool to mitigate forgetting for large number
of training samples (>20).
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Fig. 2: Effect of variation in number of few-shot samples used for training in user
sessions US(1)-US(4) on stability-plasticity trade-offs in our few-shot continual setting.
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B.2 Impact of Prompts in POET

In Figures 3 and 4, we qualitatively study the impact of prompts by removing
prompts from POET (the corresponding feature extraction baselines ‘FE’ for
NTU RGB+D and ‘FE++’ for SHREC). Prior continual learning works rely
on ImageNet21K pretrained ViT [37] ( L2P [49], Dual-P [48], CODA-P [41])
or WebImageText pretrained CLIP model [33] (S-Prompts [47], PIVOT [45]) for
prompt tuning. In Fig. 5, we show the significant disparity in scale of pretraining
dataset as we use only base class dataset from the benchmark itself for pretrain-
ing and every new user session sees a non-overlapping set of classes. Despite of
this, POET shows promising results.
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Fig. 3: Confusion matrices showing the impact of our prompt offsets across 4 user
sessions in NTU RGB+D activity recognition benchmark. We compare confusion
across new and old actions in POET and POET w/o prompts ablation. Starting from
40 default classes in UB(′), we learn new classes {US(1): sneeze, stagger, fall, touch
head, touch chest}; {US(2): touch back, touch neck, nausea, user fan, punch}; {US(3):
kick, push, pat back, point finger, hug}; {US(4): give, touch pocket, handshake, walk
towards, walk away}. Prompts enable retention of the intermediate ‘New-Old’ classes
very well, while FE gets heavily biased towards the new classes (see last 5 columns in
each matrix).

B.3 Stability-Plasticity Trade-offs via New/Old performance

In Fig. 6, we study the average accuracy of only new classes (New) and only
old classes (Old) after every user session in activity recognition benchmark. As
stated in Sec 5 of main paper, we observe that (i) any method that does not
freeze the backbone such as knowledge distillation (LWF and LUCIR), prior-
based regularization methods (like EWC), or vanilla Fine-tuning baselines (FT)
completely forget old performance from US(1) itself. POET is short of only
FE+Replay which is an upper bound. (ii) Any existing prompt tuning work
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which does not update their query function such as L2P, CODA-P, APT in
graph (B), is unable to learn new classes well.

In Fig. 7, we observe similar trends. Additionally, (i) ALICE retains old
knowledge very well as it does not use a parametric classifier for incremental
sessions. However, ALICE is unable to learn new classes well. We also observe
that (ii) DG-STA backbone has very high plasticity when fine-tuned on new tasks
(see New performance of FT and LWF in graph B). But these baselines while
plastic, completely forget old classes. POET achieves the best stability-plasticity
trade-offs (indicated by AHM in main paper).

B.4 Robustness to class order in user sessions

The default continual order in which different gesture classes appear till now was:
{US(0): Grab, Tap, Expand, Pinch, Rotate-CW, Rotate-CCW, Swipe-R, Swipe-
L} → {US(1): Swipe-U, Swipe-D} → {US(2): Swipe-x, Swipe-+} → {US(3):
Swipe-v, Shake}. In Fig 8, we swap the base and incremental classes in SHREC
benchmark to a new ordering: {US(0): Swipe-R, Swipe-L, Swipe-U, Swipe-D,
Swipe-x, Swipe-+, Swipe-v, Shake} → {US(1): Grap, Tap} → {US(2): Expand,
Pinch} → {US(3): Rotate-CW, Rotate-CCW}. We find ‘POET’ gives an AV G =
57.3 as compared to ‘ALICE’, AV G = 55.9 and ‘FE, Freeze’, AV G = 55.3 at
the end of 3 user sessions even though our backbone is now trained on a different
set of classes and we completely reversed the semantic order in which prompts
learn different fine-grained gesture classes. This demonstrates robustness to vari-
ation in continual class order across tasks.
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Fig. 4: Confusion matrices showing the impact of our prompt offsets across 3 user
sessions in SHREC 2017 gesture recognition benchmark. US(0) has hand gestures
grab, tap, expand, pinch, rotate clockwise, rotate counter-clockwise, swipe right, swipe
left}. {US(1): swipe up, swipe down}, {US(1): swipe-x, swipe-+}, {US(1): swipe-v,
shake}. Even though the classes are fine-grained, the prompts help retain old class
semantics well.
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Fig. 5: Scale of pretraining used for the prompt tuning backbones. For (Our)
benchmarks on NTU RGB+D and SHREC 2017, numbers represent the base class
training data used. Our POETs continually learn new actions mitigating catastrophic
forgetting, without massive pretraining, and only rely on prompts.
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Fig. 6: Old and New class performance for NTU RGB+D.
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Fig. 7: Old and New class performance for SHREC 2017. Reporting Mean and STD
over 5-sets of user few-shots.

B.5 Ordered Key Index Selection (si)
T
i=1: Qualitative Results

In Section 4 of main paper, we explained our sorted ordered key index selec-
tion for selecting temporally consistent prompts from the pool. In Figure 3 of
main paper, we visualized (si)

T
i=1 ordering statistics at the task-level. In Fig-

ure 9, we investigate class-wise ordering statistics at inference time, performing
inference after each continual task. We find that the ordering statistics are not
only disparate for different classes, the statistics for a class remain consistent
across continual tasks. The temporal discriminability in these studies further
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Fig. 8: Here, we change the set of classes in each session from the default order seen
before. We report average accuracy of all classes learnt by the model after adding
each new session. New ordering: {US(0): Swipe-R, Swipe-L, Swipe-U, Swipe-D, Swipe-
x, Swipe-+, Swipe-v, Shake} → {US(1): Grap, Tap} → {US(2): Expand, Pinch} →
{US(3): Rotate-CW, Rotate-CCW}.

establishes that our learnable prompt selection mechanism is temporally with
the 4D input skeleton. Finally, we also demonstrate instance-level statistics in
Figure 10 and Figure 11 as our prompt mechanism is designed to select relevant
(temporal ordered) prompts conditioned on every input instance. This means
that our method does not depend on disparate task-wise or class-wise dataset
splits and can even be used for online continual learning settings that do not
have clear task boundaries.

B.6 Prompt Pool Expansion

We further present the order-preserving prompt pool expansion Algorithm 3
that (A) expands pool to learn new knowledge, (B) freezes previous prompts to
prevent forgetting, and (C) forces usage of new prompts at the end of the se-
quence, hence alleviating the prompt pool collapse issue while preserving already
existing temporal order statistics Figure 4 of main paper. We find R = 6 new
prompts to be the best empirically for NTU RGB+D and R = 2 for SHREC
2017 using our 30% validation set of incremental sessions. Algorithm 3 presents
our algorithm for prompt pool expansion.

C Broader Impact and Limitations

Privacy-aware human action recognition in extended reality devices:
In order to protect users’ privacy and security in head mounted devices, we in-
corporate privacy awareness in our continual learning setup: (i) By not storing
any old class exemplar data or prototypes for replay in continual user sessions.
All data is trained in a session and discarded henceforth. (ii) By using only 3D



14 Authors Suppressed Due to Excessive Length

Algorithm 3 Prompt Pool Expansion at Train Time, t ≥ 1

Input: Query function fq, keys K = {kj}Tj=1, prompt pool P = {Pj}Tj=1; main
model fe, fg, fc
Expand:
Pool and keys by R new prompts as: PM → PM+R;KM →KM+R

Where PM+R = {PM ;PR} (attach new prompts at the end of existing tensor)
Initialize: New prompts Pi ← U(0, 1); new keys Ki ←Mean(KM )
Construct PT as:

1. Find T − R key indices KT−R using Eq. 7. Use this sequence to read previous
prompts in the pool PM and form PT−R.

2. Concatenate PR new prompts at the end of the sequence: PT = {PT−R;PR}
(i.e. explicitly use R new prompts).
Freeze: Previous task prompts in the pool PM .
Train: New prompts PR, all keys KM+R (to learn global inter-task selection), query
adaptor fQA, and classifier fc.

skeleton joint input modality for action recognition, we circumvent the visual pri-
vacy violation and user identity revelation in video-based HAR [14,18,21]. While
we are a privacy-aware continual learning setting, we do not claim differential
privacy and studying differential privacy in our prompts will be an interesting
future work direction.
Data-free adaptation of action models for new user categories: Our key
motivation for a data-free prompt tuning-based action recognition model adap-
tation to new categories over time is to maintain privacy of past sessions’ data.
However, this also has other advantages. Firstly, a data-free solution does not re-
quire a memory budget on the edge device for replay of old class data. Secondly,
it has become commonplace to have access to large pre-trained backbones, but
there is limited knowledge and often lack of access to such a dataset for such
pre-training. Finally, prompts via a vector-quantized prompt pool memory offer
a compact, learnable and automatically retrievable bottleneck of task-specific
information (like in auto-decoders). Even if businesses can store and retrain
their model on all previous data to continually adapt to new data, training large
models incurs high carbon footprints [19]. Prompts offer a cost-efficient and low
carbon footprint solution to retraining large models from scratch every time
new data of value becomes available. Evaluating our design choices to large pre-
trained models for skeletal data, as and when they become available, is another
direction of future work.
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Fig. 9: Class-level Ordered Prompt Selection using POET, Task t is same
as US(t): Here, we analyse the ordered prompt selection statistics for our method for
different classes at test time. For each class shown in column 1, we plot the prompt
selection order at test time for each continual model checkpoint (starting from when
that class was first introduced to the continual system and checking after updating the
model on new classes each time). We observe that class-wise selection statistics are
retained even after Task 4 (notice the plots for different classes in Task 4). Even for
classes introduced as part of the same task (class 47, Nausea and class 49, Punching
both introduced in Task 2), their ordered prompt selection is unique and consistent
even after updating the model on new data in subsequent continual sessions.
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Ground Truth:
(53) Point Finger at Other Person

Task 4

Ground Truth:
(55) Give Something to Other Person

Task 3

Task 4

Fig. 10: Instance-Level Ordered Prompt Selection using POET: Our proposed
method POET is an input instance-based prompt tuning approach for FSCIL, as the
prompts are selected conditioned on each input instance itself. Hence, here we study
instance-level prediction on the test set. The sample of class Point Finger, class ID 53
is evaluated after US(3) and US(4) as the class was added to the model in US(3). The
sample of class Give Something, class ID 55 is continually learnt and evaluated after
US(4). We point out the unique ordered key index sequence for the 2 instances, which
could have been easily confused by the model due to their semantic similarity. The
ordering matrix for Point Finger remains consistent across tasks, even after adding 5
new classes in US(4).
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Ground Truth:
(42) Falling

Task 1 Task 2 Task 3 Task 4

Wear a Shoe 3.09

Falling 3.08

Hug 2.92

Wear a Shoe 2.86

Falling 2.76

Walk Towards 2.67

Fig. 11: Instance-Level Ordered Prompt Selection using POET: We also show
a failure case of our proposed approach. After learning the class Falling in US(1), we
evaluate it after every new continual task. Even though it correctly predicts a test set
instance in US(1) and US(2), it tends to get confused by the class Wearing a Shoe at
US(3) and US(4). Notice, this coincides with a disruption in the ordering statistics.
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