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Fig. 1. LiveSplats takes multi-view video streams of sports events as input and reconstructs the dynamic 3D scene to allow viewers to watch from any novel
view with interactive frame rates.

Human-centered live events have always played a pivotal role in shaping
culture and fostering social connections. Traditional 2D live transmissions
fail to replicate the immersive quality of physical attendance. Addressing
this gap, this paper proposes LiveSplats, a framework towards real-time,
photo-realistic 3D reconstructions of live events using high-performance
3D Gaussian Splatting.

Our solution capitalizes on strong geometric priors to optimize through
distributed processing and load balancing, enabling interactive, freely ex-
plorable 3D experiences. By dividing scene reconstruction into actor-centric
and environment-specific tasks, we employ hierarchical coarse-to-fine op-
timization to rapidly and accurately reconstruct human actors based on
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pose data, refining their geometry and appearance with photometric loss.
For static environments, we focus on view-dependent appearance changes,
streamlining rendering efficiency and maximizing GPU performance. To
facilitate evaluation, we introduce (and distribute) a synthetic benchmark
dataset of basketball games, offering high visual fidelity as ground truth. In
both our synthetic benchmark and publicly available benchmarks, LiveSplats
consistently outperforms existing approaches. The dataset is available at
https://humansensinglab.github.io/basket-multiview.
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1 Introduction
"Panem et circenses" coined by Roman poet Juvenal to critize the
self-serving nature of Romans who, deprived of political influence,
are placated soley by "bread and circuses" provided by the govern-
ment. Although technology has advanced significantly, we remain
the same humans, governed by similar systems. Entertainment con-
tinues to be at the heart of societal engagement, illustrating that
some aspects of human nature endure across millennia.

To allow for widespread participation, live transmissions of such
sports events are ubiquitously available for remote, visual consump-
tion in a 2D format. Unfortunately, this does not allow viewers to im-
merse themselves in the same way that personal attendance would:
at best, television services may allow viewers to cycle through cam-
eras at will to enable a basic level of engagement.

In 2001, Takeo Kanade and collaborators [University 2001] devel-
oped the "EyeVision" technology for use during Super Bowl 2001.
It involved an array of cameras mounted at the Raymond James
Stadium, which provided a dynamic, panoramic view of the play.
This system synthesized the inputs from multiple cameras into a
single, flowing image, allowing viewers to see the action from virtu-
ally any angle. This innovation significantly enhanced the viewer’s
experience by offering detailed, 360-degree views of live action,
which traditional single-point-of-view cameras could not capture.
However, EyeVision did not allow real-time interaction, needed a
lot of computing and was extremely costly to set up.
Building on this, Intel’s TrueView (formerly freeD) technology

uses an array of high-resolution cameras around stadiums to create
immersive 360-degree replays, allowing viewers to experience key
moments from various angles. Spiideo’s Multi-Angle Autocasting
utilizes AI-powered cameras to capture multiple perspectives of
sports events automatically, enabling seamless switching between
angles without manual intervention.
Anticipating the next frontier of visual content consumption,

this paper lays the foundation to provide significant leaps forward
for the remote experience of live sports events: Building on recent
advances for high-performance radiance field representations, we
describe a wholistic solution toward providing a freely explorable,
photo-realistic 3D format for such events. Our approach, LiveSplats,
is based on fast-to-train radiance fields from 3D Gaussian Splatting
[Kerbl et al. 2023] (3DGS) . By focusing on human-centered content,
we can exploit strong geometric priors to cut reconstruction time,
facilitate distributed and parallel processing, as well as load balanc-
ing to produce high-quality 3D reconstructions for live content at
interactive rates. Specifically, we separate the job of reconstructing
the full scene at a given timestamp into per-subject and environment
optimization tasks.
For each subject, we can seed their high-quality reconstruction

at each timestamp from easy-to-obtain pose information, and fur-
ther refine geometry and appearance from photometric loss via
differentiable 3DGS rendering. This work proposes a hierarchical
coarse-to-fine approach that progressively resolves increasingly fine
aspects of subjects’ pose and appearance, which forms a lightning-
fast solution that’s robust to noise, for reconstructing 3D humanoid
actors from multi-view images.

In addition to subjects in the event, a complete visual experi-
ence also requires reacting to changes in the environment. To limit
the problem space and allow highly effective run-time optimiza-
tion, this research focuses on geometrically static environments.
In other words, we assume that given an initial reconstruction of
an environment, only its appearance (i.e., view-dependent color)
may change as players perform actions this includes any changes in
global illumination, shadows, or reflections as players move about
the scene. Enforcing this restriction allows for a highly streamlined
render pipeline design that alleviates several of the complex—and
time-consuming—aspects of 3DGS rendering. We show how this
simple assumption enables us to eschew all dynamic resource man-
agement challenges and use high-level (e.g., ideal load balancing)
and low-level (e.g., CUDA graphs) optimizations to maximize the
efficacy of available hardware for training.
A significant challenge in this research is the lack of available

data and standardization for live event capture with ground-truth
data. To enable an in-depth exploration of our target setting despite
this issue, we have designed a comprehensive, synthetic benchmark
dataset, focusing on sports activities with multiple actors. Designed
with professional 3D authoring and rendering tools, our dataset
provides high visual fidelity and multimodal reference outputs for
optimization, as well as options for simulating real-live error sources
(e.g., in pose detection).

In summary, we provide the following contributions:

(1) A scalable system design toward real-time reconstruction of
sports events via distributed and parallel processing.

(2) A high-performance, coarse-to-fine solution for reconstruct-
ing subjects in the event.

(3) A streamlined pipeline for appearance optimization with op-
timal load balancing.

(4) A comprehensive benchmark dataset with multiple actors in
human-centric settings.

2 Related works
Radiance Fields: Radiance fields are pivotal in computer graphics

and vision, representing 3D scenes by modeling light distribution
within a volume. Kajiya’s rendering equation [Kajiya 1986] estab-
lished the foundation for simulating radiance transfer in scenes.
Precomputed Radiance Transfer (PRT) [Sloan et al. 2002] advanced
real-time rendering by precomputing light interactions for dynamic
lighting. Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] revo-
lutionized the field, using neural networks to synthesize high-fidelity
novel views of complex scenes. Extensions like D-NeRF [Pumarola
et al. 2021] capture non-rigid deformations over time, while Time-
of-Flight Radiance Fields (TöRF) [Imaging Group 2021] incorporate
depth sensing for improved dynamic scene reconstruction.

Despite their dominance in scene reconstruction and novel view
synthesis, NeRF and its variants are computationally intensive, re-
quiring significant optimization for each new scene. Recently, 3D
Gaussian Splatting (3DGS) [Kerbl et al. 2023] has emerged as a
more efficient alternative, modeling radiance fields with spatially
distributed Gaussian primitives.
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Fig. 2. System architecture of LiveSplats. We first segment multi-view images at time 𝑡 , to obtain per-subject segmentation masks for each subject, and
pass the masked RGB images of each subject to the nodes. Each node will then optimize 3D Gaussians at 𝑡 for that subject, using either dynamic or static
optimization logic. The optimized 3D Gaussians are collected from each node and aggregated into a single model, and then served for on-demand renderings
from arbitrary viewpoints to clients.

3DGS Methods: Spacetime Gaussians [Li et al. 2024a] and De-
formable 3D Gaussians [Yang et al. 2024] enhance 3DGS by in-
corporating temporal opacity, parametric motion, and annealing
mechanisms to model dynamic scenes while addressing pose esti-
mation inaccuracies. VideoRF [Wang et al. 2024a] and 4D Gaussian
Splatting [Wu et al. 2024] utilize space-time mappings and multi-
resolution Hex-Plane modules, respectively, to compress temporal
redundancies and capture motion and shape changes with deforma-
tion fields. SurMo [Hu et al. 2024a] and Gaussian-Flow [Lin et al.
2024] model temporal dynamics using surface-based triplanes and
dual-domain deformation models, to capture complex motions and
deformations through frequency and polynomial fitting.
SWinGS [Shaw et al. 2024], Katsumata et al. [Katsumata et al. 2024],
and DynMF [Kratimenos et al. 2024] represent scene dynamics
with sliding windows, Fourier approximations, and basis trajecto-
ries, enabling efficient and controllable motion synthesis. Street
Gaussians [Yan et al. 2024] and DualGS [Jiang et al. 2024] focus
on human-centric dynamic scenes, leveraging tracked poses, and
separate encodings for skeletal motion and surface appearance, with
real-time rendering supported by entropy and codec-based com-
pression.

3DGS for avatars: Several methods on driving human avatars
such as GaussianAvatar [Hu et al. 2024b], GoMAvatar [Wen et al.
2024] and SplattingAvatar [Shao et al. 2024] achieve high-quality
renderings frommonocular videos by combining explicit mesh repre-
sentations with Gaussian primitives. Concurrently, approaches such
as HumanGaussian [Liu et al. 2024], SimAvatar [Li et al. 2024b], and
PSHuman [Li et al. 2024c] focus on text-driven 3D human generation
and photorealistic reconstruction, leveraging diffusion models and
cross-scale techniques.𝑉 3 [Wang et al. 2024b] and SqueezeMe [Saito
et al. 2024] address the challenges of streaming volumetric videos on

mobile devices and optimizing Gaussian avatars for VR applications,
respectively.

NeRF streaming methods: StreamRF [Li et al. 2022] uses an ex-
plicit grid-based model with incremental learning to reconstruct
streaming radiance fields, updating each frame as a difference from
a base model, and optimizes only critical regions in each frame.
ReRF [Wang et al. 2023] represents dynamic scenes by modeling
inter-frame changes with a compact motion grid and residual fea-
ture grid, decoded by a lightweight MLP. NeRFPlayer [Song et al.
2023] enables efficient streamable representation of dynamic scenes
by decomposing them into static, deform-able, and unseen areas,
each modeled by separate neural fields, while employing a time-
dependent sliding window for feature streaming.

3DGS streaming methods: Dynamic-3DGS [Luiten et al. 2024] (D-
3DGS) models dynamic scenes with Gaussians with persistent ge-
ometry attributes that can orient freely, and enforcing local rigidity
for spatial consistency. 3DGStream [Sun et al. 2024] uses a neu-
ral transformation cache (NTC) for Gaussian transformation and
a refinement stage for detail reconstruction. HiCoM [Gao et al.
2024] adopts hierarchical voxel-based motion modeling, perturba-
tion smoothing, and Gaussian merging for compact, streamable rep-
resentations. DASS employs Gaussian inheritance, motion-aware
alignment, and densification via optimization errors for iterative
refinement. QUEEN [Girish et al. 2024] encodes Gaussian attributes
with quantized residuals, sparsifies position data, and disentangles
static and dynamic content using viewspace gradients.

3 Method
Our aim is to achieve real-time 3D reconstruction of sports-centered
events from multi-view streaming videos, to enable unrestricted
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6-DOF exploration, providing a uniquely interactive experience for
(remote) audiences. However, delivering such up-to-date visuals
poses a massive engineering challenge, requiring reconstructions
to happen thousands of times faster than traditional methods.
To tackle this challenge, we model the reconstruction process

using a two-level MapReduce [Dean and Ghemawat 2008] approach
and parallelize it across GPU-powered nodes . Nodes in a node-
pool process individual frames independently, while GPUs within a
node handle the reconstruction of dynamic elements-such as play-
ers, the court, or the ball-in parallel. This design allows interactive
frame rates, which improve linearly with increase in computational
resources.

3.1 System overview
Figure 2 provides an overview of LiveSplats. At time 𝑡 , we map
the last 𝑁 unprocessed frames (from 𝑡 to 𝑡 − 𝑁 ) to each of the 𝑁
nodes. For each frame, we generate multi-viewmasks for all subjects
using off-the-shelf models (SAM2 [Ravi et al. 2024]) and assign each
subject to a dedicated GPU for reconstruction.
Each node optimizes 3D Gaussians at frame 𝑡 , with a subject

assigned to each GPU, employing either dynamic or static optimiza-
tion, which we detail in Sections 3.2 and 3.3, respectively. After
completing the 3D reconstruction for all subjects in the frame, the
optimized 3D Gaussians from each node are aggregated into a uni-
fied model. We prioritize reconstruction in a manner that novel-view
synthesis at high-fidelity is possible with just one optimization cycle,
thereby amortizing on-demand rendering from arbitrary viewpoints
for connected viewers.

A key design feature of LiveSplats that enables nearly unbounded
scalability is that scene reconstruction at frame 𝑡 operates com-
pletely independently of other frames. This added flexibility in
distributed processing allows us to multiplex the reconstruction of
multiple adjacent frames, fully leveraging the available distributed
computing resources for real-time 3D reconstruction.

We elucidate the strength of this design through an example. The
total time 𝑇total for a frame to be generated by a node is comprised
of image transfer (𝑇𝑡 ), reconstruction (𝑇𝑟 ), 3DGS transfer back (𝑇𝑏 ),
and merging (𝑇𝑚). Since reconstruction is independent of previous
frames and the remaining stages can be handled asynchronously,
after an initial latency period of 𝑇𝑡 + 𝑇𝑏 + 𝑇𝑚 , the per-frame time
with 𝑁 nodes is 𝑇𝑟

𝑁
, i.e., linear in the number of nodes. Theoretical

performance gains from raising 𝑁 saturate when 𝑇𝑟
𝑁

matches the
sampling rate of the input (e.g., 33ms per frame), at which point
real-time reconstruction is achieved. Recall that the time taken by
segmentation and 3-D pose estimation are intentionally omitted as
they run per frame, outside the critical path; This allows our timing
measurements to focus solely on reconstruction and enables a fair
comparison with prior work.

3.2 Dynamic optimization
Incremental frame optimization based on a robust prior is funda-
mental to several recent methods [Gao et al. 2024; Luiten et al. 2024;
Shaw et al. 2024; Sun et al. 2024] for dynamic scene reconstruction
using Gaussians. However, methods often lose structural detail over
time because relying on rigid/no priors accumulates errors, which

degrade fine details during motion. To overcome this limitation,
we introduce a novel dynamic coarse-to-fine optimization for hu-
mans, capable of moving 3D Gaussians over long distances while
maintaining fine-grained details.

Modeling human body motion relies on high-quality priors, such
as 3D human skeletons, to guide the spatial transformations of the
3D Gaussians. We define two key concepts: skeleton and skinning
weights. A skeleton is the kinematic tree structure of human body
where each node represents a joint, characterized by properties such
as global position x ∈ R3, global rotation quaternion q ∈ H in world
coordinates, and a pointer 𝑝 to its parent node. Skinning weights are
values assigned to mesh vertices, specifying the influence of each
joint on the vertex, allowing for realistic deformations as the joints
rotate.

LiveSplats processes multi-view RGB images per frame to produce
detailed, temporally consistent 3D Gaussian-based surface recon-
structions. Initialization involves optimizing vanilla 3DGS [Kerbl
et al. 2023] using multi-view images of a human in a T-pose (binding
pose), to generate a detailed 3DGS reconstruction. Following [Bhat-
nagar et al. 2020a,b], we fit an SMPL [Loper et al. 2015] model to
the converged Gaussian model of the T-pose, by minimizing the
chamfer loss between Gaussian centers and SMPL mesh vertices,
yielding the final mesh, skeleton, and linear blend skinning (LBS)
weights. Each Gaussian is assigned to its nearest mesh vertex and
inherits its skinning weights, enabling skeleton-driven manipula-
tion. While related work ([Hu et al. 2024b; Li et al. 2024c,b; Liu
et al. 2024; Shao et al. 2024; Wen et al. 2024]) learns this binding
for improved visual quality and smoother transitions, we stick to
principal, learning-free refinement approaches. We remain open to
exploring such promising alternative Gaussian binding techniques
in future work.

For dynamic frames, OpenPose [Cao et al. 2019] is used to extract
multi-view 2D skeletons for frame 𝑡 , which are then triangulated to
compute the corresponding 3D skeleton. Gaussians are transformed
from the T-pose to the pose at frame 𝑡 using this derived 3D skeleton.
If noise in the posed skeleton leads to misplacement of Gaussians,
skeleton optimization is employed to refine their positions. Finally,
the Gaussians are decoupled from the skeleton, allowing their pa-
rameters to be freely optimized to enhance visual quality.

Skeleton-driven Gaussians. Given the Gaussians G0 and skeleton
S0 at T-Pose, and posed skeleton S𝑡 at frame 𝑡 , one can transform
the Gaussian positions and quaternions from the T-pose to the pose
𝑡 by:

x𝑖,𝑡 =
|S0 |∑︁
𝑗=1

𝑤𝑖, 𝑗

[
q𝑗,𝑡 · q∗𝑗,0 · (x𝑖,0 − x𝑗,0) · q𝑗,0 · q∗𝑗,𝑡 + x𝑗,𝑡

]
q𝑖,𝑡 =

|S0 |∑︁
𝑗=1

𝑤𝑖, 𝑗 q𝑗,𝑡 · q∗𝑗,0 · q𝑖,0

(1)

where x𝑖,𝑡 , q𝑖,𝑡 are the position and quaternion of 𝑖th Gaussian at
frame 𝑡 . x𝑗,𝑡 , q𝑗,𝑡 are the position and quaternion of 𝑗 th joint at frame
𝑡 . It is worth noting that subscript 𝑖 is the index of Gaussians, and
subscript 𝑗 is that of joints. 𝑤𝑖, 𝑗 is the skinning weight of the 𝑖th
Gaussian w.r.t. the 𝑗 th joint. We obtain the joint quaternions by
computing the rotation relative to a T-pose reference skeleton
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Skeleton optimization. Skeleton-driven Gaussians assume accu-
rate skeletons, but triangulated skeletons from OpenPose often
suffer from noise due to occlusions and resolution limits, leading to
suboptimal Gaussian initialization. To mitigate this, we introduce a
skeleton optimization algorithm (Algorithm 1), that refines the 3D
skeleton by rasterizing transformed Gaussians and minimizing 2D
photometric loss against the ground truth image.

In Algorithm 1, drive(·) is the skeleton-driven Gaussian transfor-
mation explained by Equation 1; rasterize(·) is the Gaussian raster-
izing function (implementation adopted from [Mallick et al. 2024]).
During the skeleton optimization, all the Gaussians are bound to
the skeleton, to ensure their movement aligns with joint motions.
Only the joint rotations are updated at each step, while Gaussian
opacity, scale, and spherical harmonics (SH) are held constant.

Algorithm 1 Skeleton Optimization
1: Input: A list of ground truth multi-view images {𝐼𝑖 ∗} of the

player at frame 𝑡 along with their corresponding camera poses
{cam𝑖 }, T-pose Gaussians G0, T-pose skeleton S0, frame 𝑡 skele-
ton S𝑡

2: Output: Skeleton-optimized 3D Gaussians G𝑡 of the player
3: function OptimizeSkeleton({𝐼𝑖 ∗}, {cam𝑖 }, G0, S0, S𝑡 )
4: for iter = 1 to maxIters do
5: G𝑡 ← drive(G0,S0,S𝑡 )
6: 𝑖 ← iter % numCams
7: 𝐼𝑖 ← rasterize(G𝑡 , cam𝑖 )
8: L ← Lphoto (𝐼𝑖 , 𝐼𝑖 ∗)
9: ∇S𝑡 ← ∇S𝑡L
10: S𝑡 ← S𝑡 − 𝜂∇S𝑡
11: end for
12: G𝑡 ← drive(G0,S0,S𝑡 )
13: return G𝑡
14: end function

Appearance refinement. Once skeleton optimization converges,
the Gaussians are detached from the skeleton, and their parameters
are optimized using the photometric loss Lphoto, to enhance local
structural details and adapt to changes in illumination.
To enhance speed and robustness, skeleton optimization opti-

mizes global joint rotations in the world coordinate system instead
of local rotations relative to parent joints, simplifying the com-
putational graph. During appearance refinement, Gaussians, now
independent of the skeleton, move freely. To prevent them from
drifting into the background due to imperfect player masks, random
backgrounds are applied to both the ground truth and rasterizer,
penalizing Gaussians that move outside the player’s body.

Figure 3 demonstrates the qualitative gains by skeleton optimiza-
tion, and detailed ablation study of our skeleton optimization are
provided in the supplemental.

3.3 Static optimization
In most sports, the only significant source of change in the scene
arises from the dynamic movements of human participants (players)
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Fig. 3. Qualitative gains by skeleton optimization

and the ball. The rest of the environment remains static, with varia-
tions limited to global lighting and shadow dynamics influenced by
these moving elements.

SH-only optimization. Following [Luiten et al. 2024], each Gauss-
ian provides a soft representation of physical space and can be frozen
once the geometry of the scene is accurately captured. We train
vanilla 3DGS for 30, 000 iterations on all the training views of an
empty court/room. During this step, we apply scale regularization
to prevent the formation of thin, elongated slivers. Additionally, to
enhance visual fidelity around the basket—typically a region of high
viewer interest, we strategically increase Gaussian density within its
enclosing 3D bounding box. Subsequent optimization focuses exclu-
sively on appearance (SH parameters); 200 iterations for static back-
ground and 500 iterations for the dynamic foreground, per frame, to
account for lighting changes introduced by dynamic elements. This
reduces computational overhead by excluding non-appearance pa-
rameters from gradient calculations, minimizing atomic operations
during the backward pass, and significantly decreasing training time.
Furthermore, decoupling geometry from appearance helps prevent
artifacts such as flickering, which can occur when Gaussians shift,
resize, or rotate.

Precomputation. Our empirical analysis reveals that depth-sorting
of Gaussians is the primary bottleneck in rasterization. For Gaus-
sians associated with static regions, their geometrical parameters
(position, scale, rotation) are frozen, making their depth values
invariant and cacheable. To address this, we implement a precom-
puted method that stores the sorted Gaussians for each rasterizer
tile. These precomputed values are reused during the optimization
of appearance changes in subsequent frames. This precomputation
is performed after the optimization of the first frame has converged.

CUDA graphs. The precomputed structures reside in the VRAM
which eliminate the expensive synchronization procedures between
GPU and CPU. This gives way to implementing a purely CUDA
graph-based [Ansel et al. 2024] solution devoid of any CPU routines
or system calls. A CUDA graph is a software rendition that records
GPU operations into a Directed Acyclic Graph (DAG) that can be
used for asynchronous replays, minus the CPU overheads. Each
replay reuses prerecorded execution paths and memory addresses,
which removes any final unattended system-level constructs from
limiting the speed of LiveSplats.

Load Balancing. Due to the non-deterministic nature of 3DGS, the
number of Gaussians rendered per thread can vary significantly. To
balance the workload across threads, we introduce a load-balancing
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Fig. 4. Multi-modal data example from the BASKET-Multiview Dataset.

step after precomputation. For tile 𝑖 , the ordered set of Gaussians
G𝑖 = {𝑔1, 𝑔2, . . . , 𝑔𝐿} is partitioned by order into 𝑀 subtiles, each
containing a maximum of 𝑁 Gaussians (𝑀 = ⌈𝐿/𝑁 ⌉). We have G𝑖 =⋃𝑀

𝑗=1 B𝑖
𝑗 , where B𝑖

𝑗 is the set of Gaussians in subtile 𝑗 with |B𝑖
𝑗 | ≤ 𝑁 .

Each B𝑖
𝑗 is processed by a separate thread block to maximize GPU

occupancy.
Since only SH coefficients are optimized, transmittance values

can be precomputed during the first frame. This allows indepen-
dent blending within each subtile without requiring synchroniza-
tion between thread blocks. Consequently, subtile-distributed alpha
blending for pixel 𝑝 can be expressed as:

I(𝑝) =
𝑀∑︁
𝑗=1

𝑇 𝑖
𝑗 (𝑝) ·

∑︁
𝑔𝑘 ∈B𝑖𝑗

𝑘−1∏
𝑚=1
(1 − 𝛼𝑚 (𝑝)) · 𝛼𝑘 (𝑝) · C𝑘 (𝑝) (2)

where𝑇 𝑖
𝑗 (𝑝) is the transmittance of subtile 𝑗 at pixel 𝑝 ;𝛼𝑘 (𝑝),C𝑘 (𝑝)

are the contributions of opacity and color of Gaussian 𝑘 at pixel 𝑝 .
A representative flow for the static optimization and an ablation
for each of the aforementioned optimizations is attached in the
supplementary.

3.4 Loss
We adopt the photometric loss function in 3DGS [Kerbl et al. 2023]:

Lphoto (𝐼 , 𝐼 ∗) = (1 − 𝜆)L1 (𝐼 , 𝐼 ∗) + 𝜆LD-SSIM (𝐼 , 𝐼 ∗) + 𝑅 (3)
for skeleton optimization, where 𝐼 and 𝐼 ∗ are the predicted and
ground truth images, 𝜆 = 0.2. For the static optimization and ap-
pearance refinement in the dynamic optimization, only the subject-
masked area is used to compute loss to avoid problems from oc-
clusion among subjects: Lmasked = Lphoto (𝑀𝐼,𝑀𝐼 ∗), where 𝑀 is
the subject mask. 𝑅 is used to regularize Gaussian movements and
scales, and is expressed as:

𝑅 = 𝜆𝑥 | |x − x∗ | | + 𝜆𝑠 | |s − s∗ | |, (4)

where x, x∗, s, s∗ are the optimized and initial Gaussian positions
and scales. This regularization limits the geometrical changes to a
Gaussian, thereby arresting any chances of flicker.

4 BASKET-Multiview Dataset
We introduce the BASKET (BAsketball Synthetic benchmarK for
Enhanced Telepresence)-Multiview Dataset, a synthetic collection
of scenarios representing common basketball plays generated using
Unreal Engine 5 [Epic Games 2025] and EasySynth [YDRIVE 2023],
leveraging the basketball court assets provided by [Studios 2025]
and player models from [Pictures 2024]. For each scene, we provide
comprehensive annotations that include calibrated cameras param-
eters, animations, RGB images, segmentation masks, depth maps,
surface normal images and animations, as illustrated in Figure 4.
All scenes are rendered at 1080p and 30 fps, with the exception of
sequence Attack 4, which has been rendered in 4K resolution.

The dataset is divided into two partitions: Core and Development.
The Core partition contains 7 scenes designed for evaluating re-
construction methods for sports events. Each Core scene is created
within a basketball court environment, consisting of an 89-camera
setup, optimized for capturing game-play during matches, as illus-
trated in Figure 5. More details on lighting and camera configura-
tions are provided in the supplementary.
The Development partition contains 9 simpler sequences con-

taining varying lighting conditions and backgrounds. Development
sequences are designed to isolate features such as lighting dynamics,
complex movements, close/far camera settings, and more, in order
to test the capabilities of the method during development. The full
list of scenes and their detailed specifications is provided in the
supplementary.
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Fig. 5. Lighting and camera configuration in the court. White light: point
light. Red light: spotlight. Some lights are not visible in this view due to
occlusion.

Table 1. Comparison on available multi-view sports datasets

Dataset Name Nature Cameras Annotations
Semantic
Mask

Depth
Map

Normal
Map Animation

TeamTrack Real 3 ✗ ✗ ✗ ✗

SoccerNet Real 1 ✗ ✗ ✗ ✗

SportsMOT Real 1 ✗ ✗ ✗ ✗

KTH Multiview
Football II Real 3 ✗ ✗ ✗ ✗

FineSports Real 1 ✗ ✗ ✗ ✗

APIDIS Real 7 ✗ ✗ ✗ ✗

EPFL Basketball Real 4 ✗ ✗ ✗ ✗

SoccerNet-Depth Synthetic 1 ✗ ✓ ✗ ✗

Soccer on
your tabletop Synthetic 1 ✗ ✓ ✗ ✗

BASKET-Multiview Synthetic 89 ✓ ✓ ✓ ✓

5 Experiments
This section describes the experiments we carry out for benchmark-
ing the performance of LiveSplats.We post the results of our ablation
studies on skeleton optimization and static optimization speed-up
techniques in the accompanying supplemental.

5.1 Datasets
We performed experiments on the BASKET-Multiview (described
in Section 4) and the CMU-Panoptic dataset [Joo et al. 2017]. For
the CMU-Panoptic dataset, we selected three subsequences from
171204_pose1 sequence and conduct experiments on these. The
BASKET-Multiview dataset provided in this paper includes enhance-
ments incorporating diversity in gender, skin tone, height and cloth-
ing styles. However, the experimental results reported in this section
were obtained using an earlier version of the dataset.

To evaluate the robustness of LiveSplats against imperfect pri-
ors, we generate skeletons, meshes, and skinning weights using
OpenPose [Cao et al. 2019] and SMPL [Loper et al. 2015], and fur-
ther introduce random perturbations to the skeletons (referred to
as noisy skl). We mimic different noise levels in the skeletons by
randomly perturbing the limb joints (shoulders, elbows, hips, and
knees) by 10◦ to 20◦. These scenarios provide a controlled testbed to
validate the ability of our skeleton optimization method to correct
errors introduced by traditional off-the-shelf models.

5.2 Baselines
We compared LiveSplats against all known state-of-the-art approaches
that perform online training and have publicly available implemen-
tations, to the best of our knowledge. We consider 3DGS-based
3DGStream [Sun et al. 2024](CVPR’24 Highlight), HiCoM [Gao
et al. 2024](Neurips’24), and NeRF-based StreamRF [Li et al. 2022]
(Neurips’22). Additionally, we included Dynamic-3DGS (D-3DGS)
[Luiten et al. 2024](3DV’24) as a baseline, prioritizing quality despite
its lack of real-time training capabilities. In our experiments, we
adhered to the recommended settings for each method wherever
possible, adjusting hyperparameters only when necessary to achieve
optimal results.
All experiments are conducted on an Nvidia RTX A4500 GPU,

with training and evaluation performed at a resolution of 960 × 540.
We optimize each scene component for 500 iterations, with the initial
60 iterations dedicated to skeleton optimization, if applicable. Since
the preprocessing requirements vary across methods, we follow
the protocol in [Luiten et al. 2024; Sun et al. 2024] to ensure a fair
comparison by reporting only the training time.
Our distributed design allows the workload to be scaled across

multiple, even moderately powerful, GPUs, enabling a flexible trade-
off between performance and resources, making it practical and
portable across typical platforms.

5.3 Metrics
We evaluated the per-frame reconstruction quality using established
image-based metrics: PSNR, SSIM, and LPIPS. Additionally, we in-
troduced masked PSNR (M-PSNR), which calculates the PSNR exclu-
sively in dynamic regions to more accurately assess image quality
in motion-intensive areas. The image metrics were averaged across
all frames and views of each sequence.

For video evaluation, we adopted VMAF [Li et al. 2016], a widely
used metric that integrates spatial and temporal quality measures, to
account for multi-resolution quality and temporal coherence. We re-
ported the VMAF averaged across all views of each sequence. The av-
eraged training time (in seconds) per frame (SPF) was also reported
as a measure of computational cost. Since LiveSplats processed each
scene component independently in parallel, we reported the largest
SPF across all components. Furthermore, we introduced VMAF ef-
ficiency (VE) and PSNR efficiency (PE), defined as VE = VMAF

SPF and
PE = PSNR

SPF , respectively, to highlight the quality achieved per unit
time for each method.

5.4 Evaluations
Table 2 shows the evaluation results on BASKET-Multiview and the
CMU-Panoptic dataset. Figure 8 houses all qualitative results and
Figure 6 illustrates results on consecutive frames. From Table 2, we
can see that LiveSplats outperforms other methods in terms of speed
and quality on BASKET-Multiview. On CMU-Panoptic, LiveSplats
aces in both video and image quality as well as reconstruction speed.
This is particularly noteworthy given the imperfect segmentation
masks and noisy priors in the dataset—conditions under which
most methods degrade significantly—highlighting robustness and
minimal reliance on perfect priors.
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Table 2. Full evaluation on BASKET-Multiview core scenes and CMU-Panoptic dataset. For CMU-Panoptic, the detected noisy 3D skeletons are used and the
skeleton optimization is applied. For BASKET-Multiview, skeleton optimization is not always applicable because the cameras are too far in some scenes, so the
perfect skeletons are used.

Dataset Method VMAF↑ PSNR↑ M-PSNR ↑ SSIM↑ LPIPS↓ SPF↓ VE↑ PE↑
StreamRF [Li et al. 2022] 36.30 ± 2.47 26.82 ± 0.42 13.45 ± 1.20 0.756 ± 0.040 0.198 ± 0.028 48.6 ± 0.5 0.75 ± 0.06 0.55 ± 0.01
3DGStream [Sun et al. 2024] 51.43 ± 6.05 28.36 ± 0.90 20.79 ± 1.52 0.875 ± 0.019 0.174 ± 0.024 12.6 ± 0.7 4.10 ± 0.43 2.26 ± 0.16
D-3DGS [Luiten et al. 2024] 65.41 ± 0.87 28.75 ± 0.85 23.20 ± 1.64 0.901 ± 0.003 0.149 ± 0.009 74.3 ± 3.5 0.88 ± 0.05 0.39 ± 0.01
HiCoM [Gao et al. 2024] 54.69 ± 10.61 28.08 ± 2.71 19.03 ± 1.26 0.888 ± 0.060 0.157 ± 0.077 6.1 ± 0.1 8.89 ± 1.65 4.57 ± 0.40

BASKET-Multiview

LiveSplats 67.30 ± 2.41 29.75 ± 0.21 25.24 ± 0.86 0.912 ± 0.007 0.119 ± 0.006 5.2 ± 0.1 13.02 ± 0.67 5.75 ± 0.12
StreamRF [Li et al. 2022] 34.49 ± 2.93 23.46 ± 0.34 18.20 ± 1.09 0.852 ± 0.057 0.404 ± 0.042 9.0 ± 0.0 3.83 ± 0.33 2.61 ± 0.04
3DGStream [Sun et al. 2024] 46.00 ± 6.03 25.68 ± 1.28 21.37 ± 1.79 0.902 ± 0.011 0.338 ± 0.008 5.0 ± 0.0 9.20 ± 1.21 5.13 ± 0.26
D-3DGS [Luiten et al. 2024] 50.66 ± 4.30 26.41 ± 0.24 24.60 ± 0.94 0.908 ± 0.008 0.286 ± 0.006 88.3 ± 3.5 0.57 ± 0.04 0.30 ± 0.01
HiCoM [Gao et al. 2024] 38.37 ± 4.10 25.35 ± 0.93 21.85 ± 1.83 0.904 ± 0.009 0.301 ± 0.009 4.0 ± 0.0 9.60 ± 1.03 6.34 ± 0.23

CMU-Panoptic

LiveSplats 57.33 ± 3.31 26.53 ± 1.27 26.55 ± 1.22 0.879 ± 0.009 0.274 ± 0.008 4.7 ± 0.0 12.20 ± 0.70 5.64 ± 0.27

Table 3. Evaluation with different camera distances. Attack 4 noisy skeletons are perturbed from perfect skeletons. Far views in Defense 2 result in no
meaningful priors and hence are skipped from the evaluation.

Sequence Dribbling Player - close view Attack 4 - mid view Defense 2 - far view
Method | Metric VMAF↑ PSNR↑ M-PSNR↑ SPF↓ VE↑ VMAF↑ PSNR↑ M-PSNR↑ SPF↓ VE↑ VMAF↑ PSNR↑ M-PSNR↑ SPF↓ VE↑
3DGStream [Sun et al. 2024] 36.08 30.54 19.73 3 12.03 57.01 26.75 23.63 14 4.07 56.57 29.19 19.81 12.3 4.60
D-3DGS [Luiten et al. 2024] 55.84 31.03 19.41 54 1.03 65.37 26.82 24.33 67 0.98 65.25 29.18 23.06 76.0 0.86
HiCoM [Gao et al. 2024] 33.24 28.64 18.24 3 11.08 31.47 22.03 18.65 6 5.25 55.08 28.59 17.81 6.1 9.03
LiveSplats (perfect skl) 76.16 35.85 25.74 3.8 20.04 72.68 30.17 25.60 5 14.54 66.31 29.75 26.15 5.2 12.75
LiveSplats (noisy skl) 62.13 35.72 25.60 5.8 10.71 72.67 30.17 25.60 5.7 12.75 - - - - -

In the BASKET-Multiview dataset, three camera views—close,
mid, and far—simulate court-side and spectator seat placements by
varying focal lengths and camera-to-player distances. From Table 3
and Figure 8 (a), (b), and (e), we observe that LiveSplats achieves the
best quality and convergence speed in mid views, excelling even
with noisy skeletons. In close views, it maintains high reconstruction
quality with minor speed trade-offs. For far views, we significantly
outperforms others in both quality and speed, though skeleton
detection and optimization become unreliable at extreme distances.
The variance in speed with varying camera distance is because
each player has a fixed number of Gaussians and closer views can
distribute the update process over more tiles, thereby speeding up
computation.

In real-world applications, lighting changes can come from differ-
ence in illumination between the animated player and the T-pose
reference, or due to the dynamic, unpredictable movements of play-
ers. We evaluate our method’s ability to handle these lighting vari-
ations using the Running Player sequence with and without light
changes. Results are reported in Table 4 and illustrated in Figure 8
(e) (f). The results show that LiveSplats outperforms all baselines in

Table 4. Evaluation under sudden lighting changes (LC).

LC Method VMAF↑ PSNR↑ SSIM↑ LPIPS↓ SPF↓ VE↑
3DGStream [Sun et al. 2024] 32.61 29.89 0.973 0.037 2 16.31
D-3DGS [Luiten et al. 2024] 56.12 31.60 0.976 0.024 57 0.98
HiCoM [Gao et al. 2024] 31.03 27.22 0.965 0.038 3 10.34
LiveSplats (perfect skl) 82.52 39.43 0.990 0.008 3.8 21.72

✗

LiveSplats (noisy skl) 70.80 35.22 0.987 0.013 5.8 12.21
3DGStream [Sun et al. 2024] 25.81 30.33 0.971 0.041 2 12.91
D-3DGS [Luiten et al. 2024] 39.25 29.31 0.972 0.034 57 0.69
HiCoM [Gao et al. 2024] 16.31 27.44 0.963 0.044 3 5.44
LiveSplats (perfect skl) 77.59 38.95 0.990 0.012 3.8 20.42

✓

LiveSplats (noisy skl) 63.61 35.23 0.984 0.018 5.8 10.97

quality, even with noisy priors while maintaining comparable train-
ing speeds, which demonstrates the effectiveness of our skeleton
optimization.
In Section 3.3, we propose several quality-preserving, perfor-

mance optimizations for static regions under lighting changes, which
we test using three such scenes. As shown in Table 5, we achieve sig-
nificant reduction in SPF with comparable VMAF and PSNR against
other methods. Since different methods require different numbers
of iterations, in addition to the quality and performance metrics,
we report the milliseconds taken per iteration (ms/iter) to better
enunciate the speedup of our optimizations.

Table 5. Quality and speed evaluation of static scene optimization with
lighting changes only.

Scene Method VMAF↑ PSNR↑ SPF↓ VE↑ PE↑ ms/iter
3DGStream [Sun et al. 2024] 30.42 23.84 10 3.04 2.38 41
D-3DGS [Luiten et al. 2024] 62.19 27.16 29 2.14 0.94 29
HiCoM [Gao et al. 2024] 40.74 24.85 7 5.82 3.55 35Day loop

LiveSplats 53.31 26.69 2 26.66 13.35 18
3DGStream [Sun et al. 2024] 32.71 21.14 11 2.97 1.92 47
D-3DGS [Luiten et al. 2024] 50.97 24.47 29 1.76 0.84 29
HiCoM [Gao et al. 2024] 42.28 22.89 7 6.04 3.27 35Opera

LiveSplats 51.79 25.16 2 25.90 12.58 18
3DGStream [Sun et al. 2024] 11.61 27.91 9 1.29 3.10 36
D-3DGS [Luiten et al. 2024] 45.94 28.62 31 1.48 0.92 32
HiCoM [Gao et al. 2024] 35.49 28.61 6 5.92 4.77 28Factory

LiveSplats 41.61 28.82 2 20.81 14.41 13

5.5 Limitations
LiveSplats achieves state-of-the-art performance in human-centered
scene reconstruction, demonstrating robust results on both the syn-
thetic BASKET-Multiview dataset which exemplifies popular sta-
dium sports like soccer, handball, or American football and the
real-world CMU-Panoptic dataset, which represents casual indoor
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Fig. 6. Video qualitative results

settings. Nevertheless, several limitations and opportunities for fu-
ture exploration remain.

First, despite robust performance demonstrated on the evaluated
datasets, the range of human motions captured is relatively lim-
ited, primarily reflecting structured sports environments and casual
indoor scenarios. Future research should address more complex
interactions involving physical contact, such as wrestling or box-
ing, to rigorously assess and further enhance the robustness of our
approach.

Second, we rely on human-specific priors and skeletal constraints,
limiting validation thus far to human-centric datasets. Extending
the underlying concept of binding Gaussians to generalized object
skeletons represents a compelling and promising direction for future
investigations, potentially expanding applicability beyond human
motion capture.

Additionally, we currently assume a geometrically static environ-
ment, restricting its suitability in scenarios involving significant
environmental dynamics, and investigating extensions to accommo-
date dynamic, evolving scenes is essential.

Finally, while the synthetic nature of the BASKET-Multiview
dataset enables highly accurate ground-truth annotations, it inher-
ently lacks some complexities encountered in real-world conditions.
Therefore, comprehensive validation on more diverse, real-world
datasets is imperative to fully establish the generalizability and
robustness of LiveSplats in practical scenarios.

6 Conclusion
Wepropose LiveSplats, a framework towards real-time, photo-realistic
3D reconstruction of sports events, using 3DGS and distributed opti-
mization. By computationally factorizing subjects and environment
reconstruction, and employing an hierarchical optimization strategy
with performance enhancements to the rasterization pipeline, we
achieve scalable, high fidelity results that with the right computa-
tion could be run at interactive frame rates. Our BASKET-Multiview
dataset, establishes a benchmark for evaluating methods in com-
plex dynamic scenarios. Experiments demonstrate our approach
surpasses SOTA methods in quality, robustness, and efficiency, set-
ting the stage for immersive, real-time live event streaming that
bridges physical and digital experiences.
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Ground truth D-3DGS 3DGStream HiCoM LiveSplats

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 7. Qualitative Results. Rows (a)-(d) are from BASKET-Multiview Core scenes. Rows (e)-(g) are from BASKET-Multiview Development scenes. Rows (h) and
(i) are from CMU-Panoptic dataset. Row (j) is a static scene that we created to evaluate the static reconstruction quality.
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Ground truth D-3DGS 3DGStream HiCoM LiveSplats

(a)

(b)

(c)

(h)

(d)

(e)

(g)

Fig. 8. Additional qualitative Results. Rows (a)-(d) are from BASKET-Multiview Core scenes. Rows (e)-(g) are from BASKET-Multiview Development scenes.
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A Ablations
To evaluate skeleton optimization with noisy priors, we mimic

different noise levels in the skeletons by randomly perturbing the
limb joints (shoulders, elbows, hips, and knees) by maximum 10◦ or
20◦, and then compare the reconstruction quality with and without
skeleton optimization. We choose two scenes: Running Player (with
close views) and Attack 4 (with mid views) to experiment on. To
quantify the skeleton quality, we report the skeleton error (SE),
computed by SE = 1

𝑁

∑𝑁
𝑖=1 | |x𝑖 − x∗𝑖 | |, where x𝑖 , x∗𝑖 are the optimized

and ground truth joint positions respectively, and 𝑁 is the number
of joints in the skeleton. From the results in Table 6 and Figure 3,
we can see that the skeleton optimization can effectively reduce the
SE and improve the video quality under various noise levels and
camera settings.

Table 6. Ablation study of skeleton optimization. Max ptb: max degrees of
random perturbation.

Scene Max
ptb

Skl
opt SE↓ VMAF↑ PSNR↑ M-PSNR↑ SSIM↑ LPIPS↓

Running
Player
(LC)

10° ✗ 2.356 58.83 33.06 22.17 0.981 0.023
✓ 0.593 73.77 37.43 26.61 0.987 0.014

20° ✗ 4.519 43.78 29.77 18.55 0.976 0.031
✓ 1.258 65.11 34.84 24.27 0.989 0.019

Attack 4
10° ✗ 2.588 71.33 29.88 24.15 0.924 0.107

✓ 1.334 72.59 30.17 26.22 0.927 0.106

20° ✗ 5.134 69.88 29.59 22.90 0.922 0.110
✓ 2.563 72.27 30.10 25.72 0.926 0.106

We evaluate the speed-up contributions of techniques in our
static optimization method: optimizing SH parameters (Only SH),
precomputing Gaussian sortings (Precomp), CUDA computation
graph (Graph), and load balancing (LB) through an ablation study
on the empty stadium scene with SH1 and SH3. Table 7 shows that
each technique provides substantial speed improvements for both.

Table 7. Ablation study of static optimization techniques.

SH Only Precomp Graph LB ms / iter
SH1 SH3
24 34

✓ 20 30
✓ ✓ 13 25
✓ ✓ ✓ 9 21
✓ ✓ ✓ ✓ 6 18

B Per-scene evaluation results.
We report the quality and performance metrics per scene on CMU-
Panoptic dataset in Table 8 and BASKET-Multiview in Table 9.

C BASKET-Multiview dataset
The full dataset specifications are shown in Table 10 and Table 11.
Our dataset does not simulate any crowd dynamics among the
audience.

Table 8. CMU-Panoptic dataset per-scene evaluation results.

Scene Method VMAF↑ PSNR↑ M-PSNR↑ SSIM↑ LPIPS↓ SPF↓ VE↑ PE↑

Scene 1

StreamRF 37.86 23.82 19.31 0.819 0.412 9.0 4.21 2.65
3DGStream 50.69 26.25 22.58 0.909 0.331 5.0 10.14 5.25
D-3DGS 53.84 26.69 25.51 0.914 0.281 88.0 0.61 0.30
HiCoM 42.58 26.08 23.42 0.909 0.297 4.0 10.65 6.52
Ours 53.80 25.58 25.89 0.876 0.274 4.7 11.45 5.44

Scene 2

StreamRF 33.10 23.39 17.14 0.819 0.359 9.0 3.68 2.60
3DGStream 39.19 24.21 19.31 0.889 0.347 5.0 7.84 4.84
D-3DGS 52.38 26.23 23.64 0.899 0.292 92.0 0.57 0.29
HiCoM 34.38 24.31 19.84 0.894 0.311 4.0 8.60 6.08
Ours 57.82 26.03 25.81 0.873 0.282 4.7 12.30 5.54

Scene 3

StreamRF 32.51 23.16 18.14 0.917 0.441 9.0 3.61 2.57
3DGStream 48.11 26.57 22.22 0.908 0.335 5.0 9.62 5.31
D-3DGS 45.77 26.32 24.64 0.912 0.284 85.0 0.54 0.31
HiCoM 38.15 25.67 22.28 0.909 0.295 4.0 9.54 6.42
Ours 60.36 27.97 27.96 0.889 0.267 4.7 12.84 5.95

Table 9. BASKET dataset per-scene evaluation results.

Scene Method VMAF↑ PSNR↑ M-PSNR↑ SSIM↑ LPIPS↓ SPF↓ VE↑ PE↑

Attack 1

StreamRF 33.79 26.49 12.15 0.816 0.192 49.0 0.69 0.54
3DGStream 50.44 28.42 20.67 0.874 0.173 12.5 4.04 2.27
D-3DGS 64.87 29.07 22.03 0.901 0.147 76.0 0.85 0.38
HiCoM 61.21 29.77 21.49 0.917 0.125 6.1 10.03 4.88
Ours 65.69 29.50 24.05 0.908 0.123 5.2 12.63 5.67

Attack 2

StreamRF 34.12 26.82 13.67 0.755 0.259 49.0 0.70 0.55
3DGStream 41.34 27.73 19.36 0.844 0.213 12.3 3.36 2.25
D-3DGS 66.03 29.08 21.48 0.901 0.146 78.0 0.85 0.37
HiCoM 62.18 29.48 18.06 0.914 0.127 6.3 9.87 4.68
Ours 66.44 29.65 24.22 0.910 0.121 5.2 12.78 5.70

Attack 3

StreamRF 40.95 27.14 11.86 0.721 0.193 48.0 0.85 0.57
3DGStream 55.97 29.21 21.59 0.896 0.148 12.5 4.48 2.34
D-3DGS 63.99 29.01 25.38 0.901 0.146 74.0 0.86 0.39
HiCoM 56.37 28.64 19.81 0.906 0.134 6.2 9.09 4.62
Ours 66.74 29.80 26.01 0.911 0.122 5.2 12.83 5.73

Attack 4

StreamRF 37.86 27.42 14.75 0.721 0.182 48.0 0.79 0.57
3DGStream 57.01 26.75 23.63 0.869 0.179 14.0 4.07 1.91
D-3DGS 65.37 26.82 24.33 0.894 0.169 67.0 0.98 0.40
HiCoM 31.47 22.03 18.65 0.751 0.331 6.0 5.25 3.67
Ours 72.68 30.17 25.60 0.927 0.105 5.0 14.54 6.03

Defense 1

StreamRF 35.81 26.41 13.84 0.787 0.189 49.0 0.73 0.54
3DGStream 53.19 28.98 21.06 0.884 0.159 12.2 4.36 2.38
D-3DGS 66.74 29.04 24.77 0.903 0.143 74.0 0.90 0.39
HiCoM 56.14 28.53 18.45 0.907 0.131 6.1 9.20 4.68
Ours 66.97 29.68 25.78 0.909 0.121 5.2 12.88 5.71

Defense 2

StreamRF 36.46 26.36 14.96 0.784 0.177 48.0 0.76 0.55
3DGStream 56.57 29.19 19.81 0.895 0.151 12.3 4.60 2.37
D-3DGS 65.25 29.18 23.06 0.903 0.145 76.0 0.86 0.38
HiCoM 55.08 28.59 17.81 0.905 0.131 6.1 9.03 4.69
Ours 66.31 29.75 26.15 0.910 0.121 5.2 12.75 5.72

Interval 1

StreamRF 35.14 27.11 12.89 0.711 0.195 49.0 0.72 0.55
3DGStream 45.46 28.22 19.38 0.862 0.195 12.1 3.76 2.33
D-3DGS 65.59 29.05 21.36 0.901 0.146 75.0 0.87 0.39
HiCoM 60.39 29.49 18.94 0.914 0.121 6.2 9.74 4.76
Ours 66.28 29.69 24.86 0.910 0.123 5.2 12.75 5.71

C.1 Config sets
We use several illumination setups (denoted by Config set in 11)
to better simulate environments for diverse benchmarking of our
method.

(1) Set 1 (Figure 9): The map consists of a basketball court with
the following illumination setup.
Point lights: 46 point lights are strategically placed through
the scene to simulate localized lightning. These lights are
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Table 10. Core BASKET-Multiview dataset composition

Sequence Name # Players #Cameras Shot #Frames Resolution
Attack 1 11 83 Far 321 1080p
Attack 2 6 83 Far 130 1080p
Attack 3 4 83 Far 319 1080p
Attack 4 5 83 Mid 321 4k
Defense 1 2 83 Far 160 1080p
Defense 2 3 83 Far 220 1080p
Interval 1 5 83 Far 185 1080p

placed near the assets that give illumination to the scene as
fluorescent lights and the intensity of these point lights are
adjusted for realism.
Spot Lights: 21 Spot Lights, with two types of intensity (15
lux and 10 lux) are placed on the top of the court and stands.
The use of two types of illumination aims to enhance visibility
on the court while creating a realistic ambiance by reducing
light intensity in the stands, thereby directing spectators’
focus toward the court.
Sky Light: The Sky Light setup uses the SLS Specified Cube-
map source type with a cubemap of Tx_HDRI_07a at an angle
of 175.0 and a distance threshold of 150, 000. The light inten-
sity is set to 5.0, with a white color (FFFFFFFF). It affects the
world and casts shadows, with indirect lighting intensity and
volumetric scattering intensity both set to 1.0.
Post Process Volume: These settings include an Auto Ex-
posure Histogram with an exposure compensation of −1.24,
a minimum brightness of 0.5, and a maximum brightness of
8.0. The color temperature is set to 6036.0.
For global illumination, the Lumen method is used with a
scene lighting quality of 5.0, scene detail of 4.0, and a scene
view distance of 100.0. Reflections use a quality setting of 2.0,
hit lighting for reflections, high-quality translucency reflec-
tions enabled, and a maximum of 3 reflection bounces.

(2) Set 2: This is simpler than Set 1 as it only consists of a Skylight.
Here the scenario is completely empty as we want to place
the player in a black environment with a sky light for global
illumination.
Sky Light: The Sky Light setup uses the SLS Specified Cube-
map source type with a cubemap GrayLightTextureCube. The
light intensity is set to 3.0, with a white color (FFFFFFFF).
Post Process Volume: This sets up the lightning and reflec-
tion methods to use Lumen.

(3) Set 3 (Figure 10): This is similar to Set 2 with an additional
point light moving around the player, to better understand
the effect of lighting changes on our method’s ability.
Point light: It is placed at 170.0 units from the player and
rotates around it. It has an intensity of 10000.0 unitless, with
a white color (FFFFFFFF) and an attenuation radius of 1000.0.
Sky light: This setup is same as Set 2 but with an intensity
of 0.5.

(4) Set 4: Themap is same as Set 1, a basketball court. The lighting
configuration is the same as Set 1, with an additional spotlight
on the middle of the path that the player is following. Spot
light: It has an intensity of 2000.0 cd(candelas), it has a white

Fig. 9. Lighting layout in the basketball court.

Fig. 10. Lighting layout for the lighting change sequence.

color (FFFFFFFF), an attenuation radius of 1140.0 and an outer
cone angle of 52.0, the rest of the values are set at 0.0.
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Table 11. Development BASKET-Multiview dataset composition

Sequence Name Animation name Background #Players Ball #Cameras Shot #Frames Config set
Running Player w/o ball

Running Player

Black 1 ✗ 40 Close 57 Set 2
Running Player w/o ball with light dynamics Black 1 ✗ 40 Close 57 Set 3
Running Player w/o ball Court 1 ✗ 83 Far 105 Set 1
Running Player w/o ball long path Court 1 ✗ 83 Far 600 Set 1
Running Player w/o ball with light dynamics Court 1 ✗ 83 Far 105 Set 4
Dribbling Player w/o ball

Dribbling Player
Black 1 ✗ 40 Close 48 Set 2

Dribbling Player with ball Black 1 ✓ 40 Close 48 Set 2
Dribbling Player w/o ball Court 1 ✗ 83 Far 160 Set 1
Day Cycle Court 0 ✗ 83 Far 76 Set 1

C.2 Camera setup
We use two different camera setups, one for all the scenes in the
stadium (Config Set 1 & 4) and another for scenes with a black
background (Config Set 2 & 3)

Fig. 11. 83-camera layout in the basketball court.

(1) 83-Camera Setup: The camera rig consists of 83 cameras
designed to capture all views of the stadium, as illustrated in
Figure 11. Using the stadium’s square shape, we place cameras
across multiple levels: the highest focuses on the play, while
the others capture the stadium’s structure.
All cameras have the same configuration, with a sensor width
of 23.76 mm and a sensor height of 13.366 mm. They recreate
a 16:9 Digital film and capture with a lens of focal length of
12 mm, with a min FStop of 2.8 and a Max FStop of 22.0.
The rig for Attack 4 has a slight change in the orientation. We
place an empty actor on the basket and activate the look at
function on the camera settings. The camera configurations
are similar with a focal length of 22.00 mm for simulating a
zoomed-in view.

(2) 40-Camera Setup: This setup is designed to capture multiple
angles of the player, and consists of 40 cameras, as illustrated
in Figure 13. The cameras are arranged in a sphere and the
player is located at the center. To improve the view quality,
we activate the look at function with an offset of 94.0 on
the Z axis. The camera configurations are similar to the 83
Camera setup, but with a sensor width of 24 mm and a sensor
height of 13.5 mm. We use this camera layout to capture the
binding pose players (as illustrated in Figure 12) and black
background sequences.

Fig. 12. Sample binding pose player.

Fig. 13. 40-camera layout for capturing the binding pose pictures and black
background sequences.

C.3 Render settings
(1) EasySynth [YDRIVE 2023]: This setup is configured to gen-

erate RGB (Color) images, depth maps, and normal maps.
The color images are output in PNG format, depth maps in
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EXR format with a 16-bit precision, and normal maps in PNG
format. The resolution is set to 1920x1080 and depth range
configured to 100 meters.

(2) Movie Render Queue: Anti-aliasing is turned on with spatial
sample count set to 4 and temporal sample count set to 1.
Anti-aliasing is overridden and the anti-aliasing method is
set to None to ensure no additional smoothing artifacts are
introduced. The render warm-up count is set to 32, and the
engine warm-up count is set to 4. Both "Use Camera Cut for
Warm-Up" and "Render Warm-Up Frames" are disabled.
In the console variables section, Temporal AA upsampling
(r.TemporalAA.Upsampling) is set to 0.0 to disable any up-
scaling associated with temporal anti-aliasing. Motion blur
quality (r.MotionBlurQuality) is also set to 0.0 to remove
motion blur effects from the render. The screen percentage
(r.ScreenPercentage) is set to 70.0, likely to balance per-
formance and output quality. For the output settings, the
image size is set to 1920𝑥1080.

Fig. 14. Layer rendering illustration.

C.4 Data generating workflow
We outline a brief sketch of the steps taken to design a sequence in
order.

(1) The character skeleton is exported fromUnreal Engine 5 (UE5)
to Maya. In Maya, a plugin is applied to generate control rigs,
which facilitate precise control over the animation process
and result in realistic, fluid movements.

(2) Using references from real sports plays, animations are care-
fully created to replicate the movements accurately. Once the
animations are completed, they are exported from Maya and
re-imported into UE5 as animated skeletons.

(3) The play sequences are created in UE5 by combining player
animations with elements like the ball. These sequences are
assembled and organized in the sequence editor.

(4) To generate detailed visual data, Easy Synth is configured.
It generates multiple types of images, such as Base Color
renders, Depth maps (up to 100 meters, exported in EXR
format for improved precision), and Normal maps capturing
surface geometry.

(5) Finally, semantic images are generated to enhance accuracy.
Each player, the ball, and the background are separated into
individual layers with transparency, as illustrated in Figure 14.
This layered approach results in more precise semantic im-
ages.
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