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Figure 1: Visual representation of recorded behavior modalities during casual conversation and a sample of the multimodal
transcript illustrating their fusion as introduced in this work. The goal is to predict engagement from this multimodal data.
Color-coded modality names correspond to lines of the same color in the multimodal transcript.

ABSTRACT
Over the past decade, wearable computing devices (“smart glasses”)
have undergone remarkable advancements in sensor technology,
design, and processing power, ushering in a new era of opportunity
for high-density human behavior data. Equipped with wearable
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cameras, these glasses enable the analysis of non-verbal behavior
during natural face-to-face interactions. Our focus lies in predict-
ing engagement in dyadic interactions by scrutinizing verbal and
non-verbal cues, aiming to detect signs of disinterest or confusion.
Leveraging such analyses may revolutionize our understanding
of human communication, foster more effective collaboration in
professional environments, provide better mental health support
through empathetic virtual interactions, and enhance accessibility
for those with communication barriers.

In this work, we collect a dataset featuring 34 participants en-
gaged in casual dyadic conversations, each providing self-reported
engagement ratings at the end of each conversation. We introduce
a novel fusion strategy using Large Language Models (LLMs) to
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integrate multiple behavior modalities into a “multimodal tran-
script” that can be processed by an LLM for behavioral reasoning
tasks. Remarkably, this method achieves performance comparable
to established fusion techniques even in its preliminary implemen-
tation, indicating strong potential for further research and optimiza-
tion. This fusion method is one of the first to approach “reasoning”
about real-world human behavior through a language model. Smart
glasses provide us the ability to unobtrusively gather high-density
multimodal data on human behavior, paving the way for new ap-
proaches to understanding and improving human communication
with the potential for important societal benefits. The features and
data collected during the studies will be made publicly available to
promote further research.

CCS CONCEPTS
•Human-centered computing→ Ubiquitous and mobile com-
puting; Collaborative and social computing; • Computing method-
ologies → Machine learning.
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1 INTRODUCTION
Wearable computing devices, also known as “smart glasses,” offer
new approaches to quantifying and understanding human behavior
through unobtrusive, high-density behavior tracking. Equipped
with sensors such as a video scene camera to monitor the wearer’s
view, an eye camera to estimate gaze, amicrophone to record speech,
and an inertial measurement unit to measure head orientation,
smart glasses can capture and respond to human behavior as it un-
folds in real-time and real-world contexts. There are many potential
applications, such as aiding navigation for the visually impaired or
enhancing cues for those with difficulty reading nonverbal signals.

Although there has been substantial prior research in laboratory
settings [8, 59, 71] and human-agent interaction [5, 11, 41], there are
still many rich, unexplored opportunities in natural social contexts,
for which smart glasses offer unique capabilities for study. Smart
glasses enable the capture of social interactions in everyday settings,
beyond the constraints of a lab, as people seek help, share, learn,
and connect face-to-face. These interactions are rich, nuanced, and
impacted moment-by-moment by multimodal cues, both overt and
subtle. The stakes can be high: human conflict – between couples,
among friends and families, in leadership and governing bodies, and
even among societies – occurs when communication breaks down.
Face-to-face communication is fundamental in maintaining group
cohesion, preserving mental health, fostering academic learning,
and supporting developmental growth.

Engagement has been recognized as a key determinant of com-
munication success. While lacking a precise definition, engagement
can be loosely defined as an individual’s attentional and emotional
investment during communication [51]. The ability to captivate in
conversation can determine life-changing interactions, whether ac-
ing a job interview or making a favorable impression on a first date.
The depth of our engagement and that of our partner shape the
outcomes of many social, educational, and professional activities.

For the most part, humans automatically and implicitly pick up
on the subtle, variable cues that convey engagement in a conver-
sation. Yet, building systems that accurately measure and gauge
conversational engagement remains a formidable challenge. Diffi-
culties arise with the complexity and subtlety of human behavior,
its context-dependence, and its variability across personal histo-
ries and cultural backgrounds. Engagement is conveyed through
verbal and nonverbal cues—tone, expressions, gestures—or even
silence and lack of gaze. Such engagement is hard to predict due
to the dynamic and context-dependent nature of social exchanges.
Thus, techniques that can perform effectively with minimal or no
in-domain training are of particular interest.

The dearth of relevant data presents another challenge. Although
there is an abundance of openly available datasets of dyadic in-
teractions from a third-person viewpoint, such as IEMOCAP [7],
SEMAINE [41], MEISD [20], MELD [54], SEMPI [63], or NoXi [8],
naturalistic dyadic interactions captured from an egocentric view-
point are scarce. In the past few years, as smart glasses have become
more widely accessible, research has begun to gather egocentric
recordings for other tasks, such as skilled human activity (Ego-
Exo4D, [25]) and user gaze anticipation [36], though less focused
on interpersonal behavior. These factors challenge the development
of socially-aware systems that respond authentically. Nonetheless,
there is good reason to work to meet these challenges. Imagine a
system that can gauge audience engagement with a teacher’s lec-
ture and provide on-the-fly feedback they can use to better engage
their students. Or consider assistive technologies that can offer al-
ternative presentations of challenging social signals for those with
communication disorders. The potential applications are extensive.

The contribution of the present work is twofold. We introduce a
novel dataset including recordings of natural, unscripted conver-
sations among unfamiliar dyads wearing the Pupil Invisible smart
glasses with an egocentric camera built in, as illustrated in the left-
hand segment of Figure 1. It contains conversations between 19
unique dyads, including video and audio recordings, gaze track-
ing, and self-reported information on demographic, political, and
personality factors from the participants.

The second contribution presents an analysis of this dataset,
focusing on predicting participant engagement levels through post-
session self-reports. We compare audio-visual classical fusion tech-
niques [75, 76] with our novel proposed fusion approach, which
uses a large language model (LLM) as a reasoning engine to fuse be-
havioral measures of multiple modalities into a multimodal textual
representation, a sample of which is displayed in the right-hand
segment of Figure 1. A fundamental methodological innovation
in our approach involves creating a comprehensive “persona” for
the LLM to simulate. Rather than merely incorporating additional
modalities as supplemental feature sets, we explicitly integrate
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personality, beliefs, and behavioral data to form a cohesive tex-
tual representation. This persona-driven strategy enables the LLM
to “act as” the participant by feeding on the textual representa-
tions of multimodal data, grounding its predictive reasoning in a
simulated human perspective. This methodologically transparent
approach not only enriches interpretability but also underscores the
foundational significance of personality and belief dimensions in
shaping engagement, rather than treating them merely as auxiliary
data. Our results indicate that this approach achieves performance
comparable to the established fusion techniques even in this early
implementation. This approach is a powerful, simple, and flexi-
ble framework for future work on modeling human behavior and
developing socially intelligent technologies.

2 PRIORWORK
2.1 Classical Fusion
Curhan and Pentland used speech features in the first 5 minutes of
a simulated negotiation to predict the negotiation outcomes [15].
These features predicted 30% of the variance, demonstrating the
value of speech in conversational dynamics. This suggests speech
features are also important for predicting engagement. Activity
level and mirroring had differing relationships with the outcome
depending on the assigned position of participants, showing that
perceived status can affect how conversational dynamics relate to
negotiation success. This interaction poses the question of how
status affects how features predict conversational engagement.

Pellet-Rostaing et al. used prosodic-acoustic, prosodic-temporal,
mimo-gestural, and linguistic features to predict the engagement
level of the target participant while holding the speaking turn [51].
The study showed the value of visual and audio features, achiev-
ing the best results with the prosodic-acoustic and mimo-gestural
modalities. Achieving similar results to studies using annotator-
defined segments demonstrated that annotating engagement at a
turn level can be effective. Others have also parallelly leveraged
visual and linguistic features to detect engagement [11, 28, 31, 32].

In our study, we attempted to use gaze as a means of gauging
dyadic interaction, along with other modalities, as it is evidenced
by some to have correlations with engagement [23, 58]. Goodwin
emphasizes the interconnected nature of gaze behavior among par-
ticipants in a conversation and points out that the way individuals
direct their gaze is not a solitary or random act but is deeply inter-
twined with the social dynamics of the interaction [23]. This gaze
behavior acts as a nuanced signal of a participant’s level of attention
and engagement, reflecting whether they are actively participating
or disengaging from the conversation. Furthermore, Goodwin also
explores the concept of gaze withdrawal as a strategic communica-
tive gesture that participants use to signal their intentions within
the conversation, such as making a bid for closure or expressing a
particular understanding of the conversation’s trajectory.

Moreover, Ranti et al. underscore the potential of utilizing eye-
blink measures as a reliable indicator of an individual’s subjective
engagement with various stimuli [58]. By closely analyzing the tim-
ing of blink inhibition in response to unfolding scene content, they
found that they could uncover the viewers’ unconscious, subjective
evaluations of the importance and engagement level of what they
observe. A notable observation is that a slower blinking rate is often

associated with a higher degree of engagement, suggesting that
individuals are more absorbed and attentive to the conversation or
content presented to them.

2.2 Large Language Models (LLMs)
LLMs’ accessibility has enabled many applications, especially in
human-subject fields like psychology. They range from creating
synthetic datasets of LLM-generated responses in human-less ex-
periments [17] to providing automated feedback to clinicians [64].

One application involves exploring the ability of LLMs to mimic
human behavior because of their potential to reduce the need for
human subject experiments and power realistic, interactive interac-
tions. Aher et al. explore the ability of LLMs to reproduce human
subjects’ behavior in classic experiments, such as the “Wisdom of
Crowds” [1]. Argyle et al. investigate the potential of LLMs as prox-
ies for human sub-populations in social science research [2]. Tavast
et al. evaluate the human-likeness of responses on the PANAS ques-
tionnaire generated by GPT-3 [66]. The feasibility of using LLMs
to replace human participants is further explored in [18, 27]. Park
et al. introduce generative agents powered by LLMs that simulate
believable human behavior in a virtual environment [50], also simi-
larly seen in [79]. There is also a body of work on understanding
the personality of LLMs, identifying ways to manipulate the per-
sonality embodied by an LLM, and injecting personality into LLMs
to predict human responses concerning values [33, 62].

Another application involves exploring the ability of LLMs to
understand human behavior. This line of work involves evaluating
their theory of mind abilities, which refers to the ability to under-
stand the mental states of others, such as purpose or intention [55].
Prior work has proposed various benchmarks and methods to eval-
uate an agent’s theory of mind [35, 60, 61].

These works are essential to assessing the ability of LLMs to sim-
ulate and understand human behavior. However, they are all limited
to static benchmarks or simplified virtual interactions. There is a
lack of work exploring the ability of LLMs to simulate and predict
the outcomes of human social interactions, such as predicting a per-
son’s responses to a survey that measures engagement. We argue
that this dimension should be considered when developing LLMs
to simulate and understand behavior.

Our work proposes a dataset and method for unifying the work
on simulating and understanding engagement in social interactions
with LLMs grounded in in-the-wild social interactions. Given the
potential of LLMs to advance socially intelligent technologies, incor-
porating in-the-wild social interactions into research is essential.

3 DATA SET
We recorded dyadic conversations conducted in a controlled room
setting, recorded from the viewpoint of each participant through a
pair of smart glasses.

3.1 Population
Our study contained a total of 34 unique participants and 19 unique
dyads. Within the participants, two participants appeared in mul-
tiple dyads, but all dyads were unique. Demographically, 14 par-
ticipants identified as male, 19 identified as female, and one iden-
tified as non-binary; 47% identified as Asian, and 38% identified
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as White/Caucasian. All participants were 18–35 years of age but
were primarily in their early twenties. Participants were recruited
from a local university via media and word-of-mouth. Participants
were required to be fluent in English and have normal or corrected
vision with contact lenses (to avoid conflict with the smart glasses).

3.2 Procedure
Each session lasted about 15 minutes, including introductions and
closing. Each participant wore smart glasses (see subsection 3.3 for
specifications) to capture vision, head motion, and gaze. While the
smart glasses are advertised to work well across recording sessions
without calibration, they benefit from calibration when changing
users [69], so we ran a calibration procedure for each participant
before the beginning of the session. Participants were encouraged to
begin with a shared topic, COVID-19 experiences, but conversations
were unconstrained. Following the session, participants completed
questionnaires on their beliefs, personality, and engagement during
this interaction (see subsection 3.4 for the questionnaires).

3.3 Recording Instruments
Each session was recorded using Pupil Invisible smart glasses worn
by all participants and a centrally placed external microphone to
record the dialogue.

3.3.1 Pupil Smart Glasses. Each participant was equipped with
Pupil Invisible smart glasses manufactured by Pupil Labs [69], spe-
cially designed to closely resemble regular eyeglasses for user com-
fort and a discreet appearance. The key features of these smart
glasses that we leverage in our work include the following:

• Scene camera: A detachable camera mounted on the left
arm of the glasses frame captures the wearer’s field of view
with an 82◦×82◦ viewing angle, at a resolution of 1088×1080
pixels and a frame rate of 30 Hz.

• Eye gaze tracking: Two IR cameras, positioned near the
hinge of the glasses frame, record eye movements at a reso-
lution of 192 × 192 pixels and a frame rate of 200 Hz. Post-
processing software provided by the manufacturer converts
this data into 2D gaze points at 120 Hz in scene camera coor-
dinates. This system is advertised to achieve an uncalibrated
accuracy of approximately 4.6◦, but calibration per user can
enhance accuracy [69].

3.3.2 Stereo Microphone. In addition to the recordings captured by
the smart glasses’ scene camera, we used an external high-quality
stereo microphone (Zoom H4N Pro) to record the conversation at
a standard 44.1 kHz sampling rate. This decision was made after
determining that the quality of the audio captured by the smart
glasses scene camera was insufficient for acoustic analysis. To syn-
chronize the media streams, participants were instructed to perform
a hand clap at the start of each session, emulating the clapperboard
technique commonly used in film production.

3.4 Self-Report Questionnaires
The participants were asked to complete a questionnaire that mea-
sured self-reported engagement after each interaction. The engage-
ment questionnaire consisted of 53 items based primarily on pre-
vious studies on participant perception of interaction quality [14]:

detailed statistics for the engagement questionnaire items are pro-
vided in Appendix A. The participants were also asked to complete
the Big Five Inventory [39] for personality information and a hand-
crafted questionnaire on personal beliefs. This questionnaire was
based on a set of socio-cultural issues studied to gauge polarization
along the political spectrum [52].

4 FEATURE EXTRACTION
Initially, we adjusted the video to eliminate the radial distortion
introduced by the scene camera’s lens. This was achieved by apply-
ing the distortion coefficients provided by the manufacturer [56].
Given the differing frame rates between the eye-tracking camera
and the egocentric scene-view camera, we also synchronized the
data to a unified 30 fps timestamp.

4.1 Facial Expression
Facial action units (FAU) from the processed video were extracted
with OpenFace 2.0 [4]. Since OpenFace achieves optimal perfor-
mance when the face in the image exceeds a width of 100px, we
needed to upscale our data to meet this requirement. For each frame,
we used MediaPipe [38] (version: 0.9.1) to identify the location of
the face in the image, then cropped and rescaled the image to en-
sure that the face was centered and was at least 240px wide and
the final dimensions were 1080 × 1080px. If no face was detected
in a particular frame, the location of the face in the previous frame
was used. Interpolation was not used to fill missing frames, as our
dataset rarely encountered either long sequences of missing frames
or rapid movements that would necessitate interpolation.

4.2 Gaze Tracking
For every frame, we determined whether a participant’s gaze is
directed towards their partner’s face, recognizing the significance of
gaze in forecasting engagement [10, 45]. This was accomplished by
creating a convex hull using the 478 2-dimensional face landmarks
extracted fromMediaPipe to outline the face. A gaze point captured
by Pupil smart glasses was deemed to be on the face if it fell within
the convex hull (including its boundary) or within 30% of the width
of the face’s convex hull. This adjustment aimed to account for the
potential inaccuracies in the device’s gaze prediction. The average
error reported for the device assumes fine-tuned user calibration
and ideal conditions (e.g., glasses worn correctly), neither of which
were applicable to our recording setup [69].

4.3 Dialogue Transcription
OpenAI’s Whisper [57] (version: large-v20230918) was used to
transcribe the recording from each session. Whisper outputs fine-
grained segments with start and stop times around a few seconds
long. A speaker was assigned to each segment. If the segment
contained speech from both speakers, the speaker who spoke the
most was assigned. Diarization tools like PyAnnote [6, 53] and
source separation tools performed poorly with audio from our
dataset, so manual labeling was chosen.

5 LLM FUSION
In this work, we explore the use of large language models (LLMs) to
“reason” about a social interaction using multimodal information.
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Our method involves prompting an LLM to simulate a study partic-
ipant and answer the end-of-session engagement questionnaire as
though it were the participant themselves.

5.1 Socratic Models
Interpreting machine learning models is a well-known challenge.
Typically, models encode behavioral features into a high-dimensional,
abstract vector space, which is then mapped onto the target space.
To understand a model’s inner workings, we usually project these
intermediate data into a space that is more understandable to hu-
mans, often through visualization techniques. However, consider
the possibility of the inverse: rather than allowing the model to ob-
scure information – of multiple modalities – into abstract dimensions,
we could direct its operation into a universally interpretable space:
the domain of language itself. When studying a topic like human
behavior from a computational perspective, AI systems like LLMs
that utilize language to “reason” about said topics are worth further
study because the language allows for the nuance and ambiguity
inherent in these fields. Furthermore, controlling the input text also
allows for privacy-sensitive adjustments.

Socratic Models, named for the ancient Greek philosopher’s
teaching method through cross-examination, use language to inte-
grate information from a diverse set of modalities [77]. Within this
framework, pre-trained models fine-tuned toward specific modali-
ties or behaviors translate their interpretations of inputs into natu-
ral language. This output becomes a language prompt that guides
the LLM’s reasoning. This approach allows a set of pre-trained
models to “discuss” various multimodal information, akin to asking
and answering questions in a Socratic dialogue. By framing the
task as a language-driven exchange, the Socratic Model framework
allows pre-trained models, each specialized in a distinct domain, to
perform downstream multimodal tasks without further training or
fine-tuning.

Thus far, there have been only a few early attempts at applying
this framework for prediction. In the domain of image captioning,
one study revealed that an ensemble of models within the Socratic
Models framework generated captions that substantially improve
the capabilities of the zero-shot state-of-the-art ZeroCap [68]. How-
ever, when compared to fine-tuned models such as ClipCap [43],
performance was not as impressive; yet, this performance gap nar-
rowed considerably when the ensemble was provided a small set
of example captions from the training set, suggesting its potential
in few-shot learning scenarios [77].

This concept of “many-to-one” alignment has also been explored
from other angles. ImageBind, for instance, develops a multimodal
representation through a set of image-paired modalities [22] while
LanguageBind extends video-language pre-training to a broader
range of language-paired modalities [80]. However, both of these
models still face the challenge of abstracting information. Image-
Bind and LanguageBind create “bindings” centered around a specific
modality but do not explicitly work within that modality itself. In-
stead, they map a primary modality into an abstract space and then
align information from other modalities to this space, resulting in a
multimodal representation that resembles the embedding of the pri-
mary modality. While this approach has proven effective at abstract
tasks such as video-text alignment and image-text retrieval, it is less

effective in providing human users with a coherent understanding
of its reasoning. Our research aims to follow a similar path but
with a crucial distinction: our embedding space is designed to be
language itself, which may offer a more direct and interpretable
framework for multimodal learning.

Previous studies have established the value of the language
modality in understanding complex social phenomena, such as
rapport [9], affinity [29, 30], and, as in the present work, engage-
ment [3]. Various computational methods have been employed
to extract this information from language, from bag-of-words ap-
proaches to neural network models [65, 70]. Recent advancements,
however, have seen a considerable rise in LLMs adapted to aug-
ment tasks requiring social intelligence: notable applications have
included refining persuasive communication for public health cam-
paigns [13, 34] and identifying adverse social determinants of health
within free-form clinical notes [26]. One of the objectives of the
present work is to explore the utility of LLMs for behavior anal-
ysis of social interactions: in our case, estimating the conversa-
tional engagement of speakers in a dyadic interaction. The pro-
posed approach centers around employing OpenAI’s GPT mod-
els to impersonate each participant in the conversation by re-
sponding to the self-reported questionnaire in a zero-shot man-
ner. This is achieved through reconstructing the conversation using
multimodal-informed prompting that combines behavioral informa-
tion inspired by the Socratic Models framework proposed by [77].

5.2 Algorithms for LLM Fusion
The novel LLM fusion approach that we introduce enables an LLM
to emulate a participant by creating a multimodal prompt: a dia-
logue transcript of the recording session augmented with textual
representations of non-verbal behavior. These textual represen-
tations are formed from the data collected by the smart glasses,
multiple pre-trained models, and personality questionnaires, but
this method can be extended to contain any number of additional
behavioral cues. We aim to evaluate whether this multimodal tran-
script effectively captures the dynamics of social interaction and
can enable an LLM to predict self-reported engagement levels effec-
tively. This work focuses on OpenAI’s models GPT-4 and GPT-3.5,
but the technique could be applied to any LLM; we fixed at versions
GPT-4-0613 and GPT-3.5-turbo-0613 for consistency.

5.2.1 Modalities. As described in section 4, this analysis included
information from speech, gaze, and facial expression modalities,
given their straightforward translation into text form and their
established significance in signaling engagement.

The speechmodality serves as the foundation of the multimodal
transcript: its representation consists of the dialogue transcript
augmented with speaker-labeled segments as described in subsec-
tion 4.3. The gaze modality is represented by a string indicating
the proportion of time a speaker’s gaze remains on their partner’s
face, rounded to the nearest 10% for brevity.

The facial expression modality is represented by a text de-
scription of the dominant emotional expression for each speaker-
labeled segment of the recording following the methods of existing
research [67] and applications (iMotion’s Affectiva; [40]), these
emotional expressions were defined by the facial action units mea-
sured by OpenFace 2.0: happy, sad, surprise, fear, anger, disgust,
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contempt, or neutral [19]. The neutral label was assigned if none of
these labels were applicable. The emotional labels were translated
into text as described by Zhao and Patras, which was generated by
prompting ChatGPT, achieving state-of-the-art performance on the
Dynamic Facial Expression Recognition problem [78].

Participant responses to the personality and beliefs question-
naires were also included as part of the system message [42], provid-
ing additional speaker-specific context, as personal characteristics
are known to affect a person’s social behavior [11].

5.2.2 Multimodal Transcript Generation. The messages provided to
GPT use the discrete segments in Whisper’s transcription as atomic
units to which information from other modalities is added. Con-
secutive segments with the same speaker are merged to combine
speech and other modalities into a larger temporal window.

GPT imitates each participant using the following procedure.
Each merged segment of speech forms the basis of a message pro-
vided to OpenAI’s ChatCompletion API [48]. For each message,
the role is assigned to the assistant if the segment is spoken by the
simulated participant or to the user if spoken by the partner. The
final user message is always a questionnaire item introduced by
the “experimenter” (see Appendix A for questionnaire details). The
final assistant message is generated by GPT as a response to the in-
troduced questionnaire item. Prompted transcripts were truncated
to five minutes, as previous literature has established that the first
five minutes of a conversation is enough information for humans
to predict its outcome successfully [15]. This limitation brought the
added benefit of reducing the cost of the experiment.

6 EXPERIMENTS
We conducted two experimental series to predict engagement based
on the post-session questionnaires, outlined in subsection 3.4. The
first series assessed multimodal fusion using classical models (sub-
section 6.1), while the second series used LLMs (subsection 6.2).

These models were evaluated against two baselines: a static mean
prediction and a Bayesian regression model. The static mean pre-
diction serves as a simple benchmark by predicting the average
engagement score across all participants, while the Bayesian regres-
sionmodel is a probabilistic approach that updates prior beliefs with
data to provide distributions of model estimates and predictions.
The performance of these baselines is shown in Table 1.

6.1 Classical Fusion
Five standard machine learning techniques were employed to es-
tablish a comparative baseline: 𝑘-nearest neighbors (KNN), support
vector machines (SVM), random forests (RF), bidirectional long
short-term memory networks (Bi-LSTM), and multi-layer percep-
trons (MLP). Each model was trained using per-turn behavioral
features alongside the corresponding self-report ratings for each
session, described in subsection 3.4. The KNN, SVM, and RF mod-
els implemented either the multivariate sequence kernel or the
global alignment kernel (GAK; [16]) to facilitate the comparison of
sequences of varying lengths, as these models are not inherently
designed to process sequential or variable-length input. Conversely,
the MLP and Bi-LSTM models followed canonical architectures
specific to their respective methodologies.

The representations of the behavioral features provided to these
models were designed to reflect the information presented to the
LLM in subsection 6.2. Facial expression was denoted by a label
indicating the predominant perceived emotion, while gaze direc-
tion was quantified as the proportion of time an individual directed
their attention towards their partner’s face. These representations
parallel the descriptions provided to the LLM via the multimodal
transcript. Dialogue text was encoded using sentence embeddings
generated through the SimCSE framework [21]. For additional in-
formation on the extraction of these features, refer to section 4.

Models were evaluated with leave-one-dyad-out cross-validation.
To detail: one session was allocated as the test set, while the remain-
ing 16 sessions served as the training set. Within the training set,
hyperparameters were optimized through 16 cross-validation folds.
The final performance metrics were derived from the held-out dyad
#17. This process was systematically repeated for each of the 17
dyads, guaranteeing that every dyad was used as the test set exactly
once. Despite the small dataset, this ensured robust evaluation and
mitigated overfitting.

As in the evaluation of the large language models (LLMs) in
subsection 6.2, each model was trained using all three input modal-
ities, as well as through an ablation study involving various subsets
of these modalities, detailed in Table 1. The results suggest that
the Support Vector Machine (SVM) achieved the best performance
across the majority of subsets, with the Random Forest (RF) model
closely following. While these two models outperformed the LLM
variants, they were the only models to do so: the remaining three
models generally underperformed compared to the LLM variants.
Nearly all models outperformed the static mean and Bayesian re-
gression baselines, except for the MLP model: this underperfor-
mance may be attributed to the MLP’s tendency to overfit due to
the limited size of the dataset.

6.2 LLM Fusion
GPT-4 was provided with the multimodal transcript paired with
each of the survey items of the engagement questionnaire. Note that
a few items on the questionnaire explicitly reference laughing or eye
contact: despite not providing the model with explicit information
on these behaviors, we included these items to explore the capability
of the model to infer these behaviors with limited information.

We performed a set of ablation experiments to explore the sig-
nificance of various feature sets, notated as follows:

• 4: This model was given the raw dialogue transcription alone.
• S: The transcription is preceded by participant survey re-
sponses to the personality and beliefs questionnaires as
(S)ystem instructions.

• G: The transcription is enhanced with descriptions of each
participant’s (G)aze behavior during each speaking turn.

• F: The transcription is enhanced with descriptions of each
participant’s (F)acial expression during each speaking turn.

In three instances, the length of the multimodal transcript with
added descriptions exceeded the input constraints of GPT-4 (two for
4SGF and one for 4GF); in these cases, the transcript was truncated.
A 𝑡-test comparing the residuals of the truncated sessions with
those of the non-truncated sessions yielded 𝑝-values of 0.186 and
0.648, suggesting no significant difference between the two groups.
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Table 1: Prediction performance of classical vs. LLM fusion models when provided data from a limited set of modalities: RMSE
mean and standard deviation across validation folds (lower is better). LLM-4/4S refers to ablations with GPT-4. A static mean
prediction baseline performs at 1.913 (1.075).

First-Person Ratings (subsection 3.4) — lower RMSE scores are better ↓

Behavior Features BayesReg KNN SVM RF Bi-LSTM MLP LLM-4 LLM-4S

Gaze-Only 1.637 (0.427) 1.556 (0.313) 1.281 (0.310) 1.355 (0.298) 1.588 (0.340) 1.881 (0.360) — —
Face-Only 1.610 (0.439) 1.530 (0.322) 1.328 (0.333) 1.390 (0.288) 1.563 (0.353) 2.090 (0.454) — —
Text-Only 1.591 (0.391) 1.512 (0.287) 1.280 (0.309) 1.301 (0.287) 1.478 (0.358) 2.069 (0.432) 1.669 (0.396) 1.376 (0.381)
Face + Gaze 1.578 (0.401) 1.500 (0.294) 1.296 (0.339) 1.314 (0.339) 1.517 (0.331) 1.833 (0.389) — —
Text + Gaze 1.638 (0.390) 1.557 (0.286) 1.291 (0.305) 1.409 (0.289) 1.466 (0.307) 1.988 (0.405) 1.418 (0.394) 1.338 (0.378)
Text + Face 1.600 (0.394) 1.521 (0.289) 1.287 (0.337) 1.305 (0.339) 1.572 (0.352) 1.945 (0.475) 1.477 (0.425) 1.368 (0.417)
Text + Face + Gaze 1.638 (0.409) 1.557 (0.300) 1.327 (0.342) 1.303 (1.290) 1.592 (0.355) 1.773 (0.356) 1.442 (0.423) 1.364 (0.387)

Future studies may benefit from exploring the impact of different
truncation lengths and the ability of the technique to perform with
shorter observation times.

The temperature parameter was set at 0 to ensure sampling from
the most likely responses to the questionnaire. In cases where
GPT-4 did not provide a numeric response, we selected the highest-
likelihood numeric response from the top 20 generations for the
first output token (see Appendix C).

6.2.1 LLM Fusion Results. We evaluated this technique through
two labeling tasks: predicting participants’ exact responses and
predicting the valence/arousal of their responses. An “exact” re-
sponse refers to the participant’s original numeric rating (1–7). The
valence/arousal model categorizes responses based on emotional
dimensions: valence is defined as the positive or negative degree
of emotion (e.g., pleasure), and arousal is defined as the intensity
of emotion (e.g., high) [44]. We define valence in terms of the “dis-
agree” range, a score of 1 (“strongly disagree”) through 3 (“slightly
disagree”), a neutral score of 4 (“neither agree nor disagree”), or the
“agree” range, a score of 5 (“slightly agree”) through 7 (“strongly
agree”). Arousal is calculated as the distance of the participants’
rating from the neutral score of 4, i.e., |response − 4|.

Exact Response As seen in Table 2, GPT-4’s zero-shot perfor-
mance of this technique is comparable to the baseline and classical
early fusion models, evaluated via RMSE. Krippendorff’s alpha
metric, used to assess the reliability of agreement between multi-
ple raters, indicated a moderate level of agreement between the
model’s predictions and the participants’ responses, ranging within
[0.470, 0.543] across questions [37, 74]. This suggests that while
the zero-shot technique may not outperform the more advanced
models, it still holds potential for applications where computational
resources are limited. Furthermore, the findings highlight the im-
portance of evaluating various methodologies in diverse contexts,
as different tasks may yield varying levels of effectiveness. Results
demonstrated significant improvement over the baseline models,
with GPT-4 matching the performance of classical models, suggest-
ing that the multimodal transcript approach may serve as a viable
alternative to conventional fusion methods. We also experimented
with GPT-3.5; however, given its significantly poorer performance
against GPT-4, we chose to exclude its results from further analysis.

Valence When restricting the labeling task to valence only,
GPT-4 predictions agree statistically significantly with the study’s
participants. As presented in Table 2, all Krippendorff’s alpha scores
fall within an error interval of [0.61, 0.80] [37].

Upon closer inspection of the valence predictions of the LLM-4S
ablation model (which achieved the strongest performance in la-
beling exact responses; see Appendix B), we observe that GPT-4
reliably labels participant’s “agree” responses, with a balanced accu-
racy of 91.8%. However, GPT-4 is less reliable in predicting partici-
pants’ “disagree” responses, achieving a balanced accuracy of 66.1%.
Notably, GPT-4 performs significantly poorly in labeling participant
“neutral” responses, with a balanced accuracy of 12.7%. Given that
the label range is smaller – one possible value (4), as opposed to
three values in “agree” (5, 6, 7) or “disagree” (1, 2, 3) ranges – poor
performance may be expected. We conjecture that GPT-4’s pro-
cess of reinforcement learning from human feedback (RLHF) [49]
to reduce toxicity may result in overly “positive” responses from
GPT-4, inadvertently introducing bias against “negative” responses.
Further study is needed to determine the extent and sources of this
potential bias.

Arousal Across all ablations, GPT-4 performs poorly in labeling
arousal, only marginally better than chance, given Krippendorff’s
alpha scores in the range of [0.047, 0.071] (see Table 2). While
GPT-4 appears able to predict the general attitude of the partici-
pant towards a questionnaire statement (valence), it cannot reliably
determine the strength of the participant’s feelings (arousal). We
attribute this performance gap primarily to two intertwined factors:
the inherent limitations of our textual representation of multimodal
data and the subtle, continuous nature of arousal. Valence often
aligns closely with explicit linguistic cues – words and phrases
explicitly indicate positivity or negativity – making valence natu-
rally suited for our language-based LLM framework. In contrast,
arousal reflects emotional intensity and is conveyed more implic-
itly through continuous and subtle behavioral signals, including
prosody and nuanced facial or physiological responses. Our method
converts continuous behaviors into discrete, categorical textual de-
scriptions (e.g., emotion labels), thereby losing subtle variations
crucial for predicting arousal.

6.2.2 Contribution per modality. To study the impact of each be-
havior modality (described in 5.2.1), we conducted a two-tailed
paired 𝑡-test of each model’s residuals against those of the baseline.
The results suggest that each modality group added to the LLM-4
baseline provides a statistically significant positive contribution
(𝑝 < 0.05) to model performance.

In contrast, the additional modalities worsen the performance
of the 4S baseline on labeling exact scores but improve the perfor-
mance on labeling valence. In a paired 𝑡-test of residuals comparing
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exact predictions, the addition of facial expression descriptions in
the 4SF and 4SGF ablations worsened performance significantly
(𝑝 = 0.003 and 𝑝 = 0.021, respectively); however, gaze did not have
a notable impact (𝑝 = 0.164).

6.2.3 Performance across individual survey questions. The follow-
ing statements achieved the best performance across all ablations
(mean accuracy and standard deviation):

(1) I felt like my conversation partner really listened to me (mean
64.0%, std. dev. 7.1%);

(2) I became irritated with my partner at some points in the con-
versation (mean 60.7%, std. dev. 5.9%); and

(3) My conversation partner seemed like a warm person (mean
53.7%, std. dev. 6.2%).

The following statements achieved the worst performance across
all ablations (mean accuracy and standard deviation):

(1) My conversation partner was quite sensitive (mean 4.0%, std.
dev. 1.6%);

(2) I would trust my conversation partner with sensitive informa-
tion (mean 8.8%, std. dev. 5.2%); and

(3) My partner and I laughed during our interaction (mean 10.3%,
std. dev. 4.1%).

Prediction performance on the questions about laughter and eye
contact is relatively poor, addressing our earlier hypothesis regard-
ing the ability of the model to infer this behavior. In general, while
the transcript did not explicitly contain descriptions of laughter,
GPT-4 tends to respond with the assumption that laughter did occur.
Although numerous caveats apply to these results, they generally
reflect the opinions of our study’s participants.

7 CONCLUSION
Engagement is fundamental to all human interactions, representing
the intrinsic interest or emotional investment of the individuals in-
volved. Despite our intuitive grasp of engagement, computationally
measuring it remains challenging. Our work studies this core ele-
ment of communication through smart glasses worn by participants
in natural conversation. We collected a dataset of casual conversa-
tions between pairs of strangers, each outfitted with a pair of smart
glasses, to capture behavioral cues such as facial expressions, eye
contact, and verbal exchanges. We propose a novel fusion method
using LLMs, generating a “multimodal transcript” of the conver-
sation to prompt an LLM to predict the participants’ self-reported
engagement levels. While most research has focused on using raw
behavioral data for prediction tasks, to the best of our knowledge,
our work is the first to integrate LLMs with behavioral features
by transforming these features into textual summaries. This ap-
proach not only achieves comparable results but also improves
the interpretability and generalizability of the prediction model.
Furthermore, this approach facilitates holistic modeling of affective
states while enhancing privacy through its use of language-based
representations that humans have control over.

However, it is crucial to acknowledge the limitations and biases
associated with the models used. LLMs inadvertently learn and
incorporate positional, racial, gender, and other social biases [12,
47, 72, 73]. They are also sensitive to the wording of the provided
prompts. Furthermore, given that our multimodal transcript relies

Table 2: Krippendorff’s alpha scores, mean and standard de-
viation, for each ablation (higher is better).

Ablation Exact Valence Arousal

4 0.470 (0.209) 0.634 (0.246) 0.055 (0.169)
4S 0.518 (0.217) 0.687 (0.252) 0.071 (0.174)
4F 0.513 (0.203) 0.686 (0.250) 0.053 (0.164)
4GF 0.520 (0.212) 0.695 (0.259) 0.066 (0.180)
4S 0.543 (0.206) 0.680 (0.244) 0.054 (0.185)
4SG 0.535 (0.210) 0.702 (0.247) 0.039 (0.172)
4SF 0.532 (0.202) 0.698 (0.247) 0.055 (0.170)
4SGF 0.531 (0.193) 0.703 (0.248) 0.047 (0.180)

on pre-trained models such as OpenFace, MediaPipe, and Whisper,
possible issues of bias and robustness in those models [24, 46]
should also be taken into account. Additional noise may be created
from the usage of multiple pre-trained models. The ability of the
multimodal transcript to accurately represent the conversation is
inherently limited by the accuracy of the pre-trained models used.

Given the limited size and variance in demographics of our par-
ticipants and engagement experiences within our dataset, it also
raises the question of how well LLMs can simulate engagement
questionnaire responses for different populations and conversa-
tional experiences. It’s also possible that a person’s responses to
the Big Five Inventory and belief questionnaire may not accurately
reflect their true personality and beliefs.

In addition, while our fusion method aggregates modalities into
a textual form, it does not yet explicitly model cross-modal incon-
gruity – e.g., when facial expressions contradict verbal tone. Future
work could explore whether LLMs can be prompted or fine-tuned
to recognize such misalignments as predictive signals.

LLMs such as GPT-4 have been fine-tuned with RLHF to produce
responses that are safer and better aligned with the user’s intent.
While this process reduces response toxicity and improves the abil-
ity to follow instructions, we note that this calibration may interfere
with the ability of the LLM to emulate human-like responses in a
research setting.
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Table 3: 4S Valence Prediction Confusion Matrix: Responses
are categorized as (Dis)agree (1–3), (Neu)tral (4), or (Agr)ee
(5–7). Balanced accuracy is also reported.

Predicted

Actual Agr. Neu. Dis. All Bal. Acc.

Agr. 1072 44 52 1168 91.8
Neu. 91 18 33 142 12.7
Dis. 105 62 325 492 66.1

All 1268 124 410 1802 56.9

B LLM FUSION: VALENCE PREDICTION
One of the experiments described in subsection 6.2 involves an
evaluation of the LLM’s ability to predict response valence rather
than exact answers. Results for model 4S, using raw transcripts and
the participant personal characteristics, are presented in Table 3.

C LLM FUSION: NON-NUMERIC RESPONSES
There were 80 cases across all ablation experiments where the first
generated token returned by the LLM was non-numeric (1.1% of all
responses). For 57 of these questions, GPT-4 declined to respond be-
cause it was prompted to answer questions that referenced modal-
ities not explicitly provided in the ablation feature sets. Sample
responses are included below for illustration.
Q8: My partner tended to make eye contact during the conversation.

• “As an AI, I don’t have the ability to make or
observe eye contact.”

• “As this conversation was text-based and not in
person, I cannot accurately rate my partner’s
tendency to make eye contact. Therefore, I would
rate it as N/A.”

• “As this conversation was text-based and didn’t
involve any form of video or face-to-face inter-
action, I cannot rate my partner’s eye contact.
Therefore, I would rate it as N/A.”

Q47: My conversation partner made a lot of eye contact.

• “As an AI, I don’t have the ability to make or
perceive eye contact. Therefore, I can’t provide
a rating for this statement.”

• “As an AI, I don’t have the ability to make or
perceive eye contact. Therefore, I would rate this
statement as 1, strongly disagree.”

• “Given the nature of the conversation, it’s hard
to determine the level of eye contact as it was
a text-based interaction. However, if we consider
the level of engagement and attentiveness as a
form of "eye contact" in this context, I” [text cut
off ]

For example, consider the following response to Q8: “As this
conversation was text-based, I cannot provide a rating
for eye contact”. A sample of the top 20 tokens with highest
probability are displayed in Table 4.

Table 4: Sample top 20 tokens from a questionnaire response
by the LLM where the first response is non-numeric.

Token Prob. Token Prob.

1 As 0.316 11 Sorry 0.002
2 [ 0.283 12 Because 0.002
3 Since 0.214 13 The 0.001
4 I 0.104 14 5 0.001
5 Given 0.042 15 4 0.001
6 Considering 0.007 16 It 0.001
7 This 0.007 17 Without 0.001
8 Unfortunately 0.004 18 N 0.001
9 Ap 0.003 19 3 0.001
10 Due 0.003 20 My 0.001

The other 23 responses exceeded 50 generated tokens and were
cut off. This occurred often in the 4F ablation experiments when
the GPT-4would prefix its answers with the facial expression string,
such as the following example.
“[You] [You are speaking mostly with relaxed facial
muscles, a straight mouth, a smooth forehead, and un-
remarkable eyebrows. Your partner is listening to you
mostly with relaxed facial muscles, a straight mouth,
a smooth forehead, and unremark” [text cut off ].

It’s interesting to note that not all GPT models are able to im-
personate a participant. For example, nearly all experiments with
gpt-4-1106-preview would result in an example similar to the
following:
“As an AI language model, I don’t have personal expe-
riences or opinions. However, if I were to simulate a
response for the scenario described where a participant
has engaged in an interesting conversation that touched
on computer science, philosophy of neuroscience, dif-
ferences between cities, and personal experiences, they
might rate the conversation on the higher end of the
scale indicating that they found it to be engaging and
intellectually stimulating.”
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D MULTIMODAL TRANSCRIPT TEMPLATE
This appendix contains a detailed version of the sample multimodal transcript depicted in Figure 1. magenta text corresponds to information
from personal inventories. Red text corresponds to information from OpenFace. Violet text corresponds to information from MediaPipe and
Pupil Invisible eye tracking. Blue text corresponds to information from the Whisper transcription. Green text corresponds to information
from the post-session engagement survey. Black text is always present. The last row with “assistant" is what the LLM generates.

Role Content

System You are a student at ... You are participating in a psychology study that aims to understand
how people communicate, and you are participating in a conversation with ... as part of this
study. There will be a questionnaire at the end of this conversation. Others will read what you
answer; your goal is to convince them it was answered from the perspective of the persona that
participated in the following conversation.
Your personality traits are defined by the scores to the following statements. The scores range
from 1 to 5, where 1 means strongly disagree and 5 means strongly agree.

[Alice’s personality defined by responses to the big-5 personality survey.]
Your political beliefs are defined by the following statements:

[Alice’s beliefs defined by responses to the beliefs survey.]

Assistant [You]
[You are looking at your partner’s face about 80% of the time.

You are speaking with a smiling mouth, raised cheeks...
Your partner is looking at your face about 80% of the time.
Your partner is listening with relaxed facial expression...]

Hi, I’m Alice! What year are you?

User [Partner]
[You are looking at your partner’s face about 60% of the time.

You are listening with a smiling mouth, raised cheeks...
Your partner is looking at your face about 80% of the time.
Your partner is speaking with a smiling mouth, raised cheeks...]

Hi Alice, I’m Bob. I’m a sophomore.

[five minutes of conversation]

User [Experimenter] On a scale of 1 to 7, where 1 means strongly disagree and 7 means strongly agree,
how would you rate the following statement given the conversation you just had?
I found this conversation to be interesting.
Your answers will be kept private and your conversation partner will not see the responses, so
please be as honest as possible. Provide your answer in the form of an integer between 1 and 7.

Assistant 7
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E BELIEF QUESTIONNAIRE
Each participant completed the following questionnaire at the end of the recording session.

Please select the answer which most represents your beliefs.

Environmental Protection

• I am very much against environmental protection.
• I am against environmental protection.
• I am mildly against environmental protection.
• I am mildly in favor of environmental protection.
• I am in favor of environmental protection.
• I am very much in favor of environmental protection.

Careers for Women

• I am very much against women pursuing careers.
• I am against women pursuing careers.
• I am mildly against women pursuing careers.
• I am mildly in favor of women pursuing careers.
• I am in favor of women pursuing careers.
• I am very much in favor of women pursuing careers.

Belief in God

• I strongly believe that there is a God.
• I believe there is a God.
• I feel that perhaps there is a God.
• I feel that perhaps there is no God.
• I believe there is no God.
• I strongly believe there is no God.

Ranking of Schools

• I am very much against the ranking of schools.
• I am against the ranking of schools.
• I am mildly against the ranking of schools.
• I am mildly in favor of the ranking of schools.
• I am in favor of the ranking of schools.
• I am very much in favor of the ranking of schools.

Abortion

• I am very much against abortion.
• I am against abortion.
• I am mildly against abortion.
• I am mildly in favor of abortion.
• I am in favor of abortion.
• I am very much in favor of abortion.

Death Penalty

• I am very much against the death penalty.
• I am against the death penalty.
• I am mildly against the death penalty.
• I am mildly in favor of the death penalty.
• I am in favor of the death penalty.
• I am very much in favor of the death penalty.

Gay Marriage

• I am very much against gay marriage.
• I am against gay marriage.
• I am mildly against gay marriage.
• I am mildly in favor of gay marriage.
• I am in favor of gay marriage.
• I am very much in favor of gay marriage.

Money

• I strongly believe that money is one of the most important
things in life.

• I believe that money is one of the most important things
in life.

• I feel perhaps that money is one of the most important
things in life.

• I feel perhaps that money is not one of the most important
things in life.

• I believe that money is not one of the most important
things in life.

• I strongly believe that money is not one of the most im-
portant things in life.

Divorce

• I am very much against divorce.
• I am against divorce.
• I am mildly against divorce.
• I am mildly in favor of divorce.
• I am in favor of divorce.
• I am very much in favor of divorce.

Smoking

• I am very much against smoking in public places like bars.
• I am against smoking in public places like bars.
• I am mildly against smoking in public places like bars.
• I am mildly in favor of smoking in public places like bars.
• I am in favor of smoking in public places like bars.
• I am very much in favor of smoking in public places like

bars.

Spanking Children

• In general, I am very much in favor of spanking children.
• In general, I am in favor of spanking children.
• In general, I am mildly in favor of spanking children.
• In general, I am mildly against spanking children.
• In general, I am against spanking children.
• In general, I am very much against spanking children.



ICMI ’25, October 13–17, 2025, Canberra, ACT, Australia Ma-Joo-Vail et al.

Climate Change

• I strongly believe that climate change has not been accel-
erated by humans.

• I believe that climate change has not been accelerated by
humans.

• I mildly believe that climate change has not been acceler-
ated by humans.

• I mildly believe that climate change has been accelerated
by humans.

• I believe climate change has been accelerated by humans.
• I strongly believe that climate change has been accelerated

by humans.

Health Care

• I strongly believe that humans are not entitled to health
care.

• I believe that humans are not entitled to health care.
• I mildly believe that humans are not entitled to health

care.
• I mildly believe that humans are entitled to health care.
• I believe that humans are entitled to health care.
• I strongly believe that humans are entitled to health care.

Social Safety Net

• I strongly believe the government should not provide
funds to support individuals’ welfare.

• I believe the government should not provide funds to
support individuals’ welfare.

• I mildly believe the government should not provide funds
to support individuals’ welfare.

• I mildly believe the government should provide funds to
support individuals’ welfare.

• I believe the government should provide funds to support
individuals’ welfare.

• I strongly believe the government should provide funds
to support individuals’ welfare.

College

• I strongly believe the government should not pay for col-
lege students’ tuition.

• I believe the government should not pay for college stu-
dents’ tuition.

• I mildly believe the government should not pay for college
students’ tuition.

• I mildly believe the government should pay for college
students’ tuition.

• I believe the government should pay for college students’
tuition.

• I strongly believe the government should pay for college
students’ tuition.

[Local University]
• I strongly believe that [local university] is a welcoming

university environment.
• I believe that [local university] is a welcoming university

environment.
• I mildly believe that [local university] is a welcoming

university environment.
• I mildly believe that [local university] is not a welcoming

university environment.
• I believe that [local university] is not a welcoming univer-

sity environment.
• I strongly believe that [local university] is not a welcoming

university environment.
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