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Fig. 1. For a large field-of-view as commonly used in VR, 3DGS’s projection error produces elongated or
large Gaussians that can cause cloudy appearance, leading to significantly worse PSNR values. Optimal
Projection faithfully projects these Gaussians, but incurs a performance cost and still suffers from immersion-
breaking popping artifacts. Mini-Splatting can drastically reduce model size and rendering times, but resolving
remaining popping artifacts (StopThePop) introduces significant overhead. Our full method elegantly combines
these techniques with an efficient foveated rendering routine and provides an immersive and artifact-free VR
experience with framerates above 72FPS rendered on an NVIDIA RTX 4090 and displayed on a Meta Quest 3.

3D Gaussian Splatting (3DGS) has rapidly become a leading technique for novel-view synthesis, providing
exceptional performance through efficient software-based GPU rasterization. Its versatility enables real-time
applications, including on mobile and lower-powered devices. However, 3DGS faces key challenges in virtual
reality (VR): (1) temporal artifacts, such as popping during head movements, (2) projection-based distortions
that result in disturbing and view-inconsistent floaters, and (3) reduced framerates when rendering large
numbers of Gaussians, falling below the critical threshold for VR. Compared to desktop environments, these
issues are drastically amplified by large field-of-view, constant head movements, and high resolution of
head-mounted displays (HMDs). In this work, we introduce VRSplat: we combine and extend several recent
advancements in 3DGS to address challenges of VR holistically. We show how the ideas of Mini-Splatting,
StopThePop, and Optimal Projection can complement each other, by modifying the individual techniques
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and core 3DGS rasterizer. Additionally, we propose an efficient foveated rasterizer that handles focus and
peripheral areas in a single GPU launch, avoiding redundant computations and improving GPU utilization.
Our method also incorporates a fine-tuning step that optimizes Gaussian parameters based on StopThePop
depth evaluations and Optimal Projection. We validate our method through a controlled user study with 25
participants, showing a strong preference for VRSplat over other configurations of Mini-Splatting. VRSplat is
the first, systematically evaluated 3DGS approach capable of supporting modern VR applications, achieving
72+ FPS while eliminating popping and stereo-disrupting floaters.

CCS Concepts: • Computing methodologies→ Virtual reality; Rasterization; Machine learning.
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1 INTRODUCTION
The field of novel-view synthesis has experienced remarkable advancements in recent years, driven
by the introduction of Neural Radiance Fields (NeRFs) [Mildenhall et al. 2020] and the wide array
of subsequent developments. More recently, 3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] has
introduced a paradigm shift by representing scenes with explicit 3D Gaussian point clouds, rather
than implicit volumetric fields. 3DGS offers not only high visual quality and low training times,
but also enables efficient rendering through GPU-based software rasterization or the traditional
graphics pipeline.
Capturing and synthesizing novel views of real-world scenes is crucial in a variety of applica-

tions, such as e-commerce, visual effects in film production, and immersive experiences. Virtual
reality (VR) has emerged as a particular focus, with its stringent demands for high framerates and
interactivity. The impressive performance of 3DGS rasterization makes it well-suited for rendering
on low-powered head-mounted displays (HMDs), but several limitations in the original 3DGS
implementation can disrupt the immersive experience.

Firstly, the reliance on global primitive sorting during rasterization introduces popping artifacts
when the viewpoint changes [Radl et al. 2024b], which can be particularly jarring in VR due to the
constant micro-movements of the head in HMDs. Secondly, the projection of 3D Gaussians into 2D
splats is based on a local affine approximation [Zwicker et al. 2001], leading to projection errors that
worsen with increasing distance from the image plane center [Huang et al. 2024]. These errors are
further amplified in VR due to the wide field-of-view (FOV), causing Gaussians to become distorted
or cloud-like, which detracts from the visual experience. Lastly, the heuristic-driven densification
in 3DGS reconstructions often results in excessively large point clouds, making it challenging to
maintain interactive framerates since the runtime is directly tied to the number of primitives.

To address these limitations, we introduce VRSplat, a robust and efficient solution for rendering
Gaussian splats in VR. Our method combines recent advancements in 3DGS in a meaningful
way and introduces novel, targeted high-performance optimizations to ensure view-consistent,
artifact-free rendering while maintaining the required framerates for VR. While VRSplat can be
used with any scene reconstruction method that generates a compact set of 3D Gaussians, we
choose Mini-Splatting [Fang and Wang 2024] due to its reduced primitive count. We mitigate
popping artifacts by employing hierarchical rasterization as seen in StopThePop [Radl et al. 2024b],
and apply Optimal Projection [Huang et al. 2024] to eliminate projection artifacts. However, both
methods come with a significant performance cost. To counter this, we propose a single-pass
foveated rendering technique, which boosts performance and ensures that the recommended frame

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://doi.org/XXXXXXX.XXXXXXX
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rate of ≥ 72 FPS at native HMD resolutions is consistently achieved. In addition to a novel system
design for real-time artifact-free rendering, VRSplat makes the following technical contributions:

• A fine-tuning approach that takes a 3DGS scene trained with any (compact) optimization
strategy as input—for example Mini-Splatting which reduces the number of Gaussians by
up to 10×—and optimizes it for both StopThePop rendering and Optimal Projection. This
approach not only removes large floating artifacts and popping but also significantly improves
overall reconstruction quality.

• The integration of StopThePop rendering and Optimal Projection within the core 3DGS CUDA
renderer. This combination enables correct and efficient tile-based culling by accounting for
tight bounds from Optimal Projection and providing efficient hierarchical sorting and culling
via StopThePop.

• An optimized Gaussian Splatting rasterizer that supports rendering tiles at varying reso-
lutions, enabling effective foveated rendering in a single pass. This approach eliminates
redundant computations, minimizes kernel launch overhead, reduces memory access during
preprocessing and sorting, and improves GPU utilization by handling the entire workload in
one go.

Finally, this paper contributes a formal validation of the enhanced VR experience provided by
VRSplat, via an extensive user study; its evaluation shows overwhelming preference for VRSplat
compared to baseline, highlighting our method’s ability to deliver an immersive VR experiences and
meet the performance requirements of smooth VR applications. We additionally demonstrate sig-
nificantly improved image quality metrics when adapting the evaluation setup to the requirements
of VR rendering (i.e. high-resolution, large FOV). Fig. 1 illustrates the limitations of the individual
techniques we employ, and how, when combined with our single-pass foveated rendering solution,
they form a view-consistent VR renderer capable of rendering large 3D scenes.

2 RELATEDWORK
This section revisits recent work on radiance fields, their applications in VR, and approaches toward
interactive rendering on HMDs.

Radiance Fields. Novel-view synthesis is a long-standing problem in visual computing. Neural
Radiance Fields (NeRFs) [Mildenhall et al. 2020] have demonstrated impressive results by combining
classical volumetric rendering along view rays combined with large MLPs. While NeRFs exhibit
astonishing visual quality, they suffer from long training and rendering times due to expensive
raymarching for each pixel. Recent advances have focused on accelerating rendering and train-
ing [Fridovich-Keil et al. 2022; Müller et al. 2022; Steiner et al. 2024], extended NeRFs to unbounded
scenes [Barron et al. 2022, 2023] or applied them for various downstream applications, e.g. 3D
Stylization [Nguyen-Phuoc et al. 2022; Radl et al. 2024a; Zhang et al. 2023].

3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] thus introduces 3D Gaussians as an alternative
scene representation, leveraging efficient software rasterization. Similarly to NeRF, this resulted in
another wave of follow-up work, exploring artifact-free rendering [Huang et al. 2024; Radl et al.
2024b; Yu et al. 2024], reducing the number of primitives [Fan et al. 2024; Fang and Wang 2024;
Kheradmand et al. 2024; Mallick et al. 2024] and rendering of very large datasets [Kerbl et al. 2024;
Lin et al. 2024b], amongst many other works.

Radiance Fields for Virtual Reality. VR is a natural use case for radiance fields, as it provides
more immersive experiences when exploring scenes. FoV-NeRF [Deng et al. 2022] utilizes a gaze-
contingent neural representation and foveated rendering to achieve near real-time rendering of
NeRF in VR. VR-NeRF [Xu et al. 2023] instead distributes computation across multiple GPUs and
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leverages an occupancy grid to improve performance. However, their trade-off between quality
and speed is far from satisfactory.

VR-GS [Jiang et al. 2024] builds an interactive VR setting on top of the original 3DGS renderer that
offers intuitive interaction with objects using simulation. Our approach could be used as a drop-in
replacement to offer higher-quality rendering. Concurrent work to ours RTGS [Lin et al. 2024a]
also explores rendering of Gaussians on mobile devices and proposes a foveated rendering solution
to achieve immersive framerates. Our own method, VRSplat, substantiates the ideas presented in
a recent poster abstract [Tu et al. 2024]. The contributions of RTGS are complementary to ours:
they propose a training strategy that leads to scene reconstructions that should increase rendering
speeds by reducing the number of overlapping Gaussians. Their second contribution is a trained,
level-of-detail-based foveated rendering strategy that selects a lower number of Gaussians for
lower-resolution rendering. In contrast to RTGS, our fine-tuning procedure is significantly more
lightweight due to a single model being used, rendered at different resolution. Our approach could
be combined with RTGS by fine-tuning their output to our model to reduce artifacts and render
foveated images in a single pass to further increase VR framerates.

Accelerating Virtual Reality Rendering. The characteristics of the human visual system have long
been exploited to accelerate rendering. For instance, due to reduced visual acuity in the periphery,
a plethora of works [Chakravarthula et al. 2021; Guenter et al. 2012; Kaplanyan et al. 2019; Konrad
et al. 2020; Krajancich et al. 2023; Patney et al. 2016; Rolff et al. 2023a,b; Sun et al. 2017] reduce
rendering quality in these regions, thereby increasing rendering speed. Recent work has also
leveraged procedural noise generation in foveated rendering, effectively simulating the presence
of high-frequency content outside the fovea in a post-processing step [Tariq et al. 2022]. Our
single-pass foveated rendering solution, although related to the aforementioned works, specifically
operates on 3DGS’s tile-based rasterization to extract the maximum performance.

3 3D GAUSSIAN SPLATTING
3DGS [Kerbl et al. 2023] represents a scene using a mixture of 𝑁 3D Gaussians, each given by:

𝐺 (x) = 𝑒−
1
2 (x−𝝁 )

𝑇 Σ−1 (x−𝝁 ) , (1)

with the Gaussian 3D mean 𝝁 ∈ R3, and the 3D covariance matrix Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 being constructed
from a rotation matrix 𝑅 ∈ R3×3 and a diagonal scaling matrix 𝑆 ∈ R3×3. For a pixel p, the resulting
color is given by the volume rendering equation:

𝐶 (p) =
𝑁∑︁
𝑖=0

c𝑖𝛼𝑖
𝑖−1∏
𝑗=0

(1 − 𝛼 𝑗 ), (2)

where 𝛼𝑖 = 𝜎𝑖𝐺2D (p) is the alpha value of the projected 2D splat, dependent on the value of the 2D
Gaussian 𝐺2D and the opacity value 𝜎𝑖 , and c𝑖 is the Gaussian’s view-dependent color.
Rather than considering a fully-sorted list of all primitives for each pixel, 3DGS performs tile-

based rasterization; based on the extent of each Gaussian on the image plane, it is assigned to tiles
each covering 16×16 pixels. After instantiation of all Gaussian/tile combinations, this arrangement
is sorted and only potentially contributing Gaussians are considered during rendering, simplifying
and accelerating the pipeline.
The projection of each 3D Gaussian onto the image plane is demonstrated by Zwicker et al.

[2001]: the covariance matrix of the 2D Gaussian Σ2D is obtained by dropping the last row/column
of

Σ′ = 𝐽𝑊 Σ𝑊𝑇 𝐽𝑇 , (3)
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Fig. 2. Normal FOV (top) and VR (bottom) views of Mini-Splatting [Fang and Wang 2024] and ours .
Increasing the field-of-view reveals shortcomings of current methods in VR applications: large Gaussians
when projected with the local affine approximation can cause cloud-like artifacts and elongated Gaussians
(i.e., “god rays”). VRSplat eliminates the artifacts while meeting the performance demands of smooth VR
experiences.

with𝑊 the camera matrix and 𝐽 the local affine approximation of the projective transform. As
noted in [Zwicker et al. 2001], this is only correct for the center of the image plane—for Gaussians
at extreme positions (i.e. on the boundary of the image plane), the approximation error grows larger
and causes elongated Gaussians or cloud-like artifacts (see Fig. 2). Optimal Projection [Huang et al.
2024] describes an alternative approach to remedy this issue: Namely, they project Gaussians onto
distinct tangent planes on the unit sphere around the camera o, in turn removing projection-based
artifacts with a small performance overhead.

The sort order in Eqn. (2) is given by the 𝑧-coordinate of 𝝁 in view-space. Clearly, this results in
changes of ordering during view rotation, causing popping artifacts [Radl et al. 2024b] — an artifact
also common in other splatting approaches [Mueller and Crawfis 1998] (cf. the supplemental video).
While current VR solutions [Cier et al. 2024] thus prefer sorting by the distance to the camera, i.e.
∥o − 𝝁∥2, this now results in popping during translation. The only viable solution to eliminate all
popping artifacts is perform a full sort of primitives considered for each pixel; despite tile-based
rasterization, a full sort is computationally prohibitive if interactive framerates are required.
As the performance of each stage in 3DGS’s rendering pipeline is directly tied to primitive

counts, reducing the number of Gaussians can drastically improve performance. While 3DGS’s
model sizes are tolerable for desktop viewing, the high resolution and demanding framerate
requirements of HMDs necessitate smaller Gaussian point clouds. The underlying root cause of
the large primitive counts is 3DGS’s heuristics-driven densification [Kerbl et al. 2023], which leads
to a large number of redundant primitives in over-reconstructed regions. A plethora of recent
works investigate model size reduction whilst retaining high image quality metrics, either through
importance-based pruning [Fan et al. 2024; Niemeyer et al. 2024], score-based densification [Mallick
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Fig. 3. An overview of our pipeline for high-fidelity VR rendering: Starting from an efficient baseline, such
as Mini-Splatting [Fang and Wang 2024], we fine-tune the Gaussians using our artifact-free differentiable
rasterizer to arrive at a 3DGSmodel capable of VR rendering without artifacts. We thus remain largely baseline-
agnostic, and the overhead for our fine-tuning is only a small fraction of the initial baseline reconstruction.

et al. 2024], oversampling and subsequent simplification [Fang and Wang 2024] or sampling-based
densification [Kheradmand et al. 2024].

4 METHOD
This section introduces our full model for immersive VR experiences on consumer-grade HMDs. We
synergize recent advances in 3DGS to arrive at a full model capable of view-consistent rendering of
Gaussians. To address the implied performance penalty, we introduce a novel single-pass foveated
rendering solution capable of achieving the required rendering times for immersive VR. We provide
an overview of our complete pipeline in Fig. 3.

We choose Mini-Splatting [Fang and Wang 2024] as our model backbone, as their more uniform
distribution of Gaussians also improves rendering times by balancing per-tile workloads. Subse-
quently, we propose a fine-tuning scheme to incorporate StopThePop, Optimal Projection and
Mini-Splatting into a single, high-quality representation—which we then accelerate by exploiting
foveated rendering.

4.1 Eliminating Popping Artifacts
Due to Mini-Splatting representing scenes with a significantly reduced primitive count, Gaussians
are naturally larger, and therefore more prone to popping. Radl and Steiner et al. [Radl et al. 2024b]
demonstrate that hierarchical per-pixel resorting of Gaussian splats according to depth along
view rays is able to overcome popping effectively. Hence, we opt to use their renderer to achieve
view-consistent rendering.

3DGS employs its differentiable renderer to optimize Gaussian parameters—including position,
rotation, scale, opacity, and spherical harmonics coefficients—via backpropagation. Sort order plays
an important role during optimization, i.e. models need to be rendered with the same sort order as
was used during training. Consequently, naïvely applying StopThePop to a Mini-Splatting [Fang
and Wang 2024] model—which uses a a global sort order during training—reduces image quality.
Therefore, we opt for fine-tuning our small Mini-Splatting models with StopThePop rasterization
(without densification, thus preserving the low primitive count), which proves to be sufficient to
achieve equal or higher scores on standard image quality metrics, depending on the dataset. This
strategy has the additional advantage that it makes our method largely agnostic to the pre-trained
model and densification objective, as long as they yield coherent 3D Gaussian representations.
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ϵ

𝑇𝑖𝑙𝑒𝑠𝑐𝑟𝑒𝑒𝑛

𝑇𝑖𝑙𝑒𝑜𝑝𝑡

𝑉𝑖𝑒𝑤 𝑝𝑙𝑎𝑛𝑒

StopThePop Ours

Fig. 4. Left: StopThePop computes the maximum contribution within a tile directly in screen space. Right: As
we employ Optimal Projection [Huang et al. 2024], we find the maximum by reasoning about the maximum
on the per-Gaussian optimal plane, leveraging the fact that tiles form general quadrilaterals. Subsequently,
projecting this maximum back to screen space yields the maximum contribution within a tile [Tu et al. 2024].

4.2 Minimizing Projection Error
The projection-based distortions due to 3DGS’s local affine approximation are especially disturbing
in VR, where the large FOV and constant movement of the user’s head causes cloud-like artifacts to
rotate and block the views. Optimal Projection for 3DGS [Huang et al. 2024] conducted a detailed
analysis of the error introduced in the projection step and proposed a solution: Namely, each
Gaussian is projected to the tangent plane of the unit sphere at o that is perpendicular to the line
connecting o and 𝝁, where o denotes the camera position.

However, Optimal Projection is not directly compatible with tile-based culling, as proposed in in
StopThePop [Radl et al. 2024b]. Tile-based culling reduces the number of Gaussian/tile combinations
by: (1) computing the maximum over 𝐺2D for each Gaussian/tile combination and (2) pruning the
Gaussian from the specific tile if 𝛼 < 1

255 . Radl and Steiner et al. also show that the maximum
over 𝐺2D can be computed by maximizing the Gaussian’s contribution over the tile boundaries
closest to the 2D mean [Radl et al. 2024b]. Nevertheless, note that this computation is done fully in
screen-space with axis-aligned tiles, thus requiring an adapted algorithm to work with Optimal
Projection.
When the 2D Gaussian’s mean 𝝁2D is inside the tile, it follows that the point of maximum

contribution x̂ = 𝝁2D, otherwise x̂ must lie on one of the edges that are reachable from 𝝁2D. For
Optimal Projection, tile-based culling can no longer be performed on the image plane, but needs
to be evaluated on the optimal plane of each Gaussian. Projecting these screen-space tiles yields
again convex quadrilaterals Tileopt. Consequently, at most two neighboring edges may be reachable
from 𝝁2D because projection preserves their geometrical relationship in the original view plane.
For each candidate edge p + 𝑡 · d, by taking the derivative of density with respect to 𝑡 and letting it
equal zero, the maximum density point along the line can be calculated as

x̂ = p +
d⊤Σ−1

2D (𝝁2D − p)
d⊤Σ−1

2Dd
· d, (4)

where Σ2D is the 2D covariance matrix of the splat. Evaluating the 𝛼 value at x̂ allows us to determine
the culling criteria. Projecting x̂ back onto the image plane yields the maximum point inside the
screen-space tile, which StopThePop requires for its per-tile depth evaluation [Radl et al. 2024b].
See Fig. 4 for a visualization of StopThePop’s culling strategy compared to our approach.
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4.3 Single-Pass Foveated Rendering
To remedy the implied performance penalty of StopThePop rasterization and Optimal Projection,
we leverage the reduced visual acuity in the periphery by employing foveated rendering. While
multi-pass solutions (rendering the center and peripheral regions separately) require only minor
changes to the pipeline and can be effective when combined with proper culling [Tu et al. 2024],
they necessitate processing the same Gaussians multiple times. Hence, we propose a targeted
single-pass solution that ties in elegantly with the tile-based 3DGS rasterizer.

Single-Pass Foveated Rendering. In the following, we differentiate only between a high and a
low-resolution region by launching differently-sized tiles. However, all our strategies can directly
be applied to further resolution reductions as well. As visualized in Fig. 5a, we realize the split
between high and low resolution regions by using 16×16 pixel tiles for the center, and 32×32 tiles
for the periphery. In practice, we always first partition the image into 32×32 pixel tiles, which are
split into four separate subtiles of size 16×16 in the center region. This mapping can be efficiently
computed at the start of each render pass and enables us to compute the exact number of blocks to
launch during the rendering stage. Consumer-grade HMDs, like the Meta Quest 3, often do not
provide eye tracking, thus we can precompute this mapping once for each eye and re-use it across
frames.

0 1

16×16 tiles + blending
16×16 tiles
32×32 tiles

(a) Single-pass foveated rendering

Tile Count
Visible
Invisible

(b) Tile visibility mask and Summed Area Table

Fig. 5. We design a single-pass foveated rendering routine with visibility culling. (a) Depiction of our chosen
tile configurations for our single-pass foveated rendering: we split the center region into tiles of size 16×16 ,
and use 32×32 tiles in the periphery; hybrid tiles in-between (dotted) are treated as 16×16 tiles but the values
of groups of 2×2 pixels are averaged and blended with the individual pixel values, based on the continuous
blending mask (left). (b) We sample the visibility mask from OpenXR to first compute a mask of all visible
tiles, from which we construct its summed-area table. We then compute the exact number of visible tiles
covered by the rectangular extent of a 2D Gaussian splat from the summed-area values of its corner points.

During tile-based rasterization, we assign Gaussians to 32×32 tiles. This results in fewer Gauss-
ian/tile combinations overall, but additional workload during the rendering stage as subtiles in
the center region need to load more Gaussians. However, we utilize StopThePop’s hierarchical
culling [Radl et al. 2024b] to mitigate this issue, allowing us to efficiently cull unnecessary Gaussians
early for the 16×16 subtiles. During the render stage, we launch blocks with 256 threads (same as
StopThePop and 3DGS) for both 16×16 and 32×32 tiles. However, each thread in the larger tiles
handles groups of 2×2 pixels and treats them as a single pixel, effectively halving the resolution.

Finally, we blend the high-resolution region with the low-resolution region to avoid noticeable
discontinuities. For the transitional subtiles in the high resolution region (visualized as dotted tiles
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in Fig. 5a), we approximate the color of the low resolution tile by averaging the values of 2×2
pixels and blend it with the individual pixel values, based on the continuous blending mask. For the
low-resolution region, we perform nearest neighbor upsampling and blurring with a 3×3 Gaussian
kernel, which proves effective in suppressing aliasing artifacts.

Visibility Culling. We propose to further accelerate rendering by culling tiles not visible in the
HMD. We process the visibility mask available for the HMD (e.g. through OpenXR) to create
a bitfield with one bit for each tile, indicating whether or not any pixels of the tile are visible.
Subsequently, we compute a summed-area table from this bitfield, and instantiate Gaussian/tile
combinations in two stages: First, we calculate the exact number of visible tiles each Gaussian may
touch using the summed-area table (see Fig. 5b); We then use this information to allocate the global
sorting buffer and to compute the range of each Gaussian’s instances inside this buffer.

This leads to a reduction in sort entries, as Gaussian/tile combinations outside the visible area of
the image are not instantiated. In our single-pass foveated rendering approach, we can reduce the
amount of tiles further by removing the "invisible" tiles entirely from the precomputed mapping,
resulting in a reduction of ∼11% in the number of tiles and ∼6% in the total number of Gaussian/tile
combinations.

5 RESULTS AND EVALUATION
We use two variants of Mini-Splatting [Fang and Wang 2024] as the base for our model: the original
Mini-Splatting (𝑧), where the sort order is given by the view-space 𝑧-coordinate as well as Mini-
Splatting (Dist), which we modified to order Gaussians according to ∥𝝁 − o∥2. Ours denotes our full
method, using a Mini-Splatting backbone fine-tuned for 5K iterations with StopThePop and Optimal
Projection. For both Mini-Splatting and StopThePop, we use the default training parameters. For
fine-tuning, we set the total number of iterations to 35K and start from 30K. We use tile sizes of
16× 16 for center tiles, and 32× 32 for peripheral tiles. The center region is half the rendered image
size, with 10% padding of linearly increasing blending weights.

We evaluate all methods quantitatively and qualitatively in a controlled user study, using three
well-established datasets: theMip-NeRF 360 dataset [Barron et al. 2022], Tanks &Temples [Knapitsch
et al. 2017] and Deep Blending [Hedman et al. 2018]. We perform our performance evaluation and
user study using the SIBR framework [Bonopera et al. 2020] with OpenXR support and our custom
software rasterizer, where we used a Meta Quest 3 tethered to a desktop equipped with an NVIDIA
RTX 4090 and render at native resolution (2064 × 2272 pixels). In addition to our method, we also
ablated an optimized two-pass foveated renderer to demonstrate the performance improvements
of our single-pass approach. We provide implementation details for this alternative renderer in
Appendix A.

5.1 User Study
To enable a well-founded qualitative evaluation of our method, we performed a controlled user
study with 25 participants for 3DGS-based VR scene viewing using a Meta Quest 3. We use Mini-
Splatting [Fang and Wang 2024] for our comparison, as 3DGS [Kerbl et al. 2023] fails to reach the
desired framerate target of ≥ 72FPS for some scenes due to its excessive primitive count.

We performed two pairwise comparisons:

• Ours vs Mini-Splatting (𝑧)
• Ours vs Mini-Splatting (Dist)

Participants were instructed to focus on three distinct criteria: artifacts, quality, and preference,
leading to the following hypotheses:
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(1) Our approach produces fewer artifacts than other splatting approaches as it avoids popping,
elongated Gaussians and cloud-like artifacts.

(2) Using foveated rendering in our approach does not reduce quality compared to other ap-
proaches.

(3) Our approach is fast and robust while avoiding artifacts and thus leads to a preferable VR
experience compared to other approaches.

To test these hypotheses, we used a pairwise comparison design [Kiran Adhikarla et al. 2017;
Mantiuk et al. 2012], where participants experienced a scene rendered with two different methods
and then rated them relative to one another. We selected two scenes from the Mip-NeRF 360
dataset [Barron et al. 2022] (Bonsai and Bicycle) and one scene each from Deep Blending [Hedman
et al. 2018] and Tanks & Temples [Knapitsch et al. 2017] (Dr Johnson and Truck). This selection
provided a balanced mix of indoor and outdoor scenes. Each participant viewed two scenes for the
Ours vs. Mini-Splatting (𝑧) comparison and two for Ours vs. Mini-Splatting (Dist), with the order
of scenes and methods randomized to prevent learning effects.

We recruited 25 participants from a local university. After a brief pre-questionnaire, participants
rated each pairwise comparison based on general preference, artifacts, and visual quality using
a 5-point Likert scale (from “Strongly Prefer Method 1” to “Strongly Prefer Method 2”), with
an option for “No Preference.” Participants were instructed to consider quality while standing
still and focusing on the central object of the current scene, and to move around frequently to
assess potential artifacts. Each participant could freely explore the scene but could not switch
back and forth between conditions. While there was no strict time limit, we encouraged them to
transition to the next condition after approximately 90 seconds. Responses were converted into
scores 𝑠 ∈ {−2,−1, 0, +1, +2}, where −2 indicated a strong preference for Mini-Splatting and +2
indicated a strong preference for our method.

Visual
Quality

Fewer
Artefacts

Preference

Prefer
Ours

Strongly
Prefer Ours

Prefer
Mini-Splatting

Strongly Prefer
Mini-Splatting

Ours vs. Mini-Splatting (z)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Visual
Quality

Fewer
Artefacts

Preference

Prefer
Ours

Strongly
Prefer Ours

Prefer
Mini-Splatting

Strongly Prefer
Mini-Splatting

Ours vs. Mini-Splatting (Dist)

Fig. 6. User Study results: our method is preferred by users across all tested modalities including quality,
artifacts and preference. Due to the prevalence of popping artifacts in Mini-Splatting (𝑧), users strongly prefer
our method. In Mini-Splatting (Dist), projection errors cause the preference for our method.

To analyze the results, we conducted Wilcoxon T-tests on the pairwise results. The average
results are shown in Fig. 6. For the Ours vs. Mini-Splatting (𝑧) comparison, both preference (𝑡 = 18.0,
𝑝 < .001) and artifacts (𝑡 = 0.0, 𝑝 < .001) were statistically significant, while quality (𝑡 = 209.5,
𝑝 = .62) was not. For the Ours vs. Mini-Splatting (Dist) comparison, all measures were statistically
significant: preference (𝑡 = 61.0, 𝑝 < .001), artifacts (𝑡 = 15.0, 𝑝 < .001) and quality (𝑡 = 121.0,
𝑝 < .03).

, Vol. 1, No. 1, Article . Publication date: April 2025.



VRSplat: Fast and Robust Gaussian Splatting for Virtual Reality 11

Clearly, our method is preferred by a large margin in terms of general preference and artifacts.
Mini-Splatting (𝑧) was rated poorly due to immersion-breaking popping artifacts and errors due to
the projection. In contrast to quantitative evaluation on still images, Mini-Splatting obtains better
qualitative ratings in VR when sorting by the Euclidean distance instead. However, due to projection
errors and occasional popping artifacts, Ours is still preferred by a significant margin. Please refer to
the supplemental video for a direct visual comparison and illustration of artifacts. In terms of visual
quality, our method is preferred by a small margin despite our foveated rendering solution—this
shows that with our blending CUDA kernel, we can effectively reduce resolution in the peripheral
region without concerns about visual quality. Although we did not directly compare Mini-Splatting
(𝑧) and Mini-Splatting (Dist), the comparison with our method suggests that sorting by Euclidean
distance reduces popping artifacts to some extent, slightly improving the VR experience, while the
same projection-based artifacts remain disturbing..

In summary, all of our hypotheses were supported, as confirmed by participant feedback. Popping
and non-uniform artifacts are significant issues for Mini-Splatting in VR, which our method avoids
entirely through the combination of StopThePop and Optimal Projection. Participants commented:
“The lighting changes abruptly when I move!” for Mini-Splatting and “This is so much more
stable” for our approach. Our combination of strategies, including foveated rendering, does not
reduce quality and even outperforms Mini-Splatting (Dist) in terms of user-perceived quality. One
participant noted for Mini-Splatting: “When I stand still there are still some unnatural God rays
here. And they are even different for the left and right eye.” For our method: “This is clearly better,
with no weird artifacts, and it stays consistent when I move my head. Both methods seem equally
fast.” While we did not specifically compare our method to 3DGS, previous work suggests that the
same preference trends prevail [Tu et al. 2024]. For more details about the user study and per-scene
results, see Appendix B.

5.2 Image Metrics
We compare our final method against 3DGS [Kerbl et al. 2023], Mini-Splatting [Fang andWang 2024],
and StopThePop [Radl et al. 2024b] in terms of visual quality. We use PSNR, SSIM, LPIPS [Zhang
et al. 2018] and present our results in Tab. 1.
Similar to Huang et al. [2024], we follow an adapted protocol, which highlights our robustness

to projection errors for large FOVs, as used in VR. Namely, we decrease focal length and increase
the render resolution by a factor of 3×, which produces elongated and cloud-like Gaussians with
standard 3DGS rasterization. We then use a center crop, allowing for a pixel-perfect cutout that
can be compared against the test images. Without projection errors, this large FOV cutout should
exactly match the low FOV render. As can be seen in Tab. 1, our approach consistently beats related
work in this scenario. We also show some qualitative comparisons in Fig. 7.

We also provide image metrics following the standard setup Appendix . When comparing the
numbers across tables, our artifact-free rasterizer is able to retain the image quality, whereas
competing methods suffer from severely reduced image metrics. Overall, this evaluation setup
demonstrates our improved image quality when considering the requirements for VR rendering.

5.3 Ablation Studies
To validate our design choice of fine-tuning with StopThePop [Radl et al. 2024b] and Optimal
Projection [Huang et al. 2024] rasterization for 5K iterations, we run a small-scale ablation study.
We evaluate Mini-Splatting (𝑧) [Fang and Wang 2024] after {1K, 2.5K, 5K, 10K} iterations of
fine-tuning and plot the PSNR in Fig. 8. We include the PSNR score of Mini-Splatting as well as
Mini-Splatting with the new rasterization (no fine-tuning) as baselines.

, Vol. 1, No. 1, Article . Publication date: April 2025.



12 Tu, X. et al

Table 1. Standard image quality metrics for our large FOV evaluation protocol. Our proposed method does
not suffer from projection artifacts and, therefore, outperforms all other methods on a variety of datasets.

Dataset Mip-NeRF 360 Tanks & Temples Deep Blending

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

StopThePop 27.040 0.812 0.213 20.241 0.809 0.192 27.553 0.889 0.243
3DGS 26.820 0.804 0.219 17.112 0.741 0.229 26.192 0.875 0.247

Mini-Splatting (𝑧) 24.765 0.786 0.229 15.355 0.687 0.284 24.347 0.871 0.262
Mini-Splatting (Dist) 25.373 0.794 0.225 17.018 0.754 0.239 26.133 0.880 0.255
Ours (𝑧) 27.293 0.823 0.212 22.901 0.836 0.197 30.333 0.912 0.242
Ours (Dist) 27.262 0.822 0.213 22.840 0.835 0.198 30.337 0.912 0.242
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Fig. 7. Images rendered using our large FOV evaluation protocol with inset PSNR values. Projection errors in
other methods lead to disturbing artifacts, as also observed in a VR setting.

Mini-Splatting with the new renderer initially decreases image quality as the ordering of Gaus-
sians diverges from the learned ordering, causing vastly different per-pixel RGB colors and a
significant drop in image quality (∼1.5 dB). However, image quality recovers quickly and already
approaches the results of Mini-Splatting after 5K fine-tuning steps. Since 5K additional training
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Fig. 8. Ablation study on the number of fine-tuning iterations. We show PSNR averaged over all tested
scenes. Whereas the initial quality is significantly reduced with the new rasterization, metrics recover quickly
and approach Mini-Splatting (𝑧) [Fang and Wang 2024] with 5K fine-tuning iterations.
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Fig. 9. Qualitative evaluation of our method’s components. When rendering a Mini-Splatting [Fang and
Wang 2024] model directly with StopThePop, the changes in sort-order lead to artifacts for both normal and
large FOV. Our fine-tuning step allows the model to learn this updated sort order. Finally, Optimal Projection
removes artifacts due to projection errors, when rendering with a larger FOV

iterations only result in a minor performance improvement (27.04 vs. 27.09 dB), we choose 5K
fine-tuning iterations in the interest of fast optimization. See our provided supplementary material
for detailed results and a discussion. We also provide a qualitative evaluation of our method’s
components in Fig. 9.

5.4 Performance Timings
We provide additional render timings to quantify the performance impact of the different techniques
in our pipeline. The images were rendered in the resolution as requested by the Meta Quest 3, i.e.
2064×2272, and timings were doubled to recreate the stereoscopic setting. To obtain representative
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Table 2. Average performance timings (in ms) per dataset with our VR evaluation setup (two images with
2064×2272 resolution). Our average render times are below the 14ms threshold, and significantly outperform
the simple two-pass foveated rendering routine.

Timings in ms Deep Blending Mip-NeRF 360 Tanks & Temples
Indoor Outdoor

3DGS 8.65 8.06 10.35 9.94
Mini-Splatting 4.51 6.24 4.98 4.76
Mini-Splatting + StopThePop 10.55 14.48 11.11 10.95
Ours (w/o fov.) 14.54 20.48 15.91 15.42
Ours (two-pass fov.) 10.35 15.01 12.49 11.18
Ours 8.14 12.36 10.47 9.22

timings, we interpolate a camera path between all provided training and test set cameras for each
scene and average our measurements over 4 runs. We use CUDA 12.6 with an NVIDIA RTX 4090
for all presented measurements.
The general performance target for a smooth VR experience on the Meta Quest 3 is 72 FPS

(∼14ms). As we show in Tab. 2, 3DGS is able to reach this target despite its large model sizes.
Mini-Splatting’s considerably smaller models can lead to large performance gains of up to 2.2×.
Adding StopThePop on top of Mini-Splatting results in a large increase in rendering times due to
the additional sorting overhead. Note that all these methods suffer either from popping and/or
projection error artifacts.

Ours without any foveated rendering (w/o fov.) is slower than Mini-Splatting + StopThePop due
to the additional overhead from Optimal Projection. A simple two-pass foveated rendering approach
accelerates our method, however, there are still inefficiencies due to a duplicate rendering of the
blended region (transitional band) and redundant processing of Gaussians in the early, per-Gaussian
stages of the rasterizer.
Ours allows us to fully utilize synergies, by fusing kernel calls and rendering the blended

region only once. Additionally, as we assign Gaussians to large 32×32 tiles, the workload during
Gaussian/tile instantiation is significantly reduced, while the implied rendering overhead is largely
mitigated by StopThePop’s hierarchical culling. Overall, Ours reaches framerates comparable to
3DGS and clearly stays below the 14ms render budget for most scenes and viewpoints, while
providing an artifact-free VR experience.
The image resolution of 2064 × 2272 results in a total of 4615 tiles (of size 32 × 32), which are

further divided into 1085 high-resolution tiles, 2921 low-resolution tiles, 102 hybrid tiles (where
blending is performed), and 507 invisible tiles.
We investigate per-scene performance timings in more detail in Tab. 3, where we see that

performance gains between 3DGS and Mini-Splatting correlate heavily with model size (number
of Gaussians). For example, Truck sees a massive decrease in model size by 12× and performance
improvements of 2.11×, while Counter’s model size only decreases by 3× and performance improves
by 1.15×. In scenes, where primitive counts cannot be sufficiently decreased (e.g. Bonsai), Ours
is unable to beat 3DGS’s performance, mostly due to the per-pixel sorting overhead. Note that
performance is also influenced by factors other than model size, such as Gaussian extent, opacity
values, and distribution of Gaussians in the scene.
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Table 3. Average performance timings (in ms) per scene for all datasets with our VR evaluation setup (two
images with 2064×2272 resolution). Additionally, we report the number of Gaussians 𝑁 (in millions) for 3DGS
and Mini-Splatting/Ours. Our full method outperforms the two-pass foveated solution and stays within the
predefined render budget.

Scene Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room DrJ Playroom Train Truck

𝑁 (3DGS) 5.95M 3.60M 5.49M 4.84M 3.85M 1.25M 1.20M 1.81M 1.55M 3.28M 2.33M 1.05M 2.56M
𝑁 (Mini-Splatting/Ours) 0.52M 0.56M 0.56M 1.00M 0.55M 0.36M 0.41M 0.43M 0.43M 0.37M 0.32M 0.19M 0.21M

3DGS 13.97 8.53 11.91 8.45 8.90 7.32 8.22 9.46 7.24 9.39 7.91 9.81 10.06
Mini-Splatting (MS) 4.91 4.99 5.06 4.99 4.97 6.26 7.11 6.31 5.26 4.69 4.34 4.76 4.76
MS + StopThePop 11.12 10.37 12.18 10.91 10.97 14.39 16.72 14.89 11.91 10.55 10.54 10.73 11.18
Ours (w/o fov.) 15.92 14.91 17.84 15.17 15.71 20.26 23.65 21.22 16.80 14.22 14.86 15.01 15.83
Ours (two-pass fov.) 12.39 11.83 14.24 11.70 12.28 15.24 16.87 15.56 12.36 10.15 10.55 10.74 11.63
Ours 10.14 9.89 12.19 9.80 10.35 12.60 14.11 12.97 9.76 7.88 8.39 8.89 9.55

6 CONCLUSION, LIMITATIONS AND FUTUREWORK
In this work, we identified the limitations of 3D Gaussian Splatting in delivering high-quality
virtual reality experiences. By reviewing recent advances that address some of these challenges, we
developed an elegant solution that integrates multiple techniques to enable immersive, artifact-free
VR rendering. In addition, we presented a novel single-pass foveated rendering solution building
on the hierarchical StopThePop rasterizer. Our implementation consistently achieves real-time
framerates across all tested scenes on a Meta Quest 3 HMD. Furthermore, our formal user study
validates these results, demonstrating a clear preference for our method across a diverse set of
scenes.

Although our approach successfully mitigates the most prominent artifacts, approximate hierar-
chical depth sorting may still cause flickering in regions with complex geometric relationships. This
highlights the need for a robust level-of-detail (LOD) scheme or fully accurate volume rendering
for 3D Gaussians. While ray-tracing 3D Gaussians is a potential solution, recent studies [Blanc et al.
2024; Moenne-Loccoz et al. 2024] indicate that it currently remains too computationally expensive
for high-quality VR experiences. There are also areas for optimization in our VR rendering pipeline,
such as monocular rendering and stereoscopic reuse of distant content, and the fusion of stereo
rendering passes to maximize synergy effects.

The code for fine-tuning our models and the VR viewer is publicly available here.
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A TWO-PASS FOVEATED RENDERING

d

Low resolutionHigh resolution Blending weights Final image

Fig. 10. Depiction of our simple two-pass foveated rendering solution: we render the periphery at half
resolution and the center at full resolution, performing blending at the boundary of the visibility mask [Tu
et al. 2024].

In addition to our proposed single-pass foveated renderer, we provide a simple, but optimized
two-pass foveated rendering approach for comparison. The first pass renders the center region at
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full resolution, using a tight projection frustum to maximize culling efficiency. The second pass only
renders peripheral content at a lower resolution, also considering the visibility mask as provided
by OpenXR (see Sec. 4.3).
To guarantee a smooth transition, we render content inside a narrow transition band twice,

bilinearly upsample the low resolution content using NVIDIA Performance Primitives, and blend
the two render pass images based on the continuous blending mask (see Fig. 10). The size of the
center and transitional region for this setup is identical to Ours. This provides a strong baseline for
our optimized single-pass foveated rendering scheme.

B USER STUDY DETAILS
In this section, we detail complimentary demographic information about our set of participants
and provide detailed, per-scene user study results.

Demographic Survey. Our set of participants for the user study was comprised of 25 participants,
aged 23-57. All but one participant had normal or corrected vision: this participant exhibited color
blindness. Note that 5 participants did not use their visual aid during the user study.
The majority of the tested population were familiar with computer graphics (3-5 on a 5 point

Likert scale): the remaining 4 participants ranked their knowledge of computer graphics as “very
poor” or “poor”. 9 participants had never used a VR headset before, the remainder described their
usage as “Yearly” up to “Daily”. While 6 participants reported mild motion sickness during the user
study, 20/25 ranked the overall experience as “Very satisfying” to “Completely satisfying”. Each
user study lasted between 20 and 30 minutes.

Per-Scene results. The prevalence of various artifacts within 3DGS is scene-dependent: therefore,
we provide per-scene user study results in Fig. 11. As can clearly be seen, there is no clear outlier
where Mini-Splatting outperforms our method to a large degree. However, we find results for
Bonsai vs. Mini-Splatting (Dist) are the least significant out all of tested scenarios. This stems from
the fact that artifacts due to projection are less prevalent in this scene (see the supplemental video)
and that popping artifacts are significantly reduced when sorting with Euclidean distance.

C DETAILS ON THE FINE-TUNING ABLATION
In Tab. 4, we provide detailed results for the ablation study presented in Fig. 8. As can be seen, the
scores for other image quality metrics generally align with the PSNR results.
For SSIM and LPIPS, the top-3 methods (highlighted) do not include Mini-Splatting: however,

StopThePop generally performs very well for these metrics, as can also be seen in Tab. 6.

Table 4. Detailed results for our fine-tuning ablation study: we provide image metrics, averaged over all
tested scenes. Clearly, StopThePop fine-tuning is able to recover image quality quickly despite the modified
sort order.

Method PSNR↑ SSIM↑ LPIPS↓ FLIP ↓

Ours (no fine-tuning) 25.458 0.795 0.254 0.184
Ours 1K 26.860 0.832 0.221 0.153
Ours 2.5K 26.950 0.835 0.219 0.151
Ours 5K 27.039 0.836 0.217 0.150
Ours 10K 27.087 0.837 0.215 0.149

Mini-Splatting 27.094 0.835 0.222 0.146
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Strongly Prefer Mini-Splatting (z)Fig. 11. Per-Scene user study results: Depending on the scene, the prevalence of errors due to projection or
popping artifacts can vary significantly. Despite this, our method still performs favorably for each configura-
tion.

D LARGE FOV EVALUATION PROTOCOL
As previously discussed, we evaluate the robustness of our approach to projection artifacts in a VR
setting, by employing a large FOV evaluation. Huang et al. [2024] evaluate this by changing focal
lengths to 0.2 and 0.3 times the original, cut out a patch that corresponds to the original focal length,
and resizing the ground truth image for comparison. We instead chose to decrease the original
focal length by a factor of 3 and increase render resolution by 3 (see Fig. 12). This has several
advantages: (1) the center crop has the exact same resolution as the original render; (2) we receive
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Fig. 12. Visualization of our large FOV evaluation setup, which more closely resembles the VR scenario and
allows for comparison against ground truth test images (see inset PSNR values) via a pixel-perfect cutout.
Ours does not suffer from projection errors, while Mini-Splatting exhibits very strong artifacts.

a pixel-perfect cutout; (3) the dilation of 2D Gaussians (making them at least 1 pixel wide) does not
change. This also prevents any unwanted influence on image metrics due to interpolation during
resizing or cropping; Hence, for a method without any projection errors the cutout should exactly
match the image rendered with the original focal length. In Fig. 12, the inset PSNR metrics show
that this is the case for our method, but not for Mini-Splatting (as well as 3DGS and StopThePop),
where projection errors lead to disturbing artifacts and much worse image metrics.

E PER-SCENE LARGE FOV IMAGE METRICS
In Tab. 5, we provide accompanying per-scene results for the averaged results of Tab. 1.

F STANDARD IMAGE METRICS
We provide per-scene results for our standard image metrics evaluation (original focal length) in
Tab. 7, as well as results averaged over all datasets in Tab. 6.
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Table 5. Detailed per-scene image metrics for evaluation with large FOV for all tested scenes.

Dataset Mip-NeRF 360 Outdoor Mip-NeRF 360 Indoor Deep Blending Tanks & Temples
Scene Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room DrJ Playroom Train Truck

PSNR↑

3DGS 25.08 20.09 27.10 26.34 20.98 31.78 28.92 30.73 30.37 26.92 25.46 15.92 18.30
StopThePop 25.21 21.29 27.01 26.70 22.22 31.80 28.57 31.03 29.53 27.52 27.58 19.53 20.95
Mini-Splatting (𝑧) 23.94 17.64 25.29 27.11 20.76 29.34 27.30 28.77 22.74 23.46 25.24 14.63 16.08
Mini-Splatting (Dist) 24.16 19.10 25.49 27.06 20.80 29.85 28.32 29.89 23.69 25.31 26.95 16.74 17.29
Ours (𝑧) 25.28 21.57 26.77 27.19 22.76 31.40 28.65 31.18 30.85 29.81 30.85 21.20 24.61
Ours (Dist) 25.27 21.67 26.76 27.23 22.79 31.46 28.62 30.74 30.83 29.85 30.82 21.18 24.50

SSIM↑

3DGS 0.759 0.571 0.864 0.768 0.598 0.940 0.907 0.923 0.902 0.883 0.866 0.692 0.790
StopThePop 0.766 0.599 0.863 0.775 0.631 0.940 0.904 0.925 0.903 0.889 0.890 0.776 0.842
Mini-Splatting (𝑧) 0.748 0.526 0.838 0.804 0.615 0.931 0.897 0.915 0.798 0.864 0.878 0.651 0.722
Mini-Splatting (Dist) 0.742 0.564 0.835 0.804 0.623 0.931 0.903 0.921 0.824 0.872 0.888 0.723 0.785
Ours (𝑧) 0.775 0.628 0.845 0.808 0.654 0.939 0.906 0.927 0.921 0.908 0.915 0.798 0.874
Ours (Dist) 0.774 0.628 0.843 0.807 0.653 0.939 0.906 0.926 0.921 0.909 0.915 0.798 0.872

LPIPS↓

3DGS 0.213 0.353 0.107 0.217 0.338 0.200 0.198 0.126 0.217 0.247 0.246 0.264 0.194
StopThePop 0.205 0.335 0.106 0.209 0.319 0.200 0.197 0.125 0.216 0.243 0.244 0.218 0.166
Mini-Splatting (𝑧) 0.231 0.396 0.150 0.198 0.325 0.198 0.198 0.130 0.237 0.274 0.249 0.309 0.258
Mini-Splatting (Dist) 0.235 0.364 0.154 0.196 0.327 0.197 0.196 0.130 0.227 0.268 0.242 0.277 0.202
Ours (𝑧) 0.218 0.322 0.148 0.195 0.308 0.196 0.193 0.126 0.206 0.246 0.239 0.238 0.157
Ours (Dist) 0.220 0.322 0.150 0.194 0.310 0.195 0.193 0.127 0.205 0.245 0.239 0.239 0.158

Table 6. Standard image quality metrics (without changes in focal length): our proposed method performs
well on a variety of datasets. Additionally, our image quality metrics rival those of Mini-Splatting [Fang and
Wang 2024], even though only 5K fine-tuning iterations were used

Dataset Mip-NeRF 360 Tanks & Temples Deep Blending

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

StopThePop 27.304 0.815 0.211 23.226 0.846 0.171 29.929 0.908 0.231
3DGS 27.443 0.814 0.215 23.734 0.847 0.175 29.510 0.902 0.237

Mini-Splatting (𝑧) 27.326 0.821 0.215 23.308 0.835 0.200 29.994 0.907 0.243
Mini-Splatting (Dist) 27.227 0.821 0.214 23.084 0.834 0.198 30.148 0.909 0.239
Ours (𝑧) 27.294 0.823 0.212 22.901 0.836 0.197 30.333 0.912 0.242
Ours (Dist) 27.263 0.822 0.213 22.840 0.835 0.198 30.337 0.912 0.242
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Table 7. Detailed per-scene image metrics for all tested scenes (original focal length).

Dataset Mip-NeRF 360 Outdoor Mip-NeRF 360 Indoor Deep Blending Tanks & Temples
Scene Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room DrJ Playroom Train Truck

PSNR↑

3DGS 25.19 21.53 27.30 26.62 22.46 32.11 28.97 31.33 31.48 29.05 29.97 22.05 25.41
StopThePop 25.22 21.54 27.23 26.70 22.44 31.98 28.60 31.18 30.84 29.45 30.40 21.49 24.96
Mini-Splatting (𝑧) 25.21 21.46 26.89 27.21 22.65 31.48 28.55 31.11 31.38 29.47 30.52 21.56 25.06
Mini-Splatting (Dist) 25.22 21.61 26.91 27.22 22.69 31.35 28.52 30.68 30.84 29.64 30.66 21.33 24.84
Ours (𝑧) 25.28 21.57 26.77 27.19 22.76 31.40 28.65 31.18 30.84 29.81 30.85 21.20 24.61
Ours (Dist) 25.27 21.67 26.76 27.23 22.79 31.45 28.62 30.74 30.83 29.85 30.82 21.18 24.50

SSIM↑

3DGS 0.764 0.605 0.864 0.772 0.633 0.941 0.907 0.926 0.919 0.900 0.905 0.814 0.880
StopThePop 0.768 0.605 0.864 0.776 0.635 0.941 0.905 0.926 0.918 0.906 0.910 0.810 0.882
Mini-Splatting (𝑧) 0.772 0.625 0.847 0.805 0.653 0.939 0.904 0.924 0.921 0.903 0.910 0.798 0.873
Mini-Splatting (Dist) 0.773 0.626 0.847 0.805 0.653 0.939 0.904 0.923 0.920 0.905 0.912 0.796 0.873
Ours (𝑧) 0.775 0.628 0.845 0.808 0.654 0.939 0.906 0.927 0.921 0.908 0.915 0.798 0.874
Ours (Dist) 0.774 0.628 0.843 0.807 0.653 0.939 0.906 0.926 0.921 0.909 0.915 0.798 0.872

LPIPS↓

3DGS 0.210 0.335 0.107 0.214 0.326 0.200 0.198 0.125 0.216 0.240 0.234 0.205 0.144
StopThePop 0.204 0.332 0.106 0.208 0.316 0.199 0.197 0.125 0.214 0.231 0.231 0.202 0.140
Mini-Splatting (𝑧) 0.222 0.326 0.147 0.197 0.313 0.195 0.195 0.128 0.208 0.252 0.235 0.243 0.157
Mini-Splatting (Dist) 0.222 0.324 0.147 0.195 0.313 0.194 0.195 0.129 0.206 0.248 0.230 0.241 0.155
Ours (𝑧) 0.218 0.322 0.148 0.195 0.308 0.196 0.193 0.126 0.206 0.246 0.239 0.238 0.157
Ours (Dist) 0.220 0.322 0.150 0.194 0.310 0.195 0.193 0.127 0.205 0.245 0.239 0.239 0.158
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