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Figure 1: 3D generative face model. a) High-resolution 3D shape and albedo recovered from a StyleGAN2 generated image.
Novel views can be rendered using the estimated face model. b) Editing of 3D faces with text. This method allows for 3D
expression manipulation through guidance with the CLIP model.

Abstract
In recent years, there has been significant progress in

2D generative face models fueled by applications such as
animation, synthetic data generation, and digital avatars.
However, due to the absence of 3D information, these 2D
models often struggle to accurately disentangle facial at-
tributes like pose, expression, and illumination, limiting
their editing capabilities. To address this limitation, this
paper proposes a 3D controllable generative face model to
produce high-quality albedo and precise 3D shape lever-
aging existing 2D generative models. By combining 2D
face generative models with semantic face manipulation,
this method enables editing of detailed 3D rendered faces.
The proposed framework utilizes an alternating descent op-
timization approach over shape and albedo. Differentiable
rendering is used to train high-quality shapes and albedo

* equal contribution

without 3D supervision. Moreover, this approach outper-
forms most state-of-the-art (SOTA) methods in the well-
known NoW and REALY benchmarks for 3D face shape
reconstruction. It also outperforms the SOTA reconstruc-
tion models in recovering rendered faces’ identities across
novel poses by an average of 10%. Additionally, the paper
demonstrates direct control of expressions in 3D faces by
exploiting latent space leading to text-based editing of 3D
faces.

1. Introduction
The success of language models like GPT-3 [41], and

more recently, the release of text-to-image models like
GLIDE [35], DALLE-2 [43], or Imagen [45] have all con-
tributed to the enormous popularity of generative AI. Be-
sides generating images with unprecedented visual quality,
these models also show remarkable generalization ability to
novel texts with complex compositions of concepts, mak-
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ing them generalists for image synthesis. In the context
of faces, StyleGAN2 [28] has the capability of generat-
ing powerful face images that are frequently indistinguish-
able from reality. While these 2D generative models create
high-quality faces for many applications of interest, such as
facial animation [27, 55], expression transfer [30, 52, 36]
virtual avatars [34], these 2D models often encounter dif-
ficulties when it comes to effectively disentangle facial at-
tributes like pose, expression, and illumination. As a re-
sult, their capacity to edit such attributes is limited. More-
over, a 3D representation (shape, texture) is crucial to many
entertainment industries—including games, animation, and
visual effects— that are demanding 3D content at increas-
ingly enormous scales to create immersive virtual worlds.
Recall that many applications of interest require 3D assets
that are consumable by a graphics engine (e.g., Unity [54],
Unreal [11]).

To address this demand, recently, researchers have pro-
posed generative models to generate 3D faces [1, 50, 19].
Even though these algorithms perform well, the lack of di-
verse and high-quality 3D training data has limited the gen-
eralization of these algorithms and their use in real-world
applications [53]. Another line of research involves using
parametric models like 3DMM[3], BFM[39], FLAME[3],
and derived methods [15, 32, 10, 51, 46] to approximate the
3D geometry and texture of a 2D face image. While these
3D face reconstruction techniques can reasonably recover
low-frequency details, they typically do not recover high-
frequency details. Also, predicting high-resolution texture
maps that capture details remains an unaddressed problem.
Most of the works focusing in this direction either empha-
size mesh or texture. However, a generative 3D face model
that can generate both high-quality texture and a detailed
mesh with the same quality as 2D models is still missing.

This paper proposes a 3D generative model for faces
using a self-supervised approach that can generate high-
resolution texture and capture high-frequency details in the
geometry. The method leverages a pretrained StyleGAN2 to
generate high-quality 2D faces (see Fig. 1 a). We propose
a network, AlbedoGAN, that generates light-independent
albedo directly from StyleGAN2’s latent space. For the
shape component, the FLAME model [33] is combined
with per-vertex displacement maps guided by StyleGAN’s
latent space, resulting in a higher-resolution mesh. The
two networks for albedo and shape are trained in alternat-
ing descent fashion. The proposed method outperforms
SOTA methods in shape estimation, such as DECA [15] and
MICA [61], by 20% and 1.1%, respectively. It’s worth not-
ing that MICA only generates a neutral and frontal smooth
mesh, while the proposed algorithm can generate any ex-
pression. Fig. 1(a) shows how an image generated by Style-
GAN2 can be uplifted to 3D with a detailed shape and
albedo, being able to render realistic 3D faces. Finally,

given the 3D face asset, our algorithm can edit the face
in 3D. For example, Fig. 1(b) illustrates expression ma-
nipulation through text-based editing guided by the CLIP
model [40]. Briefly stated, our main contributions are:

1. A self-supervised method to leverage StyleGAN2 into
a 3D generative model producing high-quality albedo and
a detailed mesh. We introduce AlbedoGAN, a single-pass
albedo prediction network that generates high-resolution
albedo and decouples illumination using shading maps.

2. We show that our model outperforms existing meth-
ods in capturing high-frequency facial details in a mesh.
Moreover, the proposed method reconstructs 3D faces that
recover identity better than SOTA methods.

3. We propose a displacement map generator capable
of decoding per-vertex displacements directly from Style-
GAN’s latent space using detailed normals of the mesh.

4. Since our entire architecture can generate 3D faces
from StyleGAN2’s latent space, we can perform face edit-
ing directly in the 3D domain using the latent codes or text.

2. Related Work
Reconstructing a 3D Face from a single 2D image is an

ill-posed problem that has intrigued researchers for decades.
Blanz et al. [3] took the first significant step in this direc-
tion when they introduced 3D Morphable Models (3DMM)
[3] in 1999 as general face representation. Their work in-
spired decades of work in estimating parameters for 3DMM
to find a textured mesh that best fits an input 2D face. While
estimating parameters for parametric models like 3DMM
and its advanced versions like FLAME [33] has been the
bulk of the focus for researchers, there has also been a good
amount of work done in learning volumetric representations
(e.g., NeRF) for a face. In particular, the focus has been on
using Neural Implicit Representation [24, 17, 59, 44, 5, 60]
to learn density and radiance to represent a face. However,
it has been widely noticed that they are prone to generating
artifacts and consume a lot of time to render these detailed
representations. Furthermore, these methods do not gener-
ate a topologically uniform mesh, and therefore do not di-
rectly serve applications in graphic engines, face animation,
avatar creation, etc. Due to the above-mentioned reasons,
we do not consider implicit representation in our research.
In the following sections, we describe work that is related
to individual components of our framework.

2.1. Texture Generation for 3D Mesh

Most of the work done in synthesizing texture for a mesh
can be broadly divided into two parts: using a paramet-
ric texture model like 3DMM or Basel Face Model (BFM)
[15, 10, 32, 51] or a GAN-based approach [18, 20, 21, 23,
56, 31, 22, 7] to generate texture. Using a parametric model
BFM [39], works like [15, 10, 32, 51] learn an encoder to
predict the parameters that generate a texture that best fits



Figure 2: AlbedoGAN. Pose-invariant albedo, AGT , obtained by texture extraction and synthesis 3.1, is used to train Style-
GAN2 generator, GAb, for a given latent code z/w. We use a 3DMM fitting, image blending, and Spherical Harmonics to
extract AGT . Dreal and Did are introduced to generate realistic images and identity consistent albedo, respectively.

the visible part of the face. Since the model uses representa-
tion in low dimensional PCA-based space, they generate an
approximate texture that often lacks high-frequency details,
which correspond to low variation direction in the projected
latent space and do not lead to photo-realistic rendering.
Recently, with the advent of GANs, there are works that
leverage them to extract texture [18, 20, 31]. TBGAN [20]
trains a Progressive GAN to generate a high-quality texture
with a differentiable renderer in a supervised setting. On
the other hand, OSTeC [18] uses 3DMM as initialization
to generate a textured mesh and then uses GAN inversion
with StyleGAN2 to generate multiple views of this mesh
and extract texture. This is an extremely time-consuming
and takes several minutes per image. We propose Albedo-
GAN, which is able to generate high-quality texture in a
single pass in a time-efficient manner. AlbedoGAN gen-
erates textures that maintain identity over multiple poses -
where most previous methods struggle.

2.2. 3D Shape prediction from 2D Image

Similar to texture, Blanz et al.’s seminal work [3] can
represent a face mesh in a low-dimensional PCA-based
space. This led to the development of a huge corpus of work
[10, 51, 46, 32] in 3D face reconstruction focused on learn-
ing an encoder that could predict parameters for generating
shapes using 3DMM, given a 2D image. The encoder could
be learned in a self-supervised way with 2D image losses
[15, 32, 10, 51, 46], or with 3D supervision, [61]. After
3DMM[3], there have been newer parametric models BFM
[39] and FLAME [33], which have been learned from more
subjects and encode the structure of the face better. The ex-
plosive development of 3D Face Reconstruction led to the
creation of NoW benchmark [46] as a common ground for
comparison across 3D Face reconstruction methods. Cur-
rently, DECA [15], and MICA [61] show best reconstruc-

tion on NoW Benchmark. DECA’s architecture is inspired
by RingNet [46]. However, instead of 3DMM, DECA uses
FLAME [33], and it adds an encoder-decoder network that
learns to generate displacement maps to learn animatable
details in UV space. MICA [61], the current state-of-art
model, leverages ArcFace backbone [8] to learn the actual
shape of the face by regressing it on a high-quality 3D face
scan dataset[6, 16, 4].

3. AlbedoGAN Training

Albedo constitutes one of the crucial parts of a 3D face
model, since face appearance is largely dictated by it. To
generate high quality 3d models, we need to generate albedo
that generalize over pose, age, and ethnicity. However,
training such a diverse albedo generative model requires a
massive database of 3D scans, which is neither cost nor time
effective. An efficient way of extracting textures from ex-
isting 2D images is fitting a 3DMM and capturing a UV
mapped texture. However, this ”pseudo” texture does not
generalize well over poses nor disentangle shadows. In
this paper, we leverage 3DMM fitting, image blending,
and Spherical Harmonics lighting to capture high-quality
1024 × 1024 resolution albedo that generalizes well over
different poses and tackles shading variations.

This section describes albedo training, refer Fig. 2 for
an overview. The first step includes texture extraction and
correction, 3.1, followed by the use of a spherical har-
monics model to extract albedo from texture (Section 3.2).
Section 3.3 explains training AlbedoGAN - a StyleGAN2
model to generate albedo corresponding to the given latent
code w ∈ R18×512.



3.1. Texture Extraction and Correction

First, we establish a correspondence between the input
2D image I ∈ Rw×h×3 and the UV domain by taking or-
thogonal projection of a mesh fitted on the given image us-
ing a 3DMM [33]. Using this correspondence, we get the
RGB values for the UV texture and perform barycentric in-
terpolation to fill out the missing pixels.

Now, texture correction is performed to fill the occluded
areas by leveraging pose information. This happens by pro-
jecting the flipped input image and fitted mesh, and collect-
ing the pixels corresponding to the missing parts. These
pixels are blended to the original texture to get a complete
pose-invariant texture.

3.2. Albedo from Texture

As shown in Fig. 2, the next step includes obtain-
ing an albedo and shading map from the unevenly illumi-
nated texture. Following previous works [15, 10], we made
the following assumptions: (1) The illumination model is
Spherical Harmonics (SH), (2) light source is distant and
monochromatic, and (3) surface reflectance is Lambertian.
The shading map can thus be calculated as

Sij =
9∑
b=1

LbHb(Nij)

where, Hb : R3 → R are the SH basis function, Lb ∈
R3 are SH coefficients, and Nij ∈ R3 are surface normals.
The relation between albedo A ∈ Rw×h×3, texture T ∈
Rw×h×3, and shading map S ∈ R2 can then be defined as
Tij = Aij ⊙ Sij , where, ⊙ is the Schur product.

3.3. Training

In this section, we address the AlbedoGAN model train-
ing procedure. Later, the resulting model will be fine-tuned
during the shape and displacement map training process,
taking into account geometry and more sophisticated Phong
illumination model.

Our approach, AlbedoGAN, is built upon a generative
model that can synthesize face images corresponding to a
latent vector, to this end we selected StyleGAN2. This
model is best suited to our requirements as it uses a map-
ping network ML that maps an input noise vector z ∈ R512

to an intermediate latent vector w ∈ R18×512. This map-
ping, w = ML(z), adds the ability for manipulation and
better projection. Consequently, we use w as latent space
for AlbedoGAN.

Hence, face images are generated by randomly sampling
w using a pretrained StyleGAN2. The generated images act
as input, IStlGAN , see Fig.2. The same latent codes, w, are
used in the AlbedoGAN generator, to produce AAbGAN . As
shown in Fig.2, IStlGAN is passed through the texture ex-
traction, 3.1 and albedo extraction, 3.2, steps to obtain AGT .

This albedo is used as a ground truth for the training of the
real/fake discriminator, Dreal. Additionally, we constraint
AlbedoGAN to generate identity consistent albedos by in-
troducing an identity discriminator, Did. To this intent, we
use the features of a pretrained face recognition model [26]
F : Rw′×h′×3 → R512. Our identity loss is defined as
cosine distance between the identity features of predicted
albedo AAbGAN and AGT as:

Lid(AAbGAN ,AGT ) = 1− F (AAbGAN ).F (AGT )
||F (AAbGAN )||2||F (AGT )||2

(1)

4. Alternating Descent in Albedo and Shape

In this section, we describe our regression method to
3D shape given a face image and the Differentiable Ren-
dering, DR, based approach to fine-tune AlbedoGAN. This
fine-tuning process for AlbedoGAN takes into account ex-
pression, camera pose, and the Phong illumination model.

Unfortunately, jointly optimizing all the components
(shape, albedo, illumination, etc.) that produce the best ren-
dered face that is consistent with the input image is com-
putationally expensive. Thus, we propose using Alternating
Descent for optimization. First, we optimize the shape for
a few iterations while freezing AlbedoGAN. Next, Albedo-
GAN is fine-tuned using the updated 3D shape, with more
detailed normals of the shape. This alternating optimiza-
tion cycle is repeated throughout the course of the training
process. Next, we first describe albedo optimization, 4.1,
followed by shape optimization, 4.2.

4.1. Albedo optimization

To fine-tune AlbedoGAN using the information of the
3D shape and illumination model, we first assume we have
an estimate of a detailed 3D shape M′. As shown in Fig. 3,
given an estimated mesh M′, predicted albedo AAbGAN ,
pose p, and light l, we can generate a detail rendered im-
age Iren using DR, R as:

Iren = R(M′,AAbGAN ,p, l)

The overall loss function L is defined as a sum of the
following terms:

L = λsym recLsym rec+λidLid+λpercLperc+λlmkLlmk

Where each loss is defined as follows:
Symmetric Reconstruction Loss, Lsym rec: A simple

supervision function that encourages low-level similarity
in the predicted image and the corresponding ground truth
and symmetry in the estimated albedo. We use the Mean



Figure 3: Overview of our generative model. The AlbedoGAN generator, GAb, is used to synthesize albedo AAbGAN corre-
sponding to a latent code w. GStlGAN generates a 2D image, IStlGAN , given to the shape model, Eshape, to get a detailed
mesh, M’. Finally, a differentiable renderer (DR) is used to synthesize Iren from the mesh M′, albedo AAbGAN , lighting l,
and pose p. Losses between Iren and IStlGAN are used to train the shape model and the AlbedoGAN via Alternating Descent.

Squared Error (MSE) to calculate reconstruction error.

Lsym rec(Iren, IStlGAN ) =

MSE(IStlGAN , Iren) + MSE(I
′

StlGAN , I
′

ren)︸ ︷︷ ︸
Albedo symmetry consistency term

Where I
′

StlGAN is the flipped ground truth obtained
through StyleGAN2, and I

′

ren is the rendered estimated im-
age through flipping AAbGAN , pose p, and light l.

Identity Loss, Lid(Iren, IStlGAN ): This loss term is in-
troduced with the intent of making the AlbedoGAN gener-
ator learn to match the identity of the rendered face, Iren,
with the ground truth, IStlGAN . As in section 3.3, we use
a pretrained face recognition model [26] for feature extrac-
tion. The cosine distance, eq. 1, is used to calculate the
identity loss while fine-tuning the model.

Perceptual Loss, Lperc: This perceptual loss is intro-
duced with the goal of forcing AlbedoGAN to generate a
AAbGAN that matches the visual appearance of IStlGAN .
Motivated by the existing research, we selected a VGG16
based feature extractor [47], a pretrained face recognition
model. We use the output of relu3 3 as the image features.
The loss is calculated by the L2 distance between the fea-
ture vectors from Iren and IStlGAN .

Landmark Loss, Llmk: AlbedoGAN is also fine tuned-
using using 68 facial landmarks detected on the ground truth
and the rendered image to avoid misaligned generations.
We used a SOTA face landmark detection [57] to predict
68 landmarks on IStlGAN and Iren. The loss is calculated
using MSE between the two set of landmarks.

4.2. Shape Model and Optimization

We proceed with the shape optimization, while freezing
AlbedoGAN. We sample a latent vector w ∈ R18×512 and
use a pretrained StyleGAN2 model, GStlGAN , to gener-
ate a 2D face image, IStlGAN , and AlbedoGAN generator,

GAbGAN , to generate albedo, AAbGAN . Figure 3 describes
the detailed architecture of our shape model, Eshape. We
leverage ArcFace backbone [9] to predict the face shape (s),
expression (ψ), lighting (l), and camera pose (p) parameters
for the given image IStlGAN . The shape embedding vector
s ∈ R300, pose p ∈ R6, and expression ψ ∈ R50 parameters
are fed into a parametric face model that gives us a coarse
mesh representation (Mc) as described below:

Mc(s, ψ) = T + BSs + Bψψ (2)

where Mc represents the generated coarse mesh synthe-
sized by a 3DMM decoder. Specifically, we use FLAME
[33] as our mesh decoder, which generates a coarse mesh
with N = 5023 vertices. This coarse mesh is com-
puted by using a template mesh, T ∈ R3N , represent-
ing a mean human face and different principal components
Bs ∈ R3N×300 and Bψ ∈ R3N×50 corresponding to the
shape and expression terms respectively.

To capture high-frequency details in meshes, we learn
a displacement generator GDisp to augment the coarse
mesh, Mc, with a detailed UV displacement map DGeom ∈
[−0.01, 0.01]n×n. Recent research [2, 58] has shown that
StyleGAN’s latent space contains information about high-
frequency details of a face. Using this insight, we predict
displacement maps to capture expression and pose depen-
dent per vertex offsets. The latent code w is the same as
used in AlbedoGAN and the StyleGAN2 model. Finally,
we combine the displacement map along the vertex normals
of the mesh Mc to get a detailed mesh M′ by adding them
in the UV domain.

We use the detailed mesh, M′, along with the pre-
dicted pose p, light l parameters, and the synthesized albedo
AAbGAN to render an image Iren as described below:

Iren = R(Mc,AAbGAN ,p, l) (3)



We apply multiple 2D image-based losses, including
identity loss, perceptual loss, and landmark loss between
IStlGAN and Iren to optimize the mesh representation in a
self-supervised fashion. In addition to the losses, we also
calculate a shape center loss eq. 4 on images belonging to
identity i. In particular, eq. 4 tries to reduce the distance
between shape vector for all the images and their corre-
sponding mean µi. Besides this, we also perform L2 reg-
ularization, eq. 5, on predicted shape s, expression ψ, and
displacement maps DGeom that enforce a prior distribution
towards the mean face.

Lsc =
N∑
i=0

K∑
k=0

∥si,k − µi∥22 (4)

Lreg = ∥s∥22 + ∥ψ∥22 + ∥DGeom∥2F (5)

The overall loss function L is defined as a weighted sum:

L = λidLid+λpercLperc+λlmkLlmk+λscLsc+λregLreg

5. Experiments
This section describes the implementation details, quan-

titative, and qualitative evaluation of the shape and texture
reconstruction models, along with SOTA comparison.

5.1. Dataset

We randomly sampled 100K, 512-dimensional random
vectors z ∈ R512 from a Gaussian distribution and gen-
erated the corresponding w ∈ R18×512 from the Style-
GANs mapping network as w = ML(z). These interme-
diate latent vectors w are used to generate 100K images
∈ R1024×1024×3 from a pretrained StyleGAN2 [29] gen-
erator. To ensure diversity in the generated images across
ethnicity, expression, age, and pose; we followed the work
in [42]. The texture-preprocessing step (as described in Sec.
3.1) is used to get the complete GT-albedo corresponding to
all the samples in the dataset.

To train our shape model with 2D images, we chose 30K
of the previously sampled z vectors. Then we perform latent
space editing in the w space to generate a total of 11 images
(belonging to different expressions and poses) per identity
using StyleGAN2 implementation [42] of InterFaceGAN
[48]. We estimate 68 landmarks on all the GT images using
the FAN [57] landmark detection.

5.2. Implementation Details

Albedo Generation: PyTorch [37] is used as the im-
plementation framework on CUDA enabled system with
NVIDIA RTX A4500 GPUs. We use the PyTorch imple-
mentation of StyleGAN2 1 for albedo and image genera-
tion. To generate face images from StyleGAN2, we use the

1https://github.com/rosinality/stylegan2-pytorch

Figure 4: (a) Randomly generated albedo from Albedo-
GAN. (b) Patches of randomly generated albedo. Albedo-
GAN can generate high-quality albedo of 1K resolution.

official pretrained weights trained on the FFHQ dataset for
1024 × 1024 resolution. We use Adam optimizer to train
the AlbedoGAN with learning rate αgen = αdisc = 2e−3

and β1 = 0, β2 = 0.99. The generator was regularized af-
ter every 4 iteration, while the discriminator after every 16
training iterations.

In the first step, we train the AlbedoGAN from GT-
albedo and use the GAN loss and ID loss eq.1 for su-
pervision. Similar to StyleGAN2, for the GAN loss, we
use the element-wise Softplus, which can be defined as
Softplus(x) = 1

β ∗ log(1 + exp(β∗x)). The LID is cal-
culated between the predicted albedo from the generator
AAbGAN and the GT-albedo AGT . The λID was set to 1
during this training. We trained the model on 8 GPUs, and
it took around 32 hours for complete training (batch size
32).

This gave us a robust albedo generator capable of gen-
erating a pose-invariant albedo corresponding to a given
z ∈ R512 or w ∈ R18×512.

Optimizing Shape: We train our shape model, Eshape,
on the synthetically generated images by StyleGAN2 cap-
turing multiple images of the same identity across varying
expression & pose. We run a face detector [25] on the input
images and scale the face crops to a resolution of 224×224
before passing them to our shape model. The shape model
consist of an ArcFace backbone that is initialized to the
weights learned by [61] and a convolution-styled decoder
(GDisp) respectively. The whole pipeline is optimized us-
ing Adam Optimizer with a learning rate of 1e−4. The fi-
nal loss is calculated between rendered images Iren and GT
IStlGAN , where λid is set to 0.5, and λperc, λlmk, λsc and
λreg are set to 1, 5, 1 and 1e−4 respectively.

Fine-tuning AlbedoGAN using DR: Once we have a
pretrained AlbedoGAN and a good shape estimator, we now
fine-tune the AlbedoGAN. This makes the albedo gener-
ator learn to capture more details from the GT-face. Py-
Torch3D is used as the differentiable renderer in all our
experiments under this section. We kept using Lgan from
previous AlbedoGAN training but gave more gravity to the



Figure 5: Randomly generated coarse mesh, detailed mesh
and rendered faces from our model, for input 2D faces.

rendering losses. The rendering loss is calculated between
IStlGAN and Iren along with a symmetric reconstruction
loss between AGT and AAbGAN to maintain low-level con-
sistency in the fine-tuned albedo. λsym rec and λID were
set to 0.1 for albedo based losses. λsym rec, λID, λperc
and λlmk were set to 1, 1, 1, 0.5 for rendering losses, re-
spectively. We fine-tuned the model for another 48 hours,
keeping the batch size of 8. The results of randomly gener-
ated textures from our AlbedoGAN are shown in Fig. 4.

Once we fine-tune the AlbedoGAN, we again train the
shape model with updated albedo weights and repeat this
step multiple times until we get a final model that can
synthesize realistic-looking 3D faces corresponding to the
given 2D images.

Fig. 1(a), 5, 6 shows the reconstructed 3D faces gen-
erated from our model for multiple poses. It is interest-
ing to see how our model generalizes well over different
poses and generates realistic-looking 3D faces. Section B.3
in supplementary demonstrates lighting and pose control in
rendered faces using corresponding parameters and shad-
ing maps. Some additional results on testing our pipeline
on real-world images using GAN inversion can be seen in
supplementary section C.

5.3. Evaluation of Shape and Texture

5.3.1 NoW Benchmark - shape reconstruction

NoW benchmark [46] is a standard benchmark to evaluate
the accuracy of 3D meshes estimated from 2D images. It
consists of 2054 images for 100 test subjects across differ-
ent expressions, poses, and occlusions, split across two sets
for validation (20 subjects) and test (80 subjects). NoW
provides 3D ground truth meshes for each test subject, and
the predicted mesh is rigidly aligned with the ground truth
mesh using 3D face landmarks. The per-vertex error is then
used for all the subjects to compute the mean, median, and
standard deviation of the errors. Table 1 depicts the com-

parison of our model with the current SOTA methods, in-
cluding DECA and MICA. Fig. 6 illustrates the visual com-
parison among these methods. Our model outperforms the
DECA model by achieving a 23% better median error in
coarse mesh and a 20% better median error in the detailed
mesh. Our approach can reconstruct realistic-looking ren-
dered faces, and model accurate head shapes, especially for
faces with big heads. We also observe an improvement over
the MICA model that was trained on 3D face scans [6, 16, 4]
with 2300 subjects on the NoW validation set. As illustrated
in 6, our method produces a more detailed mesh, capturing
wrinkles, expression, pose and head shape correctly by only
training on synthetic images.

Table 1: Reconstruction error on the NoW Benchmark.
Method Median (mm) Mean (mm) Std (mm)

Validation Set
Deep3D [10] 1.286 1.864 2.361
DECA [15] 1.178 1.464 1.253
MICA [61] 0.913 1.130 0.948

Ours 0.903 1.122 0.957
Test Set

Deep3D [10] 1.11 1.41 1.21
DECA [15] 1.09 1.38 1.18

Ours 0.97 1.21 1.02
MICA [61] 0.90 1.11 0.92

5.4. REALY 3D Benchmark

We also evaluated our method on the most recent RE-
ALLY benchmark [14] for single-image 3D face reconstruc-
tion from frontal and side view images. Our results, as pre-
sented in Tables 2, demonstrate a significant improvement
over DECA by 15% and MICA by 18%. Our method also
stands in the top 3 (out of 18 methods) on the REALLY
benchmark challenge outperforming most of the existing
methods. The only two methods better than ours are HRN
[12] and Deep3D [13]. However, they both generate only
frontal mesh, while our method generates a complete head
model and is trained in an unsupervised setting.

5.4.1 Diversity metrics

One of the important features of a good 3D face model
is how diverse it’s synthesized meshes are. Similar to
prior works that generate 3D meshes [1, 50], we measure
global diversity as the mean vertex distance over all possible
pairs of n meshes. Table 3 reports the diversity values for
n = 1000 meshes synthesized by MICA[61], DECA[15]
and Deep3D[10].

As illustrated in Fig. 6, our model captures head shapes
better than DECA model which produces similar-looking
head shapes. We observe a significant improvement in di-
versity statistics over MICA that only predicts a smooth and
neutral mesh and was trained on limited 3D data.



Table 2: Single image reconstruction error on REALY
Benchmark for Frontal and Side-view images (lower is bet-
ter).

Method @nose @mouth @forehead @cheek @all
Front View
HRN 1.722 1.357 1.995 1.072 1.537
Deep3D 1.719 1.368 2.015 1.528 1.657
Ours 1.656 2.087 2.102 1.141 1.746
GANFit 1.928 1.812 2.402 1.329 1.868
DECA 1.697 2.516 2.394 1.479 2.010
PRNet 1.923 1.838 2.429 1.863 2.013
EMOCA 1.868 2.679 2.426 1.438 2.103
MICA 1.585 3.478 2.374 1.099 2.134
RingNet 1.934 2.074 2.995 2.028 2.258
Side View
HRN 1.642 1.285 1.906 1.038 1.468
Deep3D 1.749 1.411 2.074 1.528 1.691
Our 1.576 2.218 2.142 1.112 1.762
PRNet 1.868 1.856 2.445 1.960 2.032
DECA 1.903 2.472 2.423 1.630 2.107
EMOCA 1.867 2.636 2.448 1.548 2.125
MICA 1.525 2.636 2.448 1.548 2.125
RingNet 1.921 1.994 3.081 2.027 2.256

Table 3: Diversity values of randomly generated meshes for
various methods. Higher is better.

- Deep3D [10] DECA [15] MICA [61] Ours
DIV 0.18 1.13 0.21 1.67

Figure 6: 3D Face Reconstruction comparison with
DECA[15] & MICA [61]. DECA is unable to model head
shape accurately and provides a smooth texture. MICA only
outputs a smooth, neutral and frontal mesh. Our method
produces a more detailed mesh with photo-realistic texture,
capturing wrinkles, expressions and head shape accurately.
5.4.2 Evaluation of Rendered Faces

We evaluate the quality of texture by comparing qualita-
tively to a recently proposed method, OSTeC [18]. We
also quantitatively compare texture and rendered faces by
rendering it on a mesh with other methods, including Lift-
edGAN [49], DECA [15], and OSTeC [18].

Fig. 7 shows the visual comparison between OSTeC [18]
and our model. OSTeC uses latent optimization based GAN
inversion which adds random artifacts in the generated im-
age like the beard appearing on some patches of the face.
Furthermore, this leads to inconsistency while stitching tex-

tures across different poses.
For quantitative evaluation of our texture and rendered

faces, we randomly sampled 1K images from a pretrained
StyleGAN2 generator. We use the same set of z to generate
rendered 3D faces using our method. The corresponding
2D face images are used to perform 3D reconstruction using
other methods[15, 18, 49]. To compare how well the texture
preserves identity, we measure identity similarity between
the input image and the corresponding 3D faces rendered at
multiple poses, including the original pose, 0°, ±15°, ±30°,
and ±45°. The observations can be found in Table ??. As
inferred from the table, our method not only performs better
in capturing the identity for the front poses but also for a
large number of side poses. More evaluations can be found
in supplementary section A.

Method same pose 0° ±15° ±30° ±45°
LiftedGAN [49] 0.90 0.88 0.854 0.83 0.804

DECA [15] 0.869 0.799 0.76 0.69 0.63
OSTeC [18] 0.952 0.939 0.921 0.906 0.88

Ours 0.999 0.995 0.988 0.972 0.941

Table 4: ID similarity comparison between the input image
and the corresponding 3D face rendered at various poses.

Figure 7: Qualitative comparison of synthesized texture
and rendered results with OSTeC [18]. OSTeC produces a
smooth texture by stitching multiple images, often leading
to artifacts. Our approach can synthesize a better textured
mesh outperforming OSTeC in preserving the details.

5.5. 3D face manipulation

Once our end-to-end pipeline is trained and is able to
generate albedo and mesh corresponding to a z ∈ R512 or
w ∈ R18×512, it opens up an avenue for latent space manip-
ulations in 3D rendered faces. This section shows examples
of editing 3D faces directly from the latent space or text.

Latent space manipulation: Given a latent code w ∈
R18×512, we can get the modified latent code wedit ∈
R18×512 by wedit = w + αn, where n ∈ R512 is a vec-
tor orthogonal to the semantic boundary and α ∈ R is a
constant. More details on latent space manipulations using
semantic boundaries can be found in [48, 42]. Fig. 8 shows



Figure 8: Generating different expressions by manipulating
w ∈ R18×512. The first column in each row is the neutral
expression corresponding to randomly sampled w. The sub-
sequent columns show different expressions for the same
identity by varying w.

the result of latent space manipulations for generating dif-
ferent expressions of the same identity.

Text based 3D Face Editing: Similar to latent space
manipulations, we can perform text-based 3D face edit-
ing using Contrastive Language-Image Pretraining (CLIP)
models [40]. We used StyleCLIP [38] model to enable
text-based editing. The text-guided latent optimization and
latent residual mapper strategies of StyleCLIP are imple-
mented in w ∈ R18×512 space and make it easy for us to
plug into our pipeline. This paper shows results for the text-
guided latent optimization approach, which can be trained
for random text queries. Given a w for a face, StyleCLIP
can produce an updated latent code w′ ∈ R18×512 corre-
sponding to a given text query and input w. Fig. 1(c) illus-
trates some sample results generated for the text-based 3D
face editing. Refer to supplementary Section B.5 for more
results on text-based editing.

6. Conclusion and Future Work

In this paper, we attempt to develop a high-quality 3D
face generation pipeline. We propose AlbedoGAN that syn-
thesizes albedo and generalizes well over multiple poses
capturing intrinsic details of the face. Our approach gen-
erates meshes that capture high-frequency details like face
wrinkles. Comprehensive experiments demonstrate superi-
ority of our method over others in predicting detailed mesh
and preserving the identity in reconstructed 3D faces. As a
consequence of using StyleGAN2 based pipeline, we bring
style editing, semantic face manipulations, and text-based
editing in 3D faces.

While our pipeline can generate high-quality 3D faces
from StyleGAN2’s latent space, some issues still need to be
addressed. Mesh-based representations are unable to model
details like hair. We foresee exploiting topologically uni-
form mesh, and a NeRF-based approach should be able to
capture such facial features. We’ll extend our work to in-
corporate more complex illumination models.
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