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This chapter describes Segment-based SVMs (SegSVMs), a rfrawork for
event detection. SegSVMs combine energy-based structurpcediction, max-
imum margin learning, and Bag-of-Words (BoWs) representaton. Unlike
traditional approaches for event detection based on DynarniBayesian Net-
works, the learning formulation of SegSVMs is convex, and th inference
over multiple events can be e ciently done in linear time. Beyond detecting
a single event, SegSVMs can be extended to solve two relaljvenexplored
problems in computer vision: early event detection and seguce labeling of
multiple events. We illustrate the bene ts of SegSVMs in searal computer
vision applications namely facial action unit detection, erly recognition of
hand gestures, early detection of facial expressions, aneéguence labeling of
human actions.
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Introduction

Event detection (ED) is a cornerstone in many important applications, from
video surveillance (Piciarelli et al., 2008) to motion anaysis (Aggarwal
and Cai, 1999) and psychopathology assessment (Cohn et al2009). ED
refers to the task of localizing and recognizing the occurmeces of temporal
patterns that belong to some prede ned target classes. Examles of target
event classes are human actions (Ke et al.,, 2005), sport evin (Efros
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et al., 2003; Xu et al., 2003), and facial expressions (Lucegt al., 2006;
Bartlett et al., 2006; Zhu et al., 2009; Valstar and Pantic, 2007). ED is
di erent from and harder than event recognition. ED in conti nuous time
series involves both localization and recognition. Event ecognition systems,
such as those from Yamato et al. (1992), Brand et al. (1997), Grelick et al.
(2007), Sminchisescu et al. (2005), and Laptev et al. (2008)nly need to
classify pre-segmented subsequences that correspond toheoent events.

ED in video is a challenging problem. Several highly importat challenges
are to: (1) accommodate large variability of human behavioracross subjects;
(2) train classi ers when relatively few examples for each eent are present;
(3) recognize events with subtle human motion; (4) model the emporal
dynamics of events, which can be highly variable; and (5) degrmine the
beginnings and the ends of the events.

Existing approaches for ED are typically based on segment eksi cation
or Dynamic Bayesian Networks (DBNs). Segment classi cation works by
classifying candidate temporal segments (e.g., Piciardllet al. (2008); Vas-
silakis et al. (2002); Nowozin et al. (2007); Shechtman andrani (2007)).
Although segment classi cation has been widely used for EDjt has sev-
eral limitations. First, this approach classi es each canddate segment in-
dependently; it makes myopic decisions (Wang et al., 2006) rad requires
post-processing (e.g., to handle overlapping detections)Second, the seg-
ment classi cation approach often has di culties for accur ate localization
of event boundaries (Wang et al., 2006), due to the ine ective use of neg-
ative examples in training. Negative examples are segmentthat misalign
with target events, and they are either ignored (e.g., (Shelstman and Irani,
2007; Bobick and Wilson, 1997)) or required to be disjoint fom the positive
training examples (e.g., (Ke et al., 2005; Laptev and Perez2007)). In both
cases, segments that partially overlap with positive examfes are not used in
training; those segments, however, are candidates for inaarate localization
at test time. Another popular approach for ED is to use a variant of DBNs.
However, DBNs typically lead to a high-dimensional optimization problem
with multiple local minima. Furthermore, generative models such as HMMs
and variants, have limited ability to model the null class (no event or unseen
events) due to the large variability of the null class.

In this chapter, we propose Segment-based SVMs (SegSVMs) tddress
the limitations of existing ED methods. SegSVMs combine stuctured predic-
tion, maximum margin learning, and Bag-of-Words (BoW) representation.
SegSVMs have several bene ts for ED. First, SegSVMs use ergyr-based
structured prediction because detecting semantic eventsni continuous time
series is inherently a structured prediction task. Given a tme series, the de-
sired output is more than a binary label indicating the presence or absence
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Most constraining training
sample

Figure 1.1 : During testing, the events are found by e ciently searching over the
segments (position and length) that maximize the SVM scoreDuring training, the
algorithm searches over all possible negative segments tdantify those hardest to
classify, which improves classi cation of subtle events.

of target events. It must predict the locations of target events and their asso-
ciated class labels, and energy-based structured predicth provides a prin-
cipled mechanism for concurrent top-down recognition and lbttom-up tem-
poral localization (see Fig. 1.1). Second, SegSVMs model rigoral events
using the BoW representation (Lewis, 1998; Sivic and Zissenan, 2003).
The BoW representation requires no state transition model,eliminating the
need for detailed annotation and manual de nition of event dynamics. This
representation can model and detect events of di erent lenths, removing
the necessity of multi-size templates or multi-scale procgsing. BoW repre-
sentation is not as rigid as template matching or dynamic time warping;
it tolerates errors in misalignment, and it is robust to the impreciseness
in human annotation. Finally, SegSVMs are based on the maximmm margin
training (Taskar et al., 2003; Tsochantaridis et al., 2005) which learns a dis-
criminative model that maximizes the separating margin betveen di erent
event classes. Maximizing the separating margin yields cksi ers that are
less prone to over- tting. Furthermore, the learning formulation of SegSVMs
is convex and extendable.

Beyond ED, SegSVMs can be extended to address the problems eérly
event detection and sequence labeling of multiple events. Aemporal event
has a duration, and by early detection, we mean to detect the eent as
soon as possibleafter it starts but before it ends. Figure 1.2 illustrates
the problem of early detection of an smile facial event. WhileED has been
studied extensively, little attention has been paid to early detection, even
in the broader literature of computer vision. In Section 1.3 we will describe
an extension of SegSVMs for early event detection, by traimg them to
recognize partial events.

The last section of this chapter presents another extensiorof SegSVMs
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Figure 1.2 : How many frames do we need to detect a smile reliably? Can weven
detect a smile before it nishes? Existing event detectors g trained to recognize
complete events only; they require seeing the entire eventof a reliable decision,
preventing early detection. We propose a learning formulaibn to recognize partial
events, enabling early detection.

| Jep——r———— (Y ——— [Py Y p———— Pl Tp——

160# %& () 0)-+$F#  %&(# 0)-+.%

Figure 1.3 : Sequence labeling factorizes a time series into a set of naverlapping
segments and recognizes their classes. In this gure, a fadivideo is labeled as a
sequence of expressions.

for sequence labeling of multiple events. Sequence labefjrfactorizes a time
series into a set of hon-overlapping segments and assigns as$ label to each
segment. Recall that sequence labeling system assigns a uané& semantic
label to each frame, while an ED system may assign none or mufile labels.
Figure 1.3 shows an example of sequence labeling. While thegblems are
slightly di erent, SegSVMs can be extended to solve the segence labeling
problem too.

1.2 Structured prediction for event detection
This section formulates ED as a structured prediction probem.
1.2.1 Event detection as a structured prediction problem

Consider a time seriesX, and suppose that we need to detect a target event
of which the length is bounded bylin and Imax . We denote Z(t) be the set
of length-bounded time intervals from the 1%t to the t™ frame:

Zt)=f[s;e]2N%1 s e tlmn e s+1 Imaxgl[fg
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Herej j is the length function. For a time seriesX of length |, Z(I) (or Z for
brevity) is the set of all possible locations of an event. Theempty segment,
z = ;, indicates no event occurrence. For an intervalz = [s;€] 2 Z, let X,
denote the subsegment oKX from frame s to e inclusive.

Let g(X) denote the output of the detector. We will learn the mapping g
as in the structured prediction framework (Tsochantaridis et al., 2005; Bakir
et al., 2007; Blaschko and Lampert, 2008) as:

g(X) =argmax f (Xz; ): (1.2)
z27(l)

Here,f (X ,; ) is the detection score of segmenX ,, and is the parameter
vector of the score function. The output of the detector is dened as the
segment that maximizes the detection score. We assume heréndt each
sequence contains at most one occurrence of the event to be tdeted.
This can be extended tok-or-fewer occurrences (Nguyen et al., 2010). The
detector searches over all locations and temporal scalesofin Inin t0 Imax -
The output of the detector may be the empty segment, and if it is, we report
no detection.

1.2.2 Learning and inference

Let (X1:z1); (XM z") be the set of training time series and their as-
sociated ground truth annotations for the events of interes. We assume
each training sequence contains at most one event of interesas a training
sequence containing several events can always be dividedarsmaller subse-
quences of single events. Thus' = [s'; €] consists of two numbers indicating
the start and the end of the event in time seriesX'.

We consider a linear detection score function, where the dettion score is
a linear combination of the features:

wh' (X,)+ b ifz6 ;;

f(X5; )= 1.2
(Xzi ) 0 otherwise. (1.2

Here, ' (X;) is the feature vector for segmentX, and = [w';b]. For
brevity, hereafter we usef (X;) instead of f (X;; ) to denote the score
of segmentX ;. The function parameters can be learned using Structured
Output SVM (SOSVM) (Taskar et al., 2003; Tsochantaridis et al., 2005):
X

min. Sjwiiz+ = (L.3)

w;f '92 n i-1

st.f(Xy) f(Xy+( Z;z2) '8z2Zand ' 08
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Here, ( z';z) is a loss function that decreases as a label approaches the
ground truth label Z'. Intuitively, the constraints in Eq. (1.3) force the score
of f () to be higher for the ground truth label z' than for any other value of
z, and moreover, to exceed this value by a margin equal to the lessassociated
with labeling z.

This optimization problem is convex, but it has an exponentially large
number of constraints. A typical optimization strategy is constraint gen-
eration (Tsochantaridis et al., 2005), which is theoretically guamnteed to
produce a global optimal solution. Constraint generation & an iterative pro-
cedure that optimizes the objective w.r.t. a smaller set of onstraints. The
constraint set is expanded at every iteration by adding the nost violated
constraint. Thus at each iteration of constraint generation, given the current
value of w, we need to solve:

2 =argmaxf ( Z;z)+ f (X))g: (1.4)
227
Thus, for the feasibility of the training phase, it is necessry that (1.4) can
be solved e ectively and e ciently at every iteration. It is worth noting that
this inference problem is di erent from the one for localizing an event:

2 = argmax f (X1): (1.5)
z27
The optimization of (1.4) & (1.5) depends on the feature repesentation
' (X32). In the next section, we describe two types of signal represntation
that render fast optimization.

1.2.3 Segment features using Bag-of-Words representation

We consider the feature mapping' (X;) as the histogram of temporal
words (Nguyen et al., 2009). A temporal dictionary is built by applying

a clustering algorithm to a set of feature vectors sampled fom the training

data (Sivic and Zisserman, 2003). Subsequently, each feate vector is
represented by the ID of the corresponding vocabulary entry Finally, the

feature mapping' (X ;) is taken as the histogram of IDs associated with the
frames inside the interval z. Let X; be the feature vector associated with
the i frame of signal X, and let G denote the clusterj of the temporal

dictionary. The feature mapping is de ned as:

X
"X =01 3 alen@]T v = “iv i = (Xi2G):  (1.6)
i2z
Here d is the number of clusters, and [1; ;' 4]" is the histogram of

temporal words located within segment E; €] of signal X..
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In this work, instead of using hard quantization where each fame is
associated with only one cluster, we propose to ussft quantization instead:

X
"X =["1 talen@]T; = Yiis i = k(Xxisgy): (1.7)
i2z

Heref ¢ g are cluster centers, andk( ; ) is the kernel function that measures
the similarity between the frame x; to the cluster centerc;. ' j measures the
total similarity of the frames inside the segmentz to the cluster center c; .

Notably, the vectors f cjg do not need to be the cluster centers. They can
be chosen to be any set of representative vectors. For exanglf ¢; g can be
taken as the support vectors of a frame-based SVM trained to idtinguish
between individual positive and negative frames. In this cae, our method
directly improves the performance of frame-based SVM by radarning the
weights to incorporate temporal constraints. To see this, onsider the score
function of frame-based SVM. For a framex; of a given signal X, the
SVM score is of the formvT' (x;) + b. It has been shownF;hatv can be
expressed as a linear combination of the support vectgry = Jd 1 g (g):
Thus the SVM score for framex; is: v'' (xj) + b= i=1 Jk(x.,c,)+ b:
E{Iean}yhlle the decision function of structured learning isw'"' (X;)+ b=

i=s j=1 WiK(Xi;Cj) + Was1 len(z) + b:
pF For both feature mappings de ned in ng (1 6) and Eq. (1.7), let a; denote

11 Z1 W' ji + Wger. Thus wT' (X ;) = pi= . The label 2 that maximizes

(X)is: 2 = [5;8] = argmax; s o ;-sa&: There exists a linear time

algorithm (Nguyen et al., 2009) for this optimization probl em. Similarly, the
label 2 that maximizes ( z';z)+ wT' (X1) can be found as:

( X
=58 =argmax ( Z';[s;€)+ & (1.8)

1se t=s

This can be conveniently solved using exhaustive search, oit can be
e ciently optimized by means of a branch-and-bound algorithm (Lampert
et al., 2008; Chu et al., 2012).

1.3 Early event detection

The ability to make reliable early detection of temporal events has many
potential applications in a wide range of elds, ranging from security (e.g.,
pandemic attack detection), environmental science (e.g.tsunami warning)
to health care (e.g., risk-of-falling detection) and roboics (e.g., a ective
computing). While temporal ED has been extensively studied early detec-
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tion is a relatively unexplored problem. By early detection, we mean to
detect the event as soon as possiblafter it starts but before it ends, as il-
lustrated in Fig. 1.2. To see why it is important to detect events before they
nish, consider a concrete example of building a robot that @n a ectively
interact with humans. Arguably, a key requirement for such arobot is its
ability to accurately and rapidly detect human emotional states from facial
expressions so that appropriate responses can be made in anily manner.
More often than not, a socially acceptable response is to inrate the current
human behavior. This requires facial events such as smilingr frowning to
be detected even before they are complete; otherwise, the itation response
would be out of synchronization. However, the learning fornulation provided
in Sec. 1.2 does not train detectors to recognize partial evis. Consequently,
using this formulation for Early Event Detection (EED) woul d lead to un-
reliable decisions as we will illustrate in the experimenté section.

This section proposes Max-Margin Early Event Detectors (MMED), a
novel formulation for training event detectors that recognize partial events,
enabling early detection. MMED is based on SOSVM (Taskar et &, 2003;
Tsochantaridis et al., 2005), but extends it to accommodatethe nature of
sequential data. In particular, we simulate the sequential frame-by-frame
data arrival for training time series and learn an event detestor that correctly
classi es partially observed sequences. Fig. 1.4 illustitas the key idea behind
MMED: partial events are simulated and used as positive traning examples.
It is important to emphasize that we train a single event detector to
recognizeall partial events. But MMED does more than augment the set
of training examples; it trains a detector to localize the temporal extent
of a target event, even when the target event has not yet nisked. This
requires monotonicity of the detection function with respect to the inclusion
relationship between partial events|the detection score (con dence) of a
partial event cannot exceed the score of an encompassing pe event.
MMED provides a principled mechanism to achieve this monotaicity, which
cannot be assured by a naive solution that simply augments tb set of
training examples.

1.3.1 Learning with sequential data

To support early detection of events in time series data, we mpose to
use partial events as positive training examples (Fig. 1.4) In particular,
we simulate the sequential arrival of training data as follavs. Suppose the
length of X' is I'. For each timet = 1; ;I', let z} be the part of event
Z' that has already happened, i.e.,z} = z'\ [1;t], which is possibly empty.
Ideally, we want the output of the detector on time seriesX' at time t to
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Figure 1.4 : Given a training time series that contains a complete eventwe simulate
the sequential arrival of training data and use partial everis as positive training
examples. The red segments indicate the temporal extents dhe partial events. We
train a single event detector to recognizeall partial events, but our method does
more than augment the set of training examples.

be the partial event, i.e., g(X},,)) = 2z{: Note that g(X [17) is not the output
of the detector running on the entire time seriesX'. It is the output of the
detector on the subsequence of time serieé' from the rst frame to the tt"
frame only, i.e.,

9(X [1y) = argmax f (X3): (1.9)
z27Z(t)
The desired property of the score function is:f (X iz{) f (X)) 8z 2 Z(t):
This constraint requires the score of the partial eventz; to be higher than
the score of any other time series segmert that has been seen in the past,
z [1;t]. This is illustrated in Fig. 1.5. Note that the score of the partial
event is not required to be higher than the score of a future sgment.

As in the case of SOSVM, the previous constraint can be requad to
be well satis ed by an adaptive margin. This margin is ( z!;z), the loss
of the detector for outputting z when the desired output is z} (in our
case (z2)=1 jzzjizjajzzjj). The desired constraint is: f (X iz;) f (X 'Z)+
( z{;z) 8z 2 Z(t): This constraint should be enforced for allt =1; ;I
As in the formulations of SVM, constraints are allowed to be volated by
introducing slack variables, and we obtain the following lerning formulation:

minimize Zjjwjj? + e (1.10)
mmize SIwit e .

. . . [ .
s.t.f(X'Z{) fXL)+ ( z;2) — 8i;8t=1 I';822 Z(1):

iz

77

(1.11)

Here j j denotes the length function, and % is a function of the

proportion of the event that has occurred at time t. % is a slack vari-
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Figure 1.5 : The desired score function for early event detection: the amplete event
must have the highest detection score, and the detection sce of a partial event
must be higher than that of any segment that ends before the peial event. To
learn this function, we explicitly consider partial events during training. At time
t, the score of the partial event is required to be higher than he score of any
past segment; however, it is not required to be higher than tle score of any future
segment.

able rescaling factor and should correlate with the importance of correctly
detecting at time t whether the eventz' has happened. () can be any ar-
bitrary non-negative function, and in general, it should be a non-decreasing
function in (0;1]. In our experiments, we found the following piece-wise
linear function a reasonable choice: (0) = 1; (x) = 0 for 0 < x ;

(xX)=(x )=( ) for <x ;and (x)=1for <x 1. Here,
and are tunable parameters. (0) = (1) emphasizes that true rejection
is as important as true detection of the complete event.

This learning formulation is an extension of SOSVM. From this formula-
tion, we obtain SOSVM by not simulating the sequential arrival of training
data, i.e., to sett = |' instead oft =1; :I' in Constraint (1.11). Notably,
our method does more than augment the set of training examplg it enforces

the monotonicity of the detector function, as shown in Fig. 16.

For a better understanding of Constraint (1.11), let us analyze the con-
straint without the slack variable term and break it into thr ee cases: i)
t<s' (event has not started); ii) t s', z=; (event has started; compare
the partial event against the detection threshold); and iii) t s';z 6 ;
(event has started; compare the partial event against any no-empty seg-
ment). Recall f (X.) =0 and z; = ; for t <s', cases (i), (i), (iii) lead to
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Figure 1.6 : Monotonicity requirement { the detection score of a partial event
cannot exceed the score of an encompassing partial event. MBD provides a
principled mechanism to achieve this monotonicity, which @nnot be assured by
a naive solution that simply augments the set of training exanples.

Constraints (1.12), (1.13), (1.14), respectively:

f(X.) 18z227(s 1)nfg: (1.12)
f (X izi) 18t s'; (1.13)
f(XiZi[) f(X)+ ( z;2)8 s:z2Z(t)nfg: (1.14)

Constraint (1.12) prevents false detection when the event hs not started. Con-
straint (1.13) requires successful recognition of partialevents. Constraint (1.14)
trains the detector to accurately localize the temporal exent of the partial events.

The proposed learning formulation Eq. (1.10) is convex, butit contains a large
number of constraints. As in Sec. 1.2.2, we propose to use cstnaint generation in
optimization (Tsochantaridis et al., 2005). In our experiments described in Sec. 1.5,
constraint generation usually converges within 20 iteratbns. Each iteration requires
minimizing a convex quadratic objective. This objective isoptimized using Cplext
in our implementation.

1.3.2 Loss function and empirical risk minimization
In Sec. 1.3.1, we have proposed a formulation for training edy event detectors.

This section provides further discussion on what exactly isbeing optimized. First,
we briey review the loss of SOSVM and its surrogate empiricé risk. We then

1. www-01.ibm.com/software/integration/optimization/  cplex-optimizer/
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describe two general approaches for quantifying the loss @f detector on sequential
data. In both cases, what Eqg. (1.10) minimizes is an upper bouad on the loss.

As previously explained, ( z;2) is the function that quanti es the loss associated
with a prediction 2, if the true output value is z. Thus, in the setting of oine
detection, the loss of a detectorg( ) on a sequence-event pair X ;z) is quanti ed
as ( z;9(X)). Suppose the sequence-event pairs(; z) are generated according to
some distribution P (X ;z), the loss of the detectorg is

z

Rirve (9) = < 7 ( z;9(X))dP(X;2): (1.15)

However, P is unknown so the performance ofg(:) is described by the empirical
risk on the training data f(X';z')g, asls_ymlng they are generated i.i.d according to
P. The empirical risk is Remp (9) = . ( Z';9(X"): It has been shown that
SOSVM minimizes an upper bound on the empirical riskRey,, (Tsochantaridis
et al., 2005).

Due to the nature of continual evaluation, quantifying the loss of an online
detector on streaming data requires aggregating the lossesaluated throughout the
course of the data sequence. Let us consider the loss assoethwith a prediction

2= g(X|yy) for time seriesX' attime t as ( z;2) % . Here ( zi;2) accounts

for the dierence between the output z and true truncated event z}. % is
the scaling factor; it depends on how much the temporal eventz' has happened.
Two possible ways for aggregating these loss quantities ituse their maximum or
average. They lead to two di erent empirical risks for a set d training time series:
. 1 X : . jzi]
Rmax (9) =~ max (z;9(Xjy) ﬁ ;
i=1

Rian @= © mean ( zhio(Xhy) 20
mean n - { Ty [1;t] jZij
In the following, we state and prove a proposition that estalishes that the
learning formulation given in Eq. (1.10) minimizes an upperbound of the above
two empirical risks.
Proposition : Denote by (g) the Igpnmal solution of the slack variables in
Eqg. (1.10) for a given detectorg, then = ,” 1 " is an upper bound on the empirical

rISkS Rmax (g) and Rmean (g)
Proof : Consider Constraint (1.11) with z = g(X i[l;t]) and toggt_her with the
fact that f (X! f (X iz{)’ we have ' ( z1;9(X (1) 120 8t: Thus

iz']
. 4 Y P . , _

C maxd (Z0(X ) g7 g Hencer L ' Ry (9)  Riéan (9):
This completes the proof of the proposition. This propositon justi es the objective
of the learning formulation.

9(X {4 ))
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1.4 Sequence Labeling

Another important problem in time series analysis is sequeoe labeling, which
factorizes a time series into a set of non-overlapping segmes and assigns a class
label to each segment. Sequence labeling is related to ED aiiids often used for ED.
But these two problems are di erent. A sequence labeling sym assigns a unique
semantic label to each frame, while an ED system may assign nar multiple labels.
Sequence labeling has been shown to be useful in a wide randeapplications, from
natural language processing (Rabiner, 1989) to o ce activiy understanding (Brand
and Kettnaker, 2000) and animal behavior analysis (Oh et al, 2008).

Most existing techniques for sequence labeling are based @nobabilistic hidden-
state models, and labeling a time series is equivalent to néhg the sequence of
event labels that yields the highest probability. Brand and Kettnaker (2000) use
Hidden Markov Models (HMMs) (Rabiner, 1989) for understanding o ce activities.
Xu et al. (2003) use multi-layer HMMs (Rabiner, 1989) to analyze baseball and
volleyball videos. Oh et al. (2008) and Fox et al. (2009) use ariants of Switching
Linear Dynamical Systems (SLDS) (Pavlovic et al., 2000; Palovic and Rehg, 2000)
to analyze human and animal behavior. Valstar and Pantic (2@7); Koelstra and
Pantic (2008); Tong et al. (2007); Shang and Chan (2009); Chag et al. (2009)
use Dynamic Bayesian Networks (DBNSs) for detecting facial gents, while Laxton
et al. (2007) design a hierarchical structure based on DBNsd decompose complex
activities. Although these generative methods have been siwn to be e ective in
their respective scenarios, they have limited ability to madel the null class (i.e., no
event, unseen event, or anything that we do not have a label 19 due to the large
variability of the null class. Conditional Random Fields (CRFs) (Laerty et al.,
2001) are the discriminative alternatives to HMMs, and they have been successfully
used for a number of applications such as detection of highght events in soccer
videos (Wang et al., 2006). CRFs, however, cannot model longange dependencies
between labels (Sarawagi and Cohen, 2005), disabling the esof segment-level
features. CRFs can be extended to account for higher-order @pbendencies, but
the computational cost increases exponentially with the dque size. Semi-Markov
CRFs (Sarawagi and Cohen, 2005) have lower computational @b, but they also
require short segment lengths (Okanohara et al., 2006). Neartheless, CRF-based
models, like HMMs or any other hidden-state model, suer the drawbacks of
needing either an explicit de nition of the latent state of all frames, or the need
to simultaneously learn a state sequence and state transibn model that ts
the data, resulting in a high-dimensional minimization problem with typically
many local minima. This section develops a multi-class extesion of Seg-SVMs
for sequence labeling, which simultaneously performs tengral segmentation and
event recognition in time series.
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Figure 1.7 : Joint segmentation and recognition process { we need to ndthe
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1.4.1 Structured prediction for sequence labeling

Our goal is to factorize a time series into a sequence of evenand recognize their
classes. Suppose there arm classes of events. We will discuss how to learn the
detectors in Section 1.4.2, but assume for now that the detdors f w; g}“zl have been
learned. These detectors can be used independently to deteeach class of target
events in turn. This works well for many applications such asfacial Action Unit
(AU) detection. In many other applications, however, knowledge about the presence
or absence of a particular event constrains on those of any ber events, just like
drinking and kissing do not occur together. This constraint can be incorporated in
the joint segmentation and recognition process by nding a ®t of change points
S1: ;Sk+1 (see Fig. 1.7) that:

X
minimize t; (1.16)
Kistiye; ¢ O t=1

S.t. Imin St+1 St Imax 8t s1=0;sk+1 = len(X);
(Wy1 Wy)TI (X (S[ 3St+1 ]) 1 t 8t1y 6 yt

Observe that the number of segmentsk is not known in advance and, therefore,
needs to be optimized over. In the above formulation,ly, and lhax are the
minimum and maximum lengths of segments, which can be infeed from training

data. Here X (s, 5, ,, ] denotes the segment of time serieX , taken from frame s; +1

to frame s;41 inclusive. len(X) denotes the length of time seriesX.. W;',—' (X(siisian 1)

is the SVM score for assigning segmenX (s, s, ,, ; to classy. What we propose is to
maximize the di erence between the SVM score of the winning assy; and that

of any other classy 6 vy;, ltering through the Hinge loss. The idea is to seek a
segmentation in which each resulting segment is assigned dass label with high
con dence. This is dierent from what was proposed by Shi et d. (2008), who
maximize the total SVM scores:

H H TI .
m%[r;?tlzet:l Wy " (X(syis0:27); St (1.17)
Imn  Ste1 St lmax 8t S1=0;Sca = len(X);
Di erent from the above formulation, our segmentation crit erion, Eq. (1.16), re-

quires suppressing the non-maximum classes. To see the drence between these
two criteria, consider breaking a time seriesAB in Fig. 1.8 at either M or N. For
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Figure 1.8 : Which segmentation is preferred, breaking time seriesAB at M or
N ? Suppose there are only two classes, SVM scores of the rst drsecond class for
corresponding segments are printed in red and blue, respdetly. Our segmentation
criterion prefers to cut at N because the resulting segments can be con dently
classi ed.

simplicity, suppose there are only two classes, and the SVMceres of the rst and

second class for some segments in Figure 1.8 are in printed imderlined and over-

lined, respectively. The segmentation criterion of Eq. (117) would prefer to divide

AB at M because it leads to higher total SVM scores of the winning clsses (total

score of 35 = 2.0+ 1.5, 2.0 from segmentAM and 1:5 from MB ). On the other

hand, our segmentation criterion does not prefer to cut atM because it cannot
con dently classify the resulting segments. To see this, cosider the segmentAM ,

even though the SVM score of the winning class, class 1, is tigthe SVM score
of the alternative, class 2, is also similarly high. Our promsed criterion seeks the
optimal segmentation that maximizes the di erence betweenthe SVM scores of the
winning class and the next best alternative, Itering throu gh the robust Hinge loss.
As we will show in Subsection 1.4.2, our segmentation critéon optimizes the same
objective as that of the training formulation.

1.4.2 Maximum-margin learning for sequence labeling

We now describe how to learnw;  ;wp, from a collection of training time series
X1 ;X" with known segmentation and class labels, i.e., the change gints
between actions 0 =s| < < sj.4; = len(X") and the associated class
labels y!; ;y,i(i 211, ;mg are provided (see Fig. 1.7). We can use multi-class
SVM Crammer and Singer (2001) to train a model for temporal ations:

1 X cxX X
minimize A i+ = 5 (1.18)
wiig 0 4m, i=1 t=1
sto(wy  wy)" (Xissi, ) 1 18ty 6y (1.19)
Constraint (1.19) requires segmentXi(Si s 10 belong to classy; with high con -
o t+1

dence; in other words, the SVM score for clasy; should be relatively higher than
that of any other class by a large margin.f |g are slack variables which allow for
penalized constraint violation. C is the parameter controlling the trade-o between
a large margin and less constrained violation.
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1.4.3 Dynamic programming algorithm for sequence labeling

Given the parametersfw; g, , the inference for Eq. (1.16) can be solved using a
dynamic programming algorithm, which makes two passes ovethe time seriesX .
In the forward pass, at frameu (1 u len(X)), it computes the best objective
value for segmenting and labeling truncated time serieX (., (ignoring frames from
u+1 onward), i.e.

X
h(uy=  min t; (1.20)
Kistiye; t O
t=1
S.t. Imin St+1 St Imax 8t; S1=0;Sk+1 = U;

(Wy[ Wy)T' (X(st St+1 ]) 1 t 8t;y 6 Yi:
The forward pass computesh(u), as well asl(u), for u=1; ;len(X) using the
recursive formulas:

h(u) = _minl f (u;)+ h(u g, = argmin f (u;)+ h(u g

min ma: | min I Imax

Here (u;l) denotes the slack value of segmenK (, 1, i.e.

(h=maxfo;l (wy wy)" Xu )0 (1.21)
where
g = argryax wy' (X u);and y-= argg‘wax Wy (X ) (1.22)
y

The backward pass of the algorithm nds the best segmentatio for X, starting with
sk+1 = len(X) and using the backward-recursive formula:s; = si+1  1(St+1): Once
the optimal segmentation has been determined, the optimal asignment of class
labels can be found usingy: = argmax, w;‘ (X(s:s1. 1)- The total complexity
for the forward and backward passes of this dynamic programimg algorithm is
O(M(lmax  Imin *+1)len(X)). This is linear in the length of the time series.

1.5 Experiments

This section describes experimental results on detectionfdacial Action Units (AUs)
from video, early detection of facial expressions and sigrahguage, and sequence
labeling of human actions from video.

1.5.1 Detection of facial AUs

This section describes the experiments on detecting AUs inideo. The experiments
were performed on RU-FACS-1 dataset (Bartlett et al., 2006) a relatively large
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corpus of FACS coded videos. Recorded at Rutgers Universitysubjects were
asked to either lie or tell the truth under a false opinion paradigm in interviews
conducted by police and FBI members who posed around 13 qudshs. These
interviews resulted in 2.5 minute long continuous 30-fps Wleo sequences containing
spontaneous AUs of people of varying ethnicity and sex. Ground truth FACS coding
was provided by expert coders. Data from 28 of the subjects waavailable for our
experiments. In particular, we divided this dataset into 17 subjects for training
(97000 frames) and 11 subjects for testing (67000 frames).

The AUs for which we present results were selected by requimg at least 100
event occurrences in the available RU-FACS-1 data, resultig in the following set of
AUs: 1;2;12,14;15; 17; 24. Additionally, to test performance on AU combinations,
AU1+2 and AU6+12 were selected due to the large number of occuences.

Following Zhu et al. (2009), we extracted xed-scale-and-oientation SIFT de-
scriptors (Lowe, 1999) anchored at several points of intergt at the tracked land-
marks for frame-level feature representation. Intuitively, the histogram of gradient
orientations calculated in SIFT has the potential to capture much of the informa-
tion that is described in FACS (e.g., the markedness of the nso-labial furrows, the
direction and distribution of wrinkles, the slope of the eyebrows). At the same time,
the SIFT descriptor has been shown to be robust to illuminaton changes and small
errors in localization.

After the facial components have been tracked in each framea normalization
step registers each image with respect to an average face (dfret al., 2009). An
a ne texture transformation is applied to each image so as to warp the texture
into this canonical reference frame. This normalization povides further robustness
to the e ects of head motion. Once the texture is warped into this xed reference,
SIFT descriptors are computed around the outer outline of the mouth (11 points for
lower face AU) and on the eyebrows (5 for upper face AU). Due tdghe large number
of resulting features (128 by number of points), the dimensinality of the resulting
feature vector was reduced using PCA to keep 95% of the energpbtaining 261
and 126 features for lower face and upper face AU respectivel

We compared our method against a frame-based SVM and dynamieethods
using HMM (Rabiner, 1989). The frame-based SVM (Bartlett et al., 2006) (referred
to as SVM) is trained to distinguish between positive (AU) negative (non-AU)
frames and uses a radial basis kernek(x;z) = exp(  jix  zjj?). Our method
(SegSVM) is based on soft-clustering, with the cluster centers aretwsen to be the
support vectors (SVs) of frame-based SVMs with a radial bas kernel. Because for
several AUs the number of SVs can be quite large (2000 4000), we apply the idea
proposed by Avidan (2003) to reduce the number of SVs for fagr training time
and better generalization. However, instead of using a grey algorithm for subset
selection, we used LASSO regression (Tibshirani, 1996). lour experiments, the
sizes of the reduced SV sets ranges from 100 to 500 SVs.

We also compared the performance of our method with dynamic jpproaches using
HMMs which have been used with success in the facial expressi literature (Valstar
and Pantic, 2007). In this experiment, we will limit ourselves to a basic generative
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HMM model where the observations for each state are modeledsaa Gaussian
distribution using a full covariance matrix with ridge regu larization (i.e., * = + |
where| is the identity matrix), and consider the same feature set ugd for all other
experiments. Two di erent state mappings where tried resuting in HMM2 and
HMM4. HMM2 is a 2-state model, where state-0 corresponds to aeutral face (no
AU present) and state-1 corresponds to frames where the AU ipresent. HMM4 is a
4-state model, where state-0 is mapped to neutral face fransg state-1 corresponds
to AU onset frames, state-2 corresponds to peak frames, andate-3 corresponds
to o set frames.

Following Bartlett et al. (2005), positive samples were talen to be frames where
the AU was present, and negative samples where it was not. Tovaluate perfor-
mance, we used the precision-recall values and the maximuri 1 score. The pre-
cision and recall measures were computed on a frame-by-fraenbasis by varying
the bias or threshold of the corresponding classi er. TheF1 score is de ned as:
Fl= %, summarizing the trade-o between high recall rates and ac-
curacy among the predictions.F 1 score is a better performance measure than the
more common ROC metric because the latter is designed for bahced binary clas-
si cation rather than detection tasks, and fails to re ect t he e ect of the proportion
of positive to negative samples on classi cation performane.

Parameter tuning is done using 3-fold subject-wise crossalidation on the train-
ing data. For the frame-based SVM, we need to tuneC and , the scale parameter
of the radial basis kernel. For SegSVM, we need to tun€ only. The kernel param-
eter of SegSVM could also potentially be tuned, but for simplicity it was set to
the same used for frame-based SVM.

Tab. 1.1 shows the experimental results on the RU-FACS-1 daset. As can be
seen, SegSVM, based on structured prediction, consistentloutperforms frame-
based SVM and HMM, achieving highestF 1 score on 7 out of 10 test cases. Fig. 1.9
depicts the precision-recall curves of AU12 and AU15. Theseurves clearly show
superior performance for SegSVM. For example, at 70% recalihe precision of SVM
and SegSVM are 0.79 and 0.87, respectively. At 50% recall fakU15, the precision
of SVM is 0.48 compared to 0.67, roughly% that of SegSVM.

Action Units

Methods 1 2 6 12 14 15 17 24 1+2 6+12

SVM 0.48 042 050 074 020 050 055 015 0.36 0.55
HMM2 043 042 062 076 018 026 0.380.18 0.31 0.64
HMM4 0.39 0.18 063 0.77 012 025 028 005 031 0.63
SegSVM 0.59 056 059 0.78 0.27 0.59 0.56 0.08 0.56 0.62

Table 1.1 : Max Fl-score on the RU-FACS-1 dataset. Higher numbers indiate
better performance, and best results are printed in bold.
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Figure 1.9 : Precision-recall curves for AU 12 and AU 15. Our method sighcantly
outperforms Frm-SVM.

1.5.2 Early detection of facial expression

The experiment for early detection of facial expression wagperformed on CK+,
the Extended Cohn-Kanade dataset (Lucey et al., 2010). Thisdataset contains
327 facial image sequences from 123 subjects performing owné seven discrete
emotions: anger, contempt, disgust, fear, happiness, saéss, and surprise. Each
of the sequences contains images from onset (neutral framed peak expression
(last frame). We considered the task of detecting negative motions: anger, disgust,
fear, and sadness.

We used the canonical normalized appearance feature, CAPR_(icey et al., 2010).
For comparison purposes, we implemented two frame-based 3X6: Frm-peak was
trained on peak frames of the training sequences whil&rm-all was trained using
all frames between the onset and o set of the facial action. Fame-based SVMs can
be used for detection by classifying individual frames. In ontrast, SOSVM and
MMED are segment-based. Since a facial expression is a detin of the neutral
face, we represented each segment of an emotion sequence lg ti erence between
the end frame and the start frame. Even though the start framewas not necessarily
a neutral face, this representation led to good recognitiorresults.

We used the area under the ROC curve for accuracy comparisora Normalized
Time to Detection (NTtoD) for benchmarking the timeliness of detection. The ROC
and AMOC curves are de ned below.

ROC area : Consider testing a detector on a set of time series. The FagsPositive
Rate (FPR) of the detector is de ned as the fraction of time seies that the detector
res before the event of interest starts. The True Positive Rate (TPR) is de ned
as the fraction of time series that the detector res during the event of interest.
A detector typically has a detection threshold that can be adusted to trade o
high TPR for low FPR and vise versa. By varying this detection threshold, we can
generate a ROC curve, which is a function of TPR against FPR. W used the area
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(b)

Figure 1.10 : Disgust (a) and fear (b) detection on CK+ dataset. From left to
right of each sequence are the onset frame, the frame at whichIMED res, the

frame at which SOSVM res, and the peak frame. The number in egh image is the
corresponding NTtoD.

under the ROC for evaluating the detector accuracy.

AMOC curve : To evaluate the timeliness of detection we use Normalized ife
to Detection (NTtoD) which is de ned as follows. Given a testing time series where
the event of interest occurs froms to e, suppose the detector starts to re at time
t. For a successful detections t e, we de ne the NTtoD as the fraction of
event that has occurred, i.e., .5 NTtoD is de ned as O for a false detection
(t<s)and 1 for a false rejection ¢ > e). By adjusting the detection threshold,
one can achieve smaller NTtoD at the cost of higher FPR and vie versa. For
a complete characteristic picture, we vary the detection threshold and plot the
curve of NToD versus FPR. This is referred as the Activity Monitoring Operating
Curve (AMOC) (Fawcett and Provost, 1999).

We randomly divided the data into disjoint training and test ing subsets. The
training set contained 200 sequences with equal numbers ofogitive and negative
examples. For reliable results, we repeated our experimer0 times and recorded
the average performance. Regarding the detection accuracgegment-based SVMs
outperformed frame-based SVMs. The ROC areas (mean and stalard deviation)
for Frm-peak, Frm-all, SOSVM, MMED are 0:82 0:02, 084 0:03, 096 0:01,
and 0:97 0:01, respectively. Comparing the timeliness of detection, or method
was signi cantly better than the others, especially at low false positive rate which
is what we care about. For example, at 10% false positive rateFrm-peak, Frm-all,
SOSVM, and MMED can detect the expression when it completes 1%, 64%, 55%,
and 47% respectively. Fig. 1.11a plots the AMOC curves, and k. 1.10 displays
some qualitative results. We used a linear SVM withC = 1000; =0; =0:5.
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1.5.3 Early detection of sign language

This section describes our experiments on a publicly availlle dataset (Kadous,

2002) that contains 95 Auslan signs, each with 27 examples.He signs were captured
from a native signer using position trackers and instrumened gloves; the location
of the two hands, the orientation of the palms, and the bendirg of the ngers

were recorded. We considered detecting the sentence \l lovgou" in monologues
obtained by concatenating multiple signs. In particular, each monologue contained
an I-love-you sentence which was preceded and succeeded gy random signs. The
I-love-you sentence was ordered concatenation of random sgles of three signs:
\I", \love”, and \you". We created 100 training and 200 testi ng monologues from
disjoint sets of sign samples; the rst 15 examples of each gn were used to create
training monologues while the last 12 examples were used faesting monologues.
The average lengths and standard deviations of the monologes and the I-love-you
sentences were 1836 38 and 158 6 respectively.

Previous work (Kadous, 2002) reported high recognition pefiormance on this
dataset using Hidden Markov Models (HMMs) (Rabiner, 1989). Following their
success, we implemented a continuous density HMM for I-lowyou sentences. Our
HMM implementation consisted of 10 states, each was a mixtue of 4 Gaussians.
To use the HMM for detection, we adopted a sliding window apppach; the window
size was xed to the average length of the I-love-you senteres.

Inspired by the high recognition rate of HMM, we constructed feature represen-
tation for SVM-based detectors (SOSVM and MMED) as follows.We rst trained
a Gaussian Mixture Model of 20 Gaussians for the frames extied from the I-love-
you sentences. Each frame was then associated with a 201 log-likelihood vector.
We retained the top three values of this vector, zeroing out he other values, to
create a frame-level feature representation. This is the dbquantization approach.
To compute the feature vector for a given window, we divided he window into two
roughly equal halves, the mean feature vector of each half vgathen calculated, and
the concatenation of these mean vectors was then used as theature representation
of the window.

A naive strategy for early detection is to use truncated evets as positive
examples. For comparison, we implemente&eg-[0.5,1]a binary SVM that used the
rst halves of the I-love-you sentences in addition to the ful sentences as positive
training examples. Negative training examples were randonsegments that had no
overlapping with the I-love-you sentences.

We repeated our experiment 10 times and recorded the averagperformance.
Regarding the detection accuracy, all methods except SVM€.5,1] performed simi-
larly well. The ROC areas for HMM, SVM-[0.5,1], SOSVM, and MMED were 0.97,
0.92, 0.99, and 0.99, respectively. However, when compagnthe timeliness of de-
tection, MMED outperformed the others by a large margin. For example, at 10%
false positive rate, our method detected the I-love-you seence when it observed
the rst 37% of the sentence. At the same false positive ratethe best alternative
method required seeing 62% of the sentence. The full AMOC cwes are depicted
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Figure 1.12 : Weizmann dataset. (b)-(d): how frame-level features are omputed,;
(b): original frame, (c): binary mask, and (d): Euclidean distance transform.

in Fig. 1.11b. In this experiment, we used linear SVM withC =1; =
1.5.4 Sequence labeling of human actions

The experiments on sequence labeling of human actions wereegormed on the
Weizmann dataset (Gorelick et al., 2007). This dataset comhins 90 video se-
guences (180 144 pixels, deinterlaced 50fps) of 9 people, each perforngnl0
actions. Figure 1.12(a) displays several typical frames dxacted from the dataset.
Each video sequence in this dataset only consists of a singéetion.

To evaluate the segmentation and recognition performance foour method, we
performed experiments on longer video sequences that wereeated by concatenat-
ing existing single-action sequences. Speci cally, we cated 9 long sequences, each
composed of 10 videos for 10 di erent actions (each originalideo sample was used
only once). To evaluate the performance of the proposed metid in the presence
of the null class, background clutter with large variability, we considered the last
ve classes of actions (side, skip, walk, wavel, and wave2)sahe null class. Follow-
ing Gorelick et al. (2007), we extracted binary masks (Figue 1.12c¢) and computed
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2lx|l2 E =
2|8|5|2|5|2
bend .01| .01} .00| .00 .01
jack .00 .00| .01 .00, .02
jump | .00/ .00 .06/ .04/ .02
pjump | .00| .00| .01 .00| .01
run .00| .00| .01 .00 .08
Null .01| .03 .00| .03| .03

Table 1.2 : Results on Weizmann dataset { Confusion matrix for segmeration and
recognition of ve dierent actions: bend, jack, jump, pjum p, and run. The null
class is the combination of all other classes. The average @awracy is 93.3%.

Euclidean distance transform (Figure 1.12d) for frame-leel features. We built a
codebook of temporal words with 100 clusters usindc-means.

We measured the leave-one-out joint segmentation and recogfion performance
as follows. We ran our algorithm on long video sequences to d the optimal
segmentation and class labels. At that point, each frame wasassociated with a
particular class, and the overall frame-level accuracy agast the ground truth
labels was calculated as the ratio between the number of ageenents over the total
number of frames. This evaluation criterion is di erent from recognition accuracy
of algorithms that require pre-segmented video clips (Gorkck et al., 2007).

Table 1.2 shows the confusion matrix for ve actions and the mll class. Our
method yielded the average accuracy of 93.3%. The variant afur method, MaxS-
coreSeg (Shi et al., 2008), which performed temporal segmetion by maximizing
the total SVM scores (Eqg. 1.17), obtained an average accurgcof 77.9%. This rel-
atively low accuracy is due to the mismatch between the segnmation criterion
and the training objective, as explained in Section 1.4.1. iure 1.13 displays side-
by-side comparison of the prediction result and the human-beled ground truth.
Except for several cases, the majority of error occurs at thddoundaries between ac-
tions. Error at the boundaries does not necessarily indicas the aw of our method
as human labels are often imperfect (Satkin and Hebert, 2000

1.6 Summary

This chapter proposed SegSVMs, a structured prediction frenework for ED, early
ED, and sequence labeling. SegSVMs have convex learning fioulations and e -
cient inference algorithms. We illustrated the bene ts of our approaches in a number
of existing and new problems in computer vision.
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Figure 1.13 : Automatic segmentation-recognition versus human-labetd ground
truth for Weizmann dataset. The segments at values 0, 1, 2, 34, 5 correspond to
null, bend, jack, pjump, jump, run, respectively.

In this chapter, we have addressed the problems of ED, early B, and sequence
labeling using supervised learning. However, other impodnt problems arise in the
context of weakly-supervised and unsupervised settings. d¢ instance, in weakly
supervised learning, we need to localize the discriminati events from a set of
time series annotated with binary labels indicating the presence of the event, but
not its location (Nguyen et al., 2009). This has many important applications, e.g.,
for analyzing times series with or without a particular medical condition. Similarly,
unsupervised clustering of time series is important for leening taxonomies of human
behavior (Hoai and De la Torre, 2012a). These tasks can alsoebformulated as
extensions of SegSVMs, and we refer the reader to (Nguyen et. a22009; Hoai et al.,
2011; Hoai and De la Torre, 2012a,b) for more details.
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