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1 Structured Prediction for Event Detection

Minh Hoai minhhoai@robots.ox.ac.uk
University of Oxford
Oxford, UK

Fernando De la Torre ftorre@cs.cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

This chapter describes Segment-based SVMs (SegSVMs), a framework for
event detection. SegSVMs combine energy-based structuredprediction, max-
imum margin learning, and Bag-of-Words (BoWs) representation. Unlike
traditional approaches for event detection based on Dynamic Bayesian Net-
works, the learning formulation of SegSVMs is convex, and the inference
over multiple events can be e�ciently done in linear time. Beyond detecting
a single event, SegSVMs can be extended to solve two relatively unexplored
problems in computer vision: early event detection and sequence labeling of
multiple events. We illustrate the bene�ts of SegSVMs in several computer
vision applications namely facial action unit detection, early recognition of
hand gestures, early detection of facial expressions, and sequence labeling of
human actions.

1.1 Introduction

Event detection (ED) is a cornerstone in many important applications, from
video surveillance (Piciarelli et al., 2008) to motion analysis (Aggarwal
and Cai, 1999) and psychopathology assessment (Cohn et al.,2009). ED
refers to the task of localizing and recognizing the occurrences of temporal
patterns that belong to some prede�ned target classes. Examples of target
event classes are human actions (Ke et al., 2005), sport events (Efros
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et al., 2003; Xu et al., 2003), and facial expressions (Luceyet al., 2006;
Bartlett et al., 2006; Zhu et al., 2009; Valstar and Pantic, 2007). ED is
di�erent from and harder than event recognition. ED in conti nuous time
series involves both localization and recognition. Event recognition systems,
such as those from Yamato et al. (1992), Brand et al. (1997), Gorelick et al.
(2007), Sminchisescu et al. (2005), and Laptev et al. (2008), only need to
classify pre-segmented subsequences that correspond to coherent events.

ED in video is a challenging problem. Several highly important challenges
are to: (1) accommodate large variability of human behavioracross subjects;
(2) train classi�ers when relatively few examples for each event are present;
(3) recognize events with subtle human motion; (4) model the temporal
dynamics of events, which can be highly variable; and (5) determine the
beginnings and the ends of the events.

Existing approaches for ED are typically based on segment classi�cation
or Dynamic Bayesian Networks (DBNs). Segment classi�cation works by
classifying candidate temporal segments (e.g., Piciarelli et al. (2008); Vas-
silakis et al. (2002); Nowozin et al. (2007); Shechtman and Irani (2007)).
Although segment classi�cation has been widely used for ED,it has sev-
eral limitations. First, this approach classi�es each candidate segment in-
dependently; it makes myopic decisions (Wang et al., 2006) and requires
post-processing (e.g., to handle overlapping detections). Second, the seg-
ment classi�cation approach often has di�culties for accur ate localization
of event boundaries (Wang et al., 2006), due to the ine�ective use of neg-
ative examples in training. Negative examples are segmentsthat misalign
with target events, and they are either ignored (e.g., (Shechtman and Irani,
2007; Bobick and Wilson, 1997)) or required to be disjoint from the positive
training examples (e.g., (Ke et al., 2005; Laptev and Perez,2007)). In both
cases, segments that partially overlap with positive examples are not used in
training; those segments, however, are candidates for inaccurate localization
at test time. Another popular approach for ED is to use a variant of DBNs.
However, DBNs typically lead to a high-dimensional optimization problem
with multiple local minima. Furthermore, generative models such as HMMs
and variants, have limited ability to model the null class (no event or unseen
events) due to the large variability of the null class.

In this chapter, we propose Segment-based SVMs (SegSVMs) toaddress
the limitations of existing ED methods. SegSVMs combine structured predic-
tion, maximum margin learning, and Bag-of-Words (BoW) representation.
SegSVMs have several bene�ts for ED. First, SegSVMs use energy-based
structured prediction because detecting semantic events in continuous time
series is inherently a structured prediction task. Given a time series, the de-
sired output is more than a binary label indicating the presence or absence
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Figure 1.1 : During testing, the events are found by e�ciently searching over the
segments (position and length) that maximize the SVM score.During training, the
algorithm searches over all possible negative segments to identify those hardest to
classify, which improves classi�cation of subtle events.

of target events. It must predict the locations of target events and their asso-
ciated class labels, and energy-based structured prediction provides a prin-
cipled mechanism for concurrent top-down recognition and bottom-up tem-
poral localization (see Fig. 1.1). Second, SegSVMs model temporal events
using the BoW representation (Lewis, 1998; Sivic and Zisserman, 2003).
The BoW representation requires no state transition model,eliminating the
need for detailed annotation and manual de�nition of event dynamics. This
representation can model and detect events of di�erent lengths, removing
the necessity of multi-size templates or multi-scale processing. BoW repre-
sentation is not as rigid as template matching or dynamic time warping;
it tolerates errors in misalignment, and it is robust to the impreciseness
in human annotation. Finally, SegSVMs are based on the maximum margin
training (Taskar et al., 2003; Tsochantaridis et al., 2005), which learns a dis-
criminative model that maximizes the separating margin between di�erent
event classes. Maximizing the separating margin yields classi�ers that are
less prone to over-�tting. Furthermore, the learning formulation of SegSVMs
is convex and extendable.

Beyond ED, SegSVMs can be extended to address the problems ofearly
event detection and sequence labeling of multiple events. Atemporal event
has a duration, and by early detection, we mean to detect the event as
soon as possible,after it starts but before it ends. Figure 1.2 illustrates
the problem of early detection of an smile facial event. WhileED has been
studied extensively, little attention has been paid to early detection, even
in the broader literature of computer vision. In Section 1.3, we will describe
an extension of SegSVMs for early event detection, by training them to
recognize partial events.

The last section of this chapter presents another extensionof SegSVMs
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Figure 1.2 : How many frames do we need to detect a smile reliably? Can we even
detect a smile before it �nishes? Existing event detectors are trained to recognize
complete events only; they require seeing the entire event for a reliable decision,
preventing early detection. We propose a learning formulation to recognize partial
events, enabling early detection.
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Figure 1.3 : Sequence labeling factorizes a time series into a set of non-overlapping
segments and recognizes their classes. In this �gure, a facial video is labeled as a
sequence of expressions.

for sequence labeling of multiple events. Sequence labeling factorizes a time
series into a set of non-overlapping segments and assigns a class label to each
segment. Recall that sequence labeling system assigns a unique semantic
label to each frame, while an ED system may assign none or multiple labels.
Figure 1.3 shows an example of sequence labeling. While the problems are
slightly di�erent, SegSVMs can be extended to solve the sequence labeling
problem too.

1.2 Structured prediction for event detection

This section formulates ED as a structured prediction problem.

1.2.1 Event detection as a structured prediction problem

Consider a time seriesX , and suppose that we need to detect a target event
of which the length is bounded bylmin and lmax . We denoteZ(t) be the set
of length-bounded time intervals from the 1st to the t th frame:

Z(t) = f [s; e] 2 N2j1 � s � e � t; l min � e � s + 1 � lmax g [ f;g :
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Here j � j is the length function. For a time seriesX of length l , Z(l ) (or Z for
brevity) is the set of all possible locations of an event. Theempty segment,
z = ; , indicates no event occurrence. For an intervalz = [ s; e] 2 Z, let X z

denote the subsegment ofX from frame s to e inclusive.
Let g(X ) denote the output of the detector. We will learn the mapping g

as in the structured prediction framework (Tsochantaridis et al., 2005; Bakir
et al., 2007; Blaschko and Lampert, 2008) as:

g(X ) = argmax
z2 Z (l )

f (X z; � ): (1.1)

Here, f (X z; � ) is the detection score of segmentX z, and � is the parameter
vector of the score function. The output of the detector is de�ned as the
segment that maximizes the detection score. We assume here that each
sequence contains at most one occurrence of the event to be detected.
This can be extended tok-or-fewer occurrences (Nguyen et al., 2010). The
detector searches over all locations and temporal scales from lmin to lmax .
The output of the detector may be the empty segment, and if it is, we report
no detection.

1.2.2 Learning and inference

Let (X 1; z1); � � � ; (X n ; zn ) be the set of training time series and their as-
sociated ground truth annotations for the events of interest. We assume
each training sequence contains at most one event of interest, as a training
sequence containing several events can always be divided into smaller subse-
quences of single events. Thuszi = [ si ; ei ] consists of two numbers indicating
the start and the end of the event in time seriesX i .

We consider a linear detection score function, where the detection score is
a linear combination of the features:

f (X z; � ) =

(
w T ' (X z) + b if z 6= ; ;

0 otherwise.
(1.2)

Here, ' (X z) is the feature vector for segmentX z and � = [ w T ; b]. For
brevity, hereafter we use f (X z) instead of f (X z; � ) to denote the score
of segmentX z. The function parameters can be learned using Structured
Output SVM (SOSVM) (Taskar et al., 2003; Tsochantaridis et al., 2005):

min.
w ;f � i g

1
2

jjw jj2 +
C
n

nX

i =1

� i ; (1.3)

s.t. f (X i
z i ) � f (X i

z) + �( zi ; z) � � i 8z 2 Z and � i � 0 8i:
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Here, �( zi ; z) is a loss function that decreases as a labelz approaches the
ground truth label zi . Intuitively, the constraints in Eq. (1.3) force the score
of f (�) to be higher for the ground truth label zi than for any other value of
z, and moreover, to exceed this value by a margin equal to the loss associated
with labeling z.

This optimization problem is convex, but it has an exponentially large
number of constraints. A typical optimization strategy is constraint gen-
eration (Tsochantaridis et al., 2005), which is theoretically guaranteed to
produce a global optimal solution. Constraint generation is an iterative pro-
cedure that optimizes the objective w.r.t. a smaller set of constraints. The
constraint set is expanded at every iteration by adding the most violated
constraint. Thus at each iteration of constraint generation, given the current
value of w, we need to solve:

ẑ = argmax
z2 Z

f �( zi ; z) + f (X i
z)g: (1.4)

Thus, for the feasibility of the training phase, it is necessary that (1.4) can
be solved e�ectively and e�ciently at every iteration. It is worth noting that
this inference problem is di�erent from the one for localizing an event:

ẑ = argmax
z2 Z

f (X i
z): (1.5)

The optimization of (1.4) & (1.5) depends on the feature representation
' (X z). In the next section, we describe two types of signal representation
that render fast optimization.

1.2.3 Segment features using Bag-of-Words representation

We consider the feature mapping ' (X z) as the histogram of temporal
words (Nguyen et al., 2009). A temporal dictionary is built by applying
a clustering algorithm to a set of feature vectors sampled from the training
data (Sivic and Zisserman, 2003). Subsequently, each feature vector is
represented by the ID of the corresponding vocabulary entry. Finally, the
feature mapping ' (X z) is taken as the histogram of IDs associated with the
frames inside the interval z. Let x i be the feature vector associated with
the i th frame of signal X , and let Cj denote the cluster j of the temporal
dictionary. The feature mapping is de�ned as:

' (X z) = [ ' 1; � � � ; ' d; len(z)]T ; ' j =
X

i 2 z

' ji ; ' ji = � (x i 2 Cj ): (1.6)

Here d is the number of clusters, and [' 1; � � � ; ' d]T is the histogram of
temporal words located within segment [s; e] of signal X .
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In this work, instead of using hard quantization where each frame is
associated with only one cluster, we propose to usesoft quantization instead:

' (X z) = [ ' 1; � � � ; ' d; len(z)]T ; ' j =
X

i 2 z

' ji ; ' ji = k(x i ; cj ): (1.7)

Here f cj g are cluster centers, andk(�; �) is the kernel function that measures
the similarity between the frame x i to the cluster center cj . ' j measures the
total similarity of the frames inside the segment z to the cluster center cj .

Notably, the vectors f cj g do not need to be the cluster centers. They can
be chosen to be any set of representative vectors. For example, f cj g can be
taken as the support vectors of a frame-based SVM trained to distinguish
between individual positive and negative frames. In this case, our method
directly improves the performance of frame-based SVM by relearning the
weights to incorporate temporal constraints. To see this, consider the score
function of frame-based SVM. For a frame x i of a given signal X , the
SVM score is of the form v T ' (x i ) + b. It has been shown that v can be
expressed as a linear combination of the support vectors:v =

P d
j =1 � j ' (cj ):

Thus the SVM score for framex i is: v T ' (x i ) + b =
P d

j =1 � j k(x i ; cj ) + b:
Meanwhile, the decision function of structured learning is: w T ' (X z) + b =P e

i = s
P d

j =1 wj k(x i ; cj ) + wd+1 � len(z) + b:
For both feature mappings de�ned in Eq. (1.6) and Eq. (1.7), let ai denoteP d
j =1 wj ' ji + wd+1 . Thus w T ' (X z) =

P e
i = s ai . The label ẑ that maximizes

w T ' (X z) is: ẑ = [ ŝ; ê] = argmax1� s� e
P e

i = s ai : There exists a linear time
algorithm (Nguyen et al., 2009) for this optimization probl em. Similarly, the
label ẑ that maximizes �( zi ; z) + w T ' (X i

z) can be found as:

ẑ = [ ŝ; ê] = argmax
1� s� e

(

�( zi ; [s; e]) +
eX

t= s

at

)

: (1.8)

This can be conveniently solved using exhaustive search, orit can be
e�ciently optimized by means of a branch-and-bound algorit hm (Lampert
et al., 2008; Chu et al., 2012).

1.3 Early event detection

The ability to make reliable early detection of temporal events has many
potential applications in a wide range of �elds, ranging from security (e.g.,
pandemic attack detection), environmental science (e.g.,tsunami warning)
to health care (e.g., risk-of-falling detection) and robotics (e.g., a�ective
computing). While temporal ED has been extensively studied, early detec-
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tion is a relatively unexplored problem. By early detection, we mean to
detect the event as soon as possible,after it starts but before it ends, as il-
lustrated in Fig. 1.2. To see why it is important to detect events before they
�nish, consider a concrete example of building a robot that can a�ectively
interact with humans. Arguably, a key requirement for such a robot is its
ability to accurately and rapidly detect human emotional states from facial
expressions so that appropriate responses can be made in a timely manner.
More often than not, a socially acceptable response is to imitate the current
human behavior. This requires facial events such as smilingor frowning to
be detected even before they are complete; otherwise, the imitation response
would be out of synchronization. However, the learning formulation provided
in Sec. 1.2 does not train detectors to recognize partial events. Consequently,
using this formulation for Early Event Detection (EED) woul d lead to un-
reliable decisions as we will illustrate in the experimental section.

This section proposes Max-Margin Early Event Detectors (MMED), a
novel formulation for training event detectors that recognize partial events,
enabling early detection. MMED is based on SOSVM (Taskar et al., 2003;
Tsochantaridis et al., 2005), but extends it to accommodatethe nature of
sequential data. In particular, we simulate the sequential frame-by-frame
data arrival for training time series and learn an event detector that correctly
classi�es partially observed sequences. Fig. 1.4 illustrates the key idea behind
MMED: partial events are simulated and used as positive training examples.
It is important to emphasize that we train a single event detector to
recognizeall partial events. But MMED does more than augment the set
of training examples; it trains a detector to localize the temporal extent
of a target event, even when the target event has not yet �nished. This
requires monotonicity of the detection function with respect to the inclusion
relationship between partial events|the detection score ( con�dence) of a
partial event cannot exceed the score of an encompassing partial event.
MMED provides a principled mechanism to achieve this monotonicity, which
cannot be assured by a naive solution that simply augments the set of
training examples.

1.3.1 Learning with sequential data

To support early detection of events in time series data, we propose to
use partial events as positive training examples (Fig. 1.4). In particular,
we simulate the sequential arrival of training data as follows. Suppose the
length of X i is l i . For each time t = 1 ; � � � ; l i , let zi

t be the part of event
zi that has already happened, i.e.,zi

t = zi \ [1; t], which is possibly empty.
Ideally, we want the output of the detector on time seriesX i at time t to
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Figure 1.4 : Given a training time series that contains a complete event, we simulate
the sequential arrival of training data and use partial events as positive training
examples. The red segments indicate the temporal extents ofthe partial events. We
train a single event detector to recognizeall partial events, but our method does
more than augment the set of training examples.

be the partial event, i.e., g(X i
[1;t ]) = zi

t : Note that g(X i
[1;t ]) is not the output

of the detector running on the entire time seriesX i . It is the output of the
detector on the subsequence of time seriesX i from the �rst frame to the t th

frame only, i.e.,

g(X i
[1;t ]) = argmax

z2 Z (t )
f (X i

z): (1.9)

The desired property of the score function is:f (X i
z i

t
) � f (X i

z) 8z 2 Z(t):
This constraint requires the score of the partial eventzi

t to be higher than
the score of any other time series segmentz that has been seen in the past,
z � [1; t]. This is illustrated in Fig. 1.5. Note that the score of the partial
event is not required to be higher than the score of a future segment.

As in the case of SOSVM, the previous constraint can be required to
be well satis�ed by an adaptive margin. This margin is �( zi

t ; z), the loss
of the detector for outputting z when the desired output is zi

t (in our
case �( zi

t ; z) = 1 � 2jz i
t \ zj

jz i
t j+ jzj ). The desired constraint is: f (X i

z i
t
) � f (X i

z) +
�( zi

t ; z) 8z 2 Z(t): This constraint should be enforced for all t = 1 ; � � � ; l i .
As in the formulations of SVM, constraints are allowed to be violated by
introducing slack variables, and we obtain the following learning formulation:

minimize
w ;b;� i � 0

1
2

jjw jj2 +
C
n

nX

i =1

� i ; (1.10)

s.t. f (X i
z i

t
) � f (X i

z) + �( zi
t ; z) �

� i

�
�

jz i
t j

jz i j

� 8i; 8t = 1 � � � l i ; 8z 2 Z(t):

(1.11)

Here j � j denotes the length function, and �
�

jz i
t j

jz i j

�
is a function of the

proportion of the event that has occurred at time t. �
�

jz i
t j

jz i j

�
is a slack vari-
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Figure 1.5 : The desired score function for early event detection: the complete event
must have the highest detection score, and the detection score of a partial event
must be higher than that of any segment that ends before the partial event. To
learn this function, we explicitly consider partial events during training. At time
t, the score of the partial event is required to be higher than the score of any
past segment; however, it is not required to be higher than the score of any future
segment.

able rescaling factor and should correlate with the importance of correctly
detecting at time t whether the event zi has happened.� (�) can be any ar-
bitrary non-negative function, and in general, it should be a non-decreasing
function in (0 ; 1]. In our experiments, we found the following piece-wise
linear function a reasonable choice:� (0) = 1; � (x) = 0 for 0 < x � � ;
� (x) = ( x � � )=(� � � ) for � < x � � ; and � (x) = 1 for � < x � 1. Here, �
and � are tunable parameters.� (0) = � (1) emphasizes that true rejection
is as important as true detection of the complete event.

This learning formulation is an extension of SOSVM. From this formula-
tion, we obtain SOSVM by not simulating the sequential arrival of training
data, i.e., to set t = l i instead of t = 1 ; � � � ; l i in Constraint (1.11). Notably,
our method does more than augment the set of training examples; it enforces
the monotonicity of the detector function, as shown in Fig. 1.6.

For a better understanding of Constraint (1.11), let us analyze the con-
straint without the slack variable term and break it into thr ee cases: i)
t < s i (event has not started); ii) t � si , z = ; (event has started; compare
the partial event against the detection threshold); and iii) t � si ; z 6= ;
(event has started; compare the partial event against any non-empty seg-
ment). Recall f (X ; ) = 0 and zi

t = ; for t < s i , cases (i), (ii), (iii) lead to
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Figure 1.6 : Monotonicity requirement { the detection score of a partial event
cannot exceed the score of an encompassing partial event. MMED provides a
principled mechanism to achieve this monotonicity, which cannot be assured by
a naive solution that simply augments the set of training examples.

Constraints (1.12), (1.13), (1.14), respectively:

f (X i
z ) � � 1 8z 2 Z(si � 1) n f;g ; (1.12)

f (X i
z i

t
) � 1 8t � si ; (1.13)

f (X i
z i

t
) � f (X i

z ) + �( zi
t ; z) 8t � si ; z 2 Z(t) n f;g : (1.14)

Constraint (1.12) prevents false detection when the event has not started. Con-
straint (1.13) requires successful recognition of partialevents. Constraint (1.14)
trains the detector to accurately localize the temporal extent of the partial events.

The proposed learning formulation Eq. (1.10) is convex, butit contains a large
number of constraints. As in Sec. 1.2.2, we propose to use constraint generation in
optimization (Tsochantaridis et al., 2005). In our experiments described in Sec. 1.5,
constraint generation usually converges within 20 iterations. Each iteration requires
minimizing a convex quadratic objective. This objective isoptimized using Cplex1

in our implementation.

1.3.2 Loss function and empirical risk minimization

In Sec. 1.3.1, we have proposed a formulation for training early event detectors.
This section provides further discussion on what exactly isbeing optimized. First,
we brie
y review the loss of SOSVM and its surrogate empirical risk. We then

1. www-01.ibm.com/software/integration/optimization/ cplex-optimizer/
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describe two general approaches for quantifying the loss ofa detector on sequential
data. In both cases, what Eq. (1.10) minimizes is an upper bound on the loss.

As previously explained, �( z; ẑ) is the function that quanti�es the loss associated
with a prediction ẑ, if the true output value is z. Thus, in the setting of o�ine
detection, the loss of a detectorg(�) on a sequence-event pair (X ; z) is quanti�ed
as �( z; g(X )). Suppose the sequence-event pairs (X ; z) are generated according to
some distribution P(X ; z), the loss of the detectorg is

R�
true (g) =

Z

X � Z
�( z; g(X ))dP(X ; z): (1.15)

However, P is unknown so the performance ofg(:) is described by the empirical
risk on the training data f (X i ; zi )g, assuming they are generated i.i.d according to
P. The empirical risk is R�

emp (g) = 1
n

P n
i =1 �( zi ; g(X i )) : It has been shown that

SOSVM minimizes an upper bound on the empirical riskR�
emp (Tsochantaridis

et al., 2005).
Due to the nature of continual evaluation, quantifying the l oss of an online

detector on streaming data requires aggregating the lossesevaluated throughout the
course of the data sequence. Let us consider the loss associated with a prediction
z = g(X i

[1;t ]) for time seriesX i at time t as �( zi
t ; z)�

�
j z i

t j
j z i j

�
. Here �( zi

t ; z) accounts

for the di�erence between the output z and true truncated event zi
t . �

�
j z i

t j
j z i j

�
is

the scaling factor; it depends on how much the temporal eventzi has happened.
Two possible ways for aggregating these loss quantities is to use their maximum or
average. They lead to two di�erent empirical risks for a set of training time series:

R� ;�
max (g) =

1
n

nX

i =1

max
t

�
�( zi

t ; g(X i
[1;t ])) �

�
jzi

t j
jzi j

��
;

R� ;�
mean (g) =

1
n

nX

i =1

mean
t

�
�( zi

t ; g(X i
[1;t ])) �

�
jzi

t j
jzi j

��
:

In the following, we state and prove a proposition that establishes that the
learning formulation given in Eq. (1.10) minimizes an upper bound of the above
two empirical risks.

Proposition : Denote by � � (g) the optimal solution of the slack variables in
Eq. (1.10) for a given detectorg, then 1

n

P n
i =1 � i � is an upper bound on the empirical

risks R� ;�
max (g) and R� ;�

mean (g).

Proof : Consider Constraint (1.11) with z = g(X i
[1;t ]) and together with the

fact that f (X i
g(X i

[1 ;t ] )
) � f (X i

z i
t
), we have � i � � �( zi

t ; g(X i
[1;t ])) �

�
j z i

t j
j z i j

�
8t: Thus

� i � � maxt f �( zi
t ; g(X i

[1;t ])) �
�

j z i
t j

j z i j

�
g: Hence 1

n

P n
i =1 � i � � R� ;�

max (g) � R� ;�
mean (g):

This completes the proof of the proposition. This proposition justi�es the objective
of the learning formulation.
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1.4 Sequence Labeling

Another important problem in time series analysis is sequence labeling, which
factorizes a time series into a set of non-overlapping segments and assigns a class
label to each segment. Sequence labeling is related to ED andit is often used for ED.
But these two problems are di�erent. A sequence labeling system assigns a unique
semantic label to each frame, while an ED system may assign noor multiple labels.
Sequence labeling has been shown to be useful in a wide range of applications, from
natural language processing (Rabiner, 1989) to o�ce activity understanding (Brand
and Kettnaker, 2000) and animal behavior analysis (Oh et al., 2008).

Most existing techniques for sequence labeling are based onprobabilistic hidden-
state models, and labeling a time series is equivalent to �nding the sequence of
event labels that yields the highest probability. Brand and Kettnaker (2000) use
Hidden Markov Models (HMMs) (Rabiner, 1989) for understanding o�ce activities.
Xu et al. (2003) use multi-layer HMMs (Rabiner, 1989) to analyze baseball and
volleyball videos. Oh et al. (2008) and Fox et al. (2009) use variants of Switching
Linear Dynamical Systems (SLDS) (Pavlovic et al., 2000; Pavlovic and Rehg, 2000)
to analyze human and animal behavior. Valstar and Pantic (2007); Koelstra and
Pantic (2008); Tong et al. (2007); Shang and Chan (2009); Chang et al. (2009)
use Dynamic Bayesian Networks (DBNs) for detecting facial events, while Laxton
et al. (2007) design a hierarchical structure based on DBNs to decompose complex
activities. Although these generative methods have been shown to be e�ective in
their respective scenarios, they have limited ability to model the null class (i.e., no
event, unseen event, or anything that we do not have a label for) due to the large
variability of the null class. Conditional Random Fields (CRFs) (La�erty et al.,
2001) are the discriminative alternatives to HMMs, and they have been successfully
used for a number of applications such as detection of highlight events in soccer
videos (Wang et al., 2006). CRFs, however, cannot model long-range dependencies
between labels (Sarawagi and Cohen, 2005), disabling the use of segment-level
features. CRFs can be extended to account for higher-order dependencies, but
the computational cost increases exponentially with the clique size. Semi-Markov
CRFs (Sarawagi and Cohen, 2005) have lower computational cost, but they also
require short segment lengths (Okanohara et al., 2006). Nevertheless, CRF-based
models, like HMMs or any other hidden-state model, su�er the drawbacks of
needing either an explicit de�nition of the latent state of a ll frames, or the need
to simultaneously learn a state sequence and state transition model that �ts
the data, resulting in a high-dimensional minimization problem with typically
many local minima. This section develops a multi-class extension of Seg-SVMs
for sequence labeling, which simultaneously performs temporal segmentation and
event recognition in time series.
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1 len(X )
st st +1s2

!"#$!%yt

Figure 1.7 : Joint segmentation and recognition process { we need to �ndthe
events' boundary points s1; � � � ; sk+1 and the class labelsy1; � � � ; yk .

1.4.1 Structured prediction for sequence labeling

Our goal is to factorize a time series into a sequence of events and recognize their
classes. Suppose there arem classes of events. We will discuss how to learn the
detectors in Section 1.4.2, but assume for now that the detectors f w j gm

j =1 have been
learned. These detectors can be used independently to detect each class of target
events in turn. This works well for many applications such asfacial Action Unit
(AU) detection. In many other applications, however, knowledge about the presence
or absence of a particular event constrains on those of any other events, just like
drinking and kissing do not occur together. This constraint can be incorporated in
the joint segmentation and recognition process by �nding a set of change points
s1; � � � ; sk+1 (see Fig. 1.7) that:

minimize
k;s t ;y t ;� t � 0

kX

t =1

� t ; (1.16)

s.t. lmin � st +1 � st � lmax 8t; s1 = 0 ; sk+1 = len(X );

(w y t � w y )T ' (X (st ;s t +1 ]) � 1 � � t 8t; y 6= yt :

Observe that the number of segmentsk is not known in advance and, therefore,
needs to be optimized over. In the above formulation,lmin and lmax are the
minimum and maximum lengths of segments, which can be inferred from training
data. Here X (st ;s t +1 ] denotes the segment of time seriesX , taken from frame st + 1
to frame st +1 inclusive. len(X ) denotes the length of time seriesX . w T

y ' (X (st ;s t +1 ])
is the SVM score for assigning segmentX (st ;s t +1 ] to classy. What we propose is to
maximize the di�erence between the SVM score of the winning class yt and that
of any other classy 6= yt , �ltering through the Hinge loss. The idea is to seek a
segmentation in which each resulting segment is assigned a class label with high
con�dence. This is di�erent from what was proposed by Shi et al. (2008), who
maximize the total SVM scores:

maximize
k;s t ;y t

kX

t =1

w T
y t

' (X (st ;s t +1 ]); s.t. (1.17)

lmin � st +1 � st � lmax 8t; s1 = 0 ; sk+1 = len(X );

Di�erent from the above formulation, our segmentation crit erion, Eq. (1.16), re-
quires suppressing the non-maximum classes. To see the di�erence between these
two criteria, consider breaking a time seriesAB in Fig. 1.8 at either M or N . For
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Figure 1.8 : Which segmentation is preferred, breaking time seriesAB at M or
N ? Suppose there are only two classes, SVM scores of the �rst and second class for
corresponding segments are printed in red and blue, respectively. Our segmentation
criterion prefers to cut at N because the resulting segments can be con�dently
classi�ed.

simplicity, suppose there are only two classes, and the SVM scores of the �rst and
second class for some segments in Figure 1.8 are in printed inunderlined and over-
lined, respectively. The segmentation criterion of Eq. (1.17) would prefer to divide
AB at M because it leads to higher total SVM scores of the winning classes (total
score of 3:5 = 2:0 + 1:5, 2:0 from segmentAM and 1:5 from MB ). On the other
hand, our segmentation criterion does not prefer to cut atM because it cannot
con�dently classify the resulting segments. To see this, consider the segmentAM ,
even though the SVM score of the winning class, class 1, is high, the SVM score
of the alternative, class 2, is also similarly high. Our proposed criterion seeks the
optimal segmentation that maximizes the di�erence betweenthe SVM scores of the
winning class and the next best alternative, �ltering throu gh the robust Hinge loss.
As we will show in Subsection 1.4.2, our segmentation criterion optimizes the same
objective as that of the training formulation.

1.4.2 Maximum-margin learning for sequence labeling

We now describe how to learnw1; � � � ; wm from a collection of training time series
X 1; � � � ; X n with known segmentation and class labels, i.e., the change points
between actions 0 = si

1 < � � � < s i
k i +1 = len(X i ) and the associated class

labels yi
1; � � � ; yi

k i
2 f 1; � � � ; mg are provided (see Fig. 1.7). We can use multi-class

SVM Crammer and Singer (2001) to train a model for temporal actions:

minimize
w j ;� i

t � 0

1
2m

mX

j =1

jjw j jj2 +
C
n

nX

i =1

k iX

t =1

� i
t ; (1.18)

s.t. (w y i
t

� w y )T ' (X i
(si

t ;s i
t +1 ]) � 1 � � i

t 8i; t; y 6= yi
t : (1.19)

Constraint (1.19) requires segmentX i
(si

t ;s i
t +1 ] to belong to classyi

t with high con�-

dence; in other words, the SVM score for classyi
t should be relatively higher than

that of any other class by a large margin.f � i
t g are slack variables which allow for

penalized constraint violation. C is the parameter controlling the trade-o� between
a large margin and less constrained violation.
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1.4.3 Dynamic programming algorithm for sequence labeling

Given the parameters f w j gm
j =1 , the inference for Eq. (1.16) can be solved using a

dynamic programming algorithm, which makes two passes overthe time seriesX .
In the forward pass, at frame u (1 � u � len(X )), it computes the best objective
value for segmenting and labeling truncated time seriesX (0 ;u ] (ignoring frames from
u + 1 onward), i.e.

h(u) = min
k;s t ;y t ;� t � 0

kX

t =1

� t ; (1.20)

s.t. lmin � st +1 � st � lmax 8t; s1 = 0 ; sk+1 = u;

(w y t � w y )T ' (X (st ;s t +1 ]) � 1 � � t 8t; y 6= yt :

The forward pass computesh(u), as well as l(u), for u = 1 ; � � � ; len(X ) using the
recursive formulas:

h(u) = min
l min � l � l max

f � (u; l ) + h(u � l )g; l (u) = argmin
l min � l � l max

f � (u; l ) + h(u � l )g:

Here � (u; l ) denotes the slack value of segmentX (u � l;u ] , i.e.

� (u; l ) = max f 0; 1 � (w ŷ � w ~y )T ' (X (u � l;u ])g; (1.21)

where

ŷ = argmax
y

w T
y ' (X (u � l;u ]); and ~y = argmax

y6= ŷ
w T

y ' (X (u � l;u ]): (1.22)

The backward pass of the algorithm �nds the best segmentation for X , starting with
sk+1 = len(X ) and using the backward-recursive formula:st = st +1 � l (st +1 ): Once
the optimal segmentation has been determined, the optimal assignment of class
labels can be found using:yt = argmax y w T

y ' (X (st ;s t +1 ]): The total complexity
for the forward and backward passes of this dynamic programming algorithm is
O(m(lmax � lmin + 1) len(X )). This is linear in the length of the time series.

1.5 Experiments

This section describes experimental results on detection of facial Action Units (AUs)
from video, early detection of facial expressions and sign language, and sequence
labeling of human actions from video.

1.5.1 Detection of facial AUs

This section describes the experiments on detecting AUs in video. The experiments
were performed on RU-FACS-1 dataset (Bartlett et al., 2006), a relatively large
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corpus of FACS coded videos. Recorded at Rutgers University, subjects were
asked to either lie or tell the truth under a false opinion paradigm in interviews
conducted by police and FBI members who posed around 13 questions. These
interviews resulted in 2.5 minute long continuous 30-fps video sequences containing
spontaneous AUs of people of varying ethnicity and sex. Ground truth FACS coding
was provided by expert coders. Data from 28 of the subjects was available for our
experiments. In particular, we divided this dataset into 17 subjects for training
(97000 frames) and 11 subjects for testing (67000 frames).

The AUs for which we present results were selected by requiring at least 100
event occurrences in the available RU-FACS-1 data, resulting in the following set of
AUs: 1; 2; 12; 14; 15; 17; 24. Additionally, to test performance on AU combinations,
AU1+2 and AU6+12 were selected due to the large number of occurrences.

Following Zhu et al. (2009), we extracted �xed-scale-and-orientation SIFT de-
scriptors (Lowe, 1999) anchored at several points of interest at the tracked land-
marks for frame-level feature representation. Intuitively, the histogram of gradient
orientations calculated in SIFT has the potential to capture much of the informa-
tion that is described in FACS (e.g., the markedness of the naso-labial furrows, the
direction and distribution of wrinkles, the slope of the eyebrows). At the same time,
the SIFT descriptor has been shown to be robust to illumination changes and small
errors in localization.

After the facial components have been tracked in each frame,a normalization
step registers each image with respect to an average face (Zhu et al., 2009). An
a�ne texture transformation is applied to each image so as to warp the texture
into this canonical reference frame. This normalization provides further robustness
to the e�ects of head motion. Once the texture is warped into this �xed reference,
SIFT descriptors are computed around the outer outline of the mouth (11 points for
lower face AU) and on the eyebrows (5 for upper face AU). Due tothe large number
of resulting features (128 by number of points), the dimensionality of the resulting
feature vector was reduced using PCA to keep 95% of the energy, obtaining 261
and 126 features for lower face and upper face AU respectively.

We compared our method against a frame-based SVM and dynamicmethods
using HMM (Rabiner, 1989). The frame-based SVM (Bartlett et al., 2006) (referred
to as SVM) is trained to distinguish between positive (AU) negative (non-AU)
frames and uses a radial basis kernelk(x; z) = exp( � 
 jjx � zjj2). Our method
(SegSVM) is based on soft-clustering, with the cluster centers are chosen to be the
support vectors (SVs) of frame-based SVMs with a radial basis kernel. Because for
several AUs the number of SVs can be quite large (2000� 4000), we apply the idea
proposed by Avidan (2003) to reduce the number of SVs for faster training time
and better generalization. However, instead of using a greedy algorithm for subset
selection, we used LASSO regression (Tibshirani, 1996). Inour experiments, the
sizes of the reduced SV sets ranges from 100 to 500 SVs.

We also compared the performance of our method with dynamic approaches using
HMMs which have been used with success in the facial expression literature (Valstar
and Pantic, 2007). In this experiment, we will limit ourselves to a basic generative
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HMM model where the observations for each state are modeled as a Gaussian
distribution using a full covariance matrix with ridge regu larization (i.e., �̂ = � + � I
where I is the identity matrix), and consider the same feature set used for all other
experiments. Two di�erent state mappings where tried resulting in HMM2 and
HMM4. HMM2 is a 2-state model, where state-0 corresponds to aneutral face (no
AU present) and state-1 corresponds to frames where the AU ispresent. HMM4 is a
4-state model, where state-0 is mapped to neutral face frames, state-1 corresponds
to AU onset frames, state-2 corresponds to peak frames, and state-3 corresponds
to o�set frames.

Following Bartlett et al. (2005), positive samples were taken to be frames where
the AU was present, and negative samples where it was not. To evaluate perfor-
mance, we used the precision-recall values and the maximumF 1 score. The pre-
cision and recall measures were computed on a frame-by-frame basis by varying
the bias or threshold of the corresponding classi�er. TheF 1 score is de�ned as:
F 1 = 2�Recall �P recision

Recall + P recision , summarizing the trade-o� between high recall rates and ac-
curacy among the predictions.F 1 score is a better performance measure than the
more common ROC metric because the latter is designed for balanced binary clas-
si�cation rather than detection tasks, and fails to re
ect t he e�ect of the proportion
of positive to negative samples on classi�cation performance.

Parameter tuning is done using 3-fold subject-wise cross-validation on the train-
ing data. For the frame-based SVM, we need to tuneC and 
 , the scale parameter
of the radial basis kernel. For SegSVM, we need to tuneC only. The kernel param-
eter 
 of SegSVM could also potentially be tuned, but for simplicity it was set to
the same
 used for frame-based SVM.

Tab. 1.1 shows the experimental results on the RU-FACS-1 dataset. As can be
seen, SegSVM, based on structured prediction, consistently outperforms frame-
based SVM and HMM, achieving highestF 1 score on 7 out of 10 test cases. Fig. 1.9
depicts the precision-recall curves of AU12 and AU15. Thesecurves clearly show
superior performance for SegSVM. For example, at 70% recall, the precision of SVM
and SegSVM are 0.79 and 0.87, respectively. At 50% recall forAU15, the precision
of SVM is 0.48 compared to 0.67, roughly2

3 that of SegSVM.

Action Units

Methods 1 2 6 12 14 15 17 24 1+2 6+12

SVM 0.48 0.42 0.50 0.74 0.20 0.50 0.55 0.15 0.36 0.55

HMM2 0.43 0.42 0.62 0.76 0.18 0.26 0.38 0.18 0.31 0.64

HMM4 0.39 0.18 0.63 0.77 0.12 0.25 0.28 0.05 0.31 0.63

SegSVM 0.59 0.56 0.59 0.78 0.27 0.59 0.56 0.08 0.56 0.62

Table 1.1 : Max F1-score on the RU-FACS-1 dataset. Higher numbers indicate
better performance, and best results are printed in bold.
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Figure 1.9 : Precision-recall curves for AU 12 and AU 15. Our method signi�cantly
outperforms Frm-SVM.

1.5.2 Early detection of facial expression

The experiment for early detection of facial expression wasperformed on CK+,
the Extended Cohn-Kanade dataset (Lucey et al., 2010). Thisdataset contains
327 facial image sequences from 123 subjects performing oneof seven discrete
emotions: anger, contempt, disgust, fear, happiness, sadness, and surprise. Each
of the sequences contains images from onset (neutral frame)to peak expression
(last frame). We considered the task of detecting negative emotions: anger, disgust,
fear, and sadness.

We used the canonical normalized appearance feature, CAPP (Lucey et al., 2010).
For comparison purposes, we implemented two frame-based SVMs: Frm-peak was
trained on peak frames of the training sequences whileFrm-all was trained using
all frames between the onset and o�set of the facial action. Frame-based SVMs can
be used for detection by classifying individual frames. In contrast, SOSVM and
MMED are segment-based. Since a facial expression is a deviation of the neutral
face, we represented each segment of an emotion sequence by the di�erence between
the end frame and the start frame. Even though the start framewas not necessarily
a neutral face, this representation led to good recognitionresults.

We used the area under the ROC curve for accuracy comparison and Normalized
Time to Detection (NTtoD) for benchmarking the timeliness of detection. The ROC
and AMOC curves are de�ned below.

ROC area : Consider testing a detector on a set of time series. The False Positive
Rate (FPR) of the detector is de�ned as the fraction of time series that the detector
�res before the event of interest starts. The True Positive Rate (TPR) is de�ned
as the fraction of time series that the detector �res during the event of interest.
A detector typically has a detection threshold that can be adjusted to trade o�
high TPR for low FPR and vise versa. By varying this detection threshold, we can
generate a ROC curve, which is a function of TPR against FPR. We used the area
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(a)

disgust

0.00 0.53 0.73 1.00

(b)

fear

0.00 0.44 0.62 1.00

Figure 1.10 : Disgust (a) and fear (b) detection on CK+ dataset. From left to
right of each sequence are the onset frame, the frame at whichMMED �res, the
frame at which SOSVM �res, and the peak frame. The number in each image is the
corresponding NTtoD.

under the ROC for evaluating the detector accuracy.
AMOC curve : To evaluate the timeliness of detection we use Normalized Time

to Detection (NTtoD) which is de�ned as follows. Given a testing time series where
the event of interest occurs froms to e, suppose the detector starts to �re at time
t. For a successful detection,s � t � e, we de�ne the NTtoD as the fraction of
event that has occurred, i.e., t � s+1

e� s+1 . NTtoD is de�ned as 0 for a false detection
(t < s ) and 1 for a false rejection (t > e ). By adjusting the detection threshold,
one can achieve smaller NTtoD at the cost of higher FPR and vice versa. For
a complete characteristic picture, we vary the detection threshold and plot the
curve of NToD versus FPR. This is referred as the Activity Monitoring Operating
Curve (AMOC) (Fawcett and Provost, 1999).

We randomly divided the data into disjoint training and test ing subsets. The
training set contained 200 sequences with equal numbers of positive and negative
examples. For reliable results, we repeated our experiment20 times and recorded
the average performance. Regarding the detection accuracy, segment-based SVMs
outperformed frame-based SVMs. The ROC areas (mean and standard deviation)
for Frm-peak, Frm-all, SOSVM, MMED are 0 :82 � 0:02, 0:84 � 0:03, 0:96 � 0:01,
and 0:97 � 0:01, respectively. Comparing the timeliness of detection, our method
was signi�cantly better than the others, especially at low false positive rate which
is what we care about. For example, at 10% false positive rate, Frm-peak, Frm-all,
SOSVM, and MMED can detect the expression when it completes 71%, 64%, 55%,
and 47% respectively. Fig. 1.11a plots the AMOC curves, and Fig. 1.10 displays
some qualitative results. We used a linear SVM withC = 1000; � = 0 ; � = 0 :5.
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1.5.3 Early detection of sign language

This section describes our experiments on a publicly available dataset (Kadous,
2002) that contains 95 Auslan signs, each with 27 examples. The signs were captured
from a native signer using position trackers and instrumented gloves; the location
of the two hands, the orientation of the palms, and the bending of the �ngers
were recorded. We considered detecting the sentence \I loveyou" in monologues
obtained by concatenating multiple signs. In particular, each monologue contained
an I-love-you sentence which was preceded and succeeded by 15 random signs. The
I-love-you sentence was ordered concatenation of random samples of three signs:
\I", \love", and \you". We created 100 training and 200 testi ng monologues from
disjoint sets of sign samples; the �rst 15 examples of each sign were used to create
training monologues while the last 12 examples were used fortesting monologues.
The average lengths and standard deviations of the monologues and the I-love-you
sentences were 1836� 38 and 158� 6 respectively.

Previous work (Kadous, 2002) reported high recognition performance on this
dataset using Hidden Markov Models (HMMs) (Rabiner, 1989). Following their
success, we implemented a continuous density HMM for I-love-you sentences. Our
HMM implementation consisted of 10 states, each was a mixture of 4 Gaussians.
To use the HMM for detection, we adopted a sliding window approach; the window
size was �xed to the average length of the I-love-you sentences.

Inspired by the high recognition rate of HMM, we constructed feature represen-
tation for SVM-based detectors (SOSVM and MMED) as follows.We �rst trained
a Gaussian Mixture Model of 20 Gaussians for the frames extracted from the I-love-
you sentences. Each frame was then associated with a 20� 1 log-likelihood vector.
We retained the top three values of this vector, zeroing out the other values, to
create a frame-level feature representation. This is the soft quantization approach.
To compute the feature vector for a given window, we divided the window into two
roughly equal halves, the mean feature vector of each half was then calculated, and
the concatenation of these mean vectors was then used as the feature representation
of the window.

A naive strategy for early detection is to use truncated events as positive
examples. For comparison, we implementedSeg-[0.5,1], a binary SVM that used the
�rst halves of the I-love-you sentences in addition to the full sentences as positive
training examples. Negative training examples were randomsegments that had no
overlapping with the I-love-you sentences.

We repeated our experiment 10 times and recorded the averageperformance.
Regarding the detection accuracy, all methods except SVM-[0.5,1] performed simi-
larly well. The ROC areas for HMM, SVM-[0.5,1], SOSVM, and MMED were 0.97,
0.92, 0.99, and 0.99, respectively. However, when comparing the timeliness of de-
tection, MMED outperformed the others by a large margin. For example, at 10%
false positive rate, our method detected the I-love-you sentence when it observed
the �rst 37% of the sentence. At the same false positive rate,the best alternative
method required seeing 62% of the sentence. The full AMOC curves are depicted



22 Example Chapter

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

N
or

m
al

iz
ed

 T
im

e 
to

 D
et

ec
t

Frm!peak
Frm!all
SOSVM
MMED

(a) CK+, AMOC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

N
or

m
al

iz
ed

 T
im

e 
to

 D
et

ec
t

HMM
Seg![0.5,1]
SOSVM
MMED

(b) Auslan, AMOC

Figure 1.11 : AMOC curves on Auslan and CK+ datasets; at the same false positive
rate, MMED detects target events sooner than the other methods.
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(a) Typical frames (b) (c) (d)

Figure 1.12 : Weizmann dataset. (b)-(d): how frame-level features are computed;
(b): original frame, (c): binary mask, and (d): Euclidean distance transform.

in Fig. 1.11b. In this experiment, we used linear SVM with C = 1 ; � = 0 :25; � = 1.

1.5.4 Sequence labeling of human actions

The experiments on sequence labeling of human actions were performed on the
Weizmann dataset (Gorelick et al., 2007). This dataset contains 90 video se-
quences (180� 144 pixels, deinterlaced 50fps) of 9 people, each performing 10
actions. Figure 1.12(a) displays several typical frames extracted from the dataset.
Each video sequence in this dataset only consists of a singleaction.

To evaluate the segmentation and recognition performance of our method, we
performed experiments on longer video sequences that were created by concatenat-
ing existing single-action sequences. Speci�cally, we created 9 long sequences, each
composed of 10 videos for 10 di�erent actions (each originalvideo sample was used
only once). To evaluate the performance of the proposed method in the presence
of the null class, background clutter with large variabilit y, we considered the last
�ve classes of actions (side, skip, walk, wave1, and wave2) as the null class. Follow-
ing Gorelick et al. (2007), we extracted binary masks (Figure 1.12c) and computed
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bend .96 .01 .01 .00 .00 .01

jack .00 .97 .00 .01 .00 .02

jump .00 .00 .88 .06 .04 .02

pjump .00 .00 .01 .98 .00 .01

run .00 .00 .01 .00 .91 .08

Null .01 .03 .00 .03 .03 .90

Table 1.2 : Results on Weizmann dataset { Confusion matrix for segmentation and
recognition of �ve di�erent actions: bend, jack, jump, pjum p, and run. The null
class is the combination of all other classes. The average accuracy is 93.3%.

Euclidean distance transform (Figure 1.12d) for frame-level features. We built a
codebook of temporal words with 100 clusters usingk-means.

We measured the leave-one-out joint segmentation and recognition performance
as follows. We ran our algorithm on long video sequences to �nd the optimal
segmentation and class labels. At that point, each frame wasassociated with a
particular class, and the overall frame-level accuracy against the ground truth
labels was calculated as the ratio between the number of agreements over the total
number of frames. This evaluation criterion is di�erent fro m recognition accuracy
of algorithms that require pre-segmented video clips (Gorelick et al., 2007).

Table 1.2 shows the confusion matrix for �ve actions and the null class. Our
method yielded the average accuracy of 93.3%. The variant ofour method, MaxS-
coreSeg (Shi et al., 2008), which performed temporal segmentation by maximizing
the total SVM scores (Eq. 1.17), obtained an average accuracy of 77.9%. This rel-
atively low accuracy is due to the mismatch between the segmentation criterion
and the training objective, as explained in Section 1.4.1. Figure 1.13 displays side-
by-side comparison of the prediction result and the human-labeled ground truth.
Except for several cases, the majority of error occurs at theboundaries between ac-
tions. Error at the boundaries does not necessarily indicate the 
aw of our method
as human labels are often imperfect (Satkin and Hebert, 2010).

1.6 Summary

This chapter proposed SegSVMs, a structured prediction framework for ED, early
ED, and sequence labeling. SegSVMs have convex learning formulations and e�-
cient inference algorithms. We illustrated the bene�ts of our approaches in a number
of existing and new problems in computer vision.
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Figure 1.13 : Automatic segmentation-recognition versus human-labeled ground
truth for Weizmann dataset. The segments at values 0, 1, 2, 3,4, 5 correspond to
null, bend, jack, pjump, jump, run, respectively.

In this chapter, we have addressed the problems of ED, early ED, and sequence
labeling using supervised learning. However, other important problems arise in the
context of weakly-supervised and unsupervised settings. For instance, in weakly
supervised learning, we need to localize the discriminative events from a set of
time series annotated with binary labels indicating the presence of the event, but
not its location (Nguyen et al., 2009). This has many important applications, e.g.,
for analyzing times series with or without a particular medical condition. Similarly,
unsupervised clustering of time series is important for learning taxonomies of human
behavior (Hoai and De la Torre, 2012a). These tasks can also be formulated as
extensions of SegSVMs, and we refer the reader to (Nguyen et al., 2009; Hoai et al.,
2011; Hoai and De la Torre, 2012a,b) for more details.
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