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Abstract

There are numerous applications for human motion syn-
thesis, including animation, gaming, robotics, or sports sci-
ence. In recent years, human motion generation from nat-
ural language has emerged as a promising alternative to
costly and labor-intensive data collection methods relying
on motion capture or wearable sensors (e.g., suits). Despite
this, generating human motion from textual descriptions re-
mains a challenging and intricate task, primarily due to the
scarcity of large-scale supervised datasets capable of cap-
turing the full diversity of human activity.

This study proposes a new approach, called MotionGPT,
to address the limitations of previous text-based human mo-
tion generation methods by utilizing the extensive seman-
tic information available in large language models (LLMs).
We first pretrain a doubly text-conditional motion diffusion
model on both coarse (“high-level”) and detailed (“low-
level”) ground truth text data. Then during inference, we
improve motion diversity and alignment with the training
set, by zero-shot prompting GPT-3 for additional “low-
level” details. Our method achieves new state-of-the-art
quantitative results in terms of Fréchet Inception Distance
(FID) and motion diversity metrics, and improves all con-
sidered metrics. Furthermore, it has strong qualitative per-
formance, producing natural results. Code is available at
https://github.com/humansensinglab/MotionGPT

1. Introduction

Human motion synthesis is an actively researched field
that has vast potential applications in areas such as ani-
mation, gaming, robotics, medical research, and activity
recognition. For instance, it can create more natural move-

* denotes equal contribution

ments for animated characters [18], help develop prosthetic
devices that mimic human movements [14] , and aug-
ment motion data to improve performance in downstream
applications [50]. Traditional methods for synthesizing
human motion rely on data collection with expensive and
well-calibrated motion capture systems or wearable sen-
sors [29, 31], as well as human labor to perform, clean and
annotate the motion data. This makes it challenging to ac-
quire large amounts of data for each activity.

Recent developments in generative modeling have led
to various techniques that allow for the direct synthesis of
motion sequences from natural language descriptions, with
minimal human involvement and without the need for costly
capture systems. These methods aim to generate plausible
SMPL-compatible [26] parameters (i.e., global translation,
global orientation and joint rotation angles representing the
body pose) that accurately reflect the given text. Pop-
ular approaches include CLIP-aligned autoencoders [29],
and both Variational Autoencoders (VAEs) [4, 22, 35, 50]
and Denoising Diffusion Probabilistic Models (DDPMs)
[17, 46, 47, 51, 59] conditioned on text embeddings.

However, these methods have a major drawback of suf-
fering from the moderate sizes and the ambiguous nature of
the texts in their training datasets, which typically contain
only coarse “high-level” descriptions. Consequently, they
cannot generate detailed motions that correspond to fine-
grained “low-level” texts, limiting their generalization, di-
versity, and controllability. For instance, as shown in Fig. 1,
the “high-level” activity of “greet a friend” can involve a
range of “low-level” variability, including a “handshake”,
a “wave”, a “hug”, a “kiss”, or a “bow”, depending on
culture, the situation, and personal relationships. It remains
unclear how existing methods could capture such variabil-
ity without larger training datasets with more detailed text
annotations.

This paper introduces MotionGPT, a doubly text-
conditional motion diffusion model that addresses the afore-



“High-level” text: “greet a friend”

Model “Low-level” text: “hug” “Low-level” text: “wave” “Low-level” text: “bow”

MDM [51]
w/o. “low”

MDM [51]
w. concat.

Ours
w. both

Figure 1. Example demonstrating the advantages of our proposed double text conditioning (best viewed zoomed in). For each scenario,
we use the same coarse “high-level” text “greet a friend”, but we vary the fine-grained “low-level” description: “hug”, “wave”, and “bow”.
MDM [51] uses only the “high-level” text and ignores the “low-level” completely. MDM with concatenated “high-” and “low-level” text
generates more consistent but poor quality motions. Our model conditioned on both texts yields consistent and good quality motions.

mentioned limitation with zero-shot ”common-sense” infer-
ence. We pretrain the motion diffusion model using both
ground truth “high-level” HumanML3D [51] and “low-
level” BABEL [36] annotations. During inference, the
“low-level” texts are obtained by zero-shot prompting the
GPT-3 [9] large language model (LLM) using the “high-
” and “low-level” pairs of the training dataset along with
a “high-level” query from the test dataset. This approach
increases motion diversity by adding randomness and im-
proves generalization by aligning test samples with the
training dataset. Our proposed method achieves new state-
of-the-art quantitative results in text-to-motion generation
in terms of Fréchet Inception Distance (FID) and motion
diversity, as well as strong qualitative performance.

Our contributions are summarized as follows:

• A motion diffusion model conditioned on both “high-”
and “low-level” descriptions for fine-grained control
over generated motions.

• Zero-shot prompting GPT-3 for “low-level” details of
“high-level” texts, resulting in more motion diversity
and better alignment with the training dataset.

• New state-of-the-art performance on the HumanML3D
[51] benchmark in terms of FID and motion diversity.

2. Related Work
2.1. Human Motion Generation

Generative models for human motion synthesis can be
categorized into two types: supervised and unsupervised
methods.

Supervised methods aim to approximate input-to-target
mappings from datasets of respective pairs. E.g., one may
estimate 3D human pose targets from monocular image [7,

33], video [23] or 2D pose [12, 28] inputs. However, in
practice, target data may not always be readily available or
sufficient for proper generalization.

Therefore, an alternative approach is to apply unsuper-
vised learning by solely utilizing the input data. E.g., pre-
dicting future motion frames can be achieved by masking
out past frames from the input [3, 5, 10, 58]. Similarly, one
may attempt to reconstruct the whole input sequence from
a compressed representation via autoencoders or decoder-
only models. Such schemes are either unconditional (purely
unsupervised) or conditional (the latent code contains some
supervisory signal). Unconditional methods have limited
control over the generated motions, and are typically em-
ployed as motion priors in pose estimation [23, 33]. In con-
trast, conditional procedures offer more control. In partic-
ular, the emergence of labeled action recognition datasets
such as NTU-RGB-D [44] has sparked a group of class-
conditional solutions [11, 16, 34]. These models can gener-
ate a variety of motions from the same action class, but pre-
cise control over the outputs is still limited by the number
of classes. As a solution, the emergence of motion datasets
with natural language annotations, such as BABEL [36]
and HumanML3D [15], has led to the development of text-
conditional generative models that aim to take advantage
of the compositionality of language. Notable examples in-
clude Conditional Variational Autoencoders (cVAEs) [4,35]
and Conditional Generative Adversarial Networks (cGANs)
[1]. More recently, Conditional Denoising Diffusion Prob-
abilistic Models (cDDPMs) [21,51,59] have been proposed
to address the many-to-many nature of text-to-motion gen-
eration. By replacing compression with iterative denoising,
these models produce more diverse and detailed motions.

In this paper, we extend the Human Motion Diffusion
Model (MDM) [51], a diffusion-based motion generative
model that is conditioned on “high-level” text input. While



MDM can generate reliable motions when the text input is
specific and similar to the training set, it struggles with am-
biguous or difficult-to-generalize inputs, as shown in Fig. 4.
To overcome this limitation, we propose a method that
leverages the common-sense knowledge embedded in the
GPT-3 language model to break down “high-level” test de-
scriptions into more detailed and randomly-generated “low-
level” variants that are similar to those of the training
dataset. By incorporating this additional “low-level” text
conditioning signal, we achieve better generalization due to
the increased similarity to the training dataset, as well as
more motion diversity thanks to the randomness.

2.2. Large Language Models and Zero-Shot
Prompting

Large Language Models (LLMs) [9, 13, 37] are trans-
former models in Natural Language Processing (NLP) that
are pretrained on vast amounts of text data. Pretrain-
ing is accomplished by solving unsupervised pretext tasks,
such as masked word prediction, to learn generic fea-
ture representations. These features can then be used to
solve downstream problems, such as question answering
[20, 53], language translation [49, 62], sentiment analysis
[24,57], or guiding methods in other modalities by leverag-
ing common-sense knowledge [8, 55].

One way to use the pretrained model is by fine-tuning it
for the downstream task [19, 40, 41, 48]. However, this may
require a considerable amount of training data.

Recently, it has been demonstrated that LLMs can also
generalize to novel problems using zero-shot prompting
[39,42,43]. The key idea behind this approach of in-context
learning is to learn from analogy, wherein language models
are able to learn tasks given only a few demonstration ex-
amples [9]. Though it has been used in other areas [30, 45],
its use in human motion generation is novel. During infer-
ence, by providing a prompt comprising a small number of
in-context input-target examples and an additional query in-
put, the LLMs can identify the patterns in the examples and
combine them with the pretrained semantic information to
generate the query output. Prompt design is crucial for good
performance [56,60] and it has been shown that using more
semantically similar examples to the query case yields bet-
ter results [25].

In this work, we adopt zero-shot prompting for the GPT-
3 LLM to augment “high-level” test motion descriptions
into their random “low-level” counterparts with additional
details on the action and increased similarity to the train-
ing dataset. We then condition a motion diffusion model on
both texts.

3. Methods
In this section, we start by formulating the task (Sec-

tion 3.1), followed by introducing our model, MotionGPT

(Section 3.2), and our GPT-3 prompting (Section 3.3).

3.1. Problem Formulation

Our objective is to generate a sequence of 3D human mo-
tion parameters x1:N =

[
x1, . . . ,xN

]
∈ RN×F that corre-

sponds to a given text conditioning c ∈ RC . Here, N de-
notes the variable temporal length of the motion sequence
(i.e., the number of frames) and F is the number of param-
eters per frame.

Text conditioning. The conditioning signal c is an em-
bedding of a real-world text, such as a natural language
sentence that describes an action or how it should be
performed. Specifically, we utilize CLIP-embeddings of
the descriptions contained within the HumanML3D [15]
dataset. Throughout this study, we refer to these as the
“high-level” texts.

Motion parameters. In line with related works in the
field, we adopt a body motion representation that is com-
patible with SMPL [26], which includes 6D parent-relative
joint rotation angles [61] for J body joints. Additionally,
we incorporate a 3D global translation and a 4D global ori-
entation in quaternion representation to facilitate spatial ar-
rangement. To improve the training process, we also in-
clude extra redundant parameters, such as joint locations
and angular velocities, as proposed by [15].

3.2. MotionGPT

Our proposed MotionGPT architecture builds upon Hu-
man Motion Diffusion Model (MDM) [51] and introduces a
second conditioning with a more detailed text, which we re-
fer to as the “low-level” description, to enable fine-grained
control over the embedding space and the generated mo-
tion. In addition to the “high-level” description of the mo-
tions, we train our model with ground-truth “low-level”
texts, and use GPT-3 prompting (Section 3.3) during infer-
ence to achieve greater diversity and more similarity to the
training data distribution. In this subsection, we provide an
overview of our framework, which is illustrated in Fig. 2.

Diffusion model. We utilize a Denoising Diffusion Prob-
abilistic Model (DDPM) [38, 51] for generating motions.

The forward Markov noising process initiates with the
training sample x1:N

0 = x1:N , and gradually adds noise to
it, i.e., for time steps t = 1, . . . , T :

q(x1:N
t |x1:N

t−1) = N
(√

αt · x1:N
t−1, (1− αt) · I

)
. (1)

The αt ∈ (0, 1) values are constant hyperparameters. For
small αt, the forward process can be approximated as
x1:N
t ∼ N (0, I).



(a) (b)

Figure 2. Schematic diagram of our proposed MotionGPT architecture. Best viewed in color. “Low-level” conditioning contribution is
highlighted in the pink box. (a) Denoising network G. The model receives a noisy motion sequence x1:N

t , a noising step t, and two text
embeddings (“high-” and “low-level” encoded by CLIP [37] and a language model, respectively) as input, and predicts a clean motion x̂1:N

0 .
We pretrain the network with ground truth text annotations, whereas during inference, we generate the “low-level” text using zero-shot
prompting with GPT3. (b) Sampling. Given the text conditioning c and a Multivariate Standard Normal noise xT , we alternate between
the denoising network G and the backward noising process with gradually decreasing number of steps.

Subsequently, the reverse denoising process trains a de-
noising neural network G to reconstruct the original motion
input x1:N

0 by approximately inverting multiple steps of the
forward process:

Lrec = Ex1:N
0 ∼q(x1:N

0 |c),t∼[1,T ]

[
∥x1:N

0 −G(x1:N
t , t, c)∥22

]
.

(2)
During inference, one may start with x1:N

T ∼ N (0, I),
then alternate between the denoising network G and the
backward noising process with gradually decreasing num-
ber of steps (T − 1, . . . , 1).

Architecture. Our denoising network architecture G is
based on MDM [51] and employs a transformer [52] with
four inputs: the training motion sample x1:N of variable
length, the encoding of the denoising step index t, the
positional embedding of the temporal ordering of motion
frames, and the conditioning vector c. These inputs are
linearly projected into a common 512-dimension space and
added together to form the input of the transformer encoder.
We kindly refer the reader to MDM [51] for additional de-
tails.

Unlike MDM, which only uses the CLIP-embedding of
the “high-level” text annotation of HumanML3D [15] as
the conditioning vector c, we also incorporate the LLM-
embedding of its “low-level” variant, and sum their linear
projections. During training, we generate the “low-level”
text by sorting and concatenating ground truth per-frame
labels from the BABEL [36] dataset. During inference, we
employ GPT-3 prompting (see Section 3.3). We experiment
with various LLMs for the “low-level” embedding, such
as DistilBERT [41], Sentence-T5 [32], and MiniLM [54].

Note that it is also possible to obtain the “low-level” text
during inference through user input or test data from BA-
BEL.

Training loss. Geometric losses [34, 35, 50, 51] are often
utilized in motion generation to encourage natural and phys-
ically plausible motions. In this work, we incorporate reg-
ularization for joint positions (obtained via forward kine-
matics from the model-generated joint angles), joint angular
velocity and foot contact (to prevent foot-skating). Specifi-
cally, we define the losses as follows:

Lpos =
1

N

N∑
i=1

∥FK(xi
0)− FK(x̂i

0)∥22, (3)

Lvel =
1

N − 1

N∑
i=1

∥(xi+1
0 − xi

0)− (x̂i+1
0 − x̂i

0)∥22, (4)

Lfoot =
1

N − 1

N−1∑
i=1

∥(FK(x̂i+1
0 )−FK(x̂i

0)) · fi∥22. (5)

Here, the function FK(·) represents forward kinematics
(converting from joint angles to joint positions), and fi ∈
{0, 1}J is the ground truth binary foot contact mask for each
frame i.

The overall training loss is then defined as:

L = Lrec + λposLpos + λvelLvel + λfootLfoot. (6)



3.3. GPT-3 Prompting

During inference, we utilize zero-shot prompting (Sec-
tion 2.2) for the GPT-3 LLM to generate “low-level” de-
scriptions for each “high-level” test query. This approach
has two benefits. Firstly, it increases the diversity of text
prompts, resulting in a wider range of generated motions.
Secondly, it allows for better generalization by achieving
greater similarity to the training data distribution. This is
done by breaking down hard “high-level” test set descrip-
tions into similar “low-level” actions found in the training
set.

Our prompting procedure is depicted in Fig. 3. We fol-
low KATE [25] and retrieve the top-k most similar training
examples for each “high-level” query ĥ. We accomplish this
by precomputing a dictionary D of “high-level” Sentence-
T5 [32] embeddings, i.e., D = z1:S , where S is the size
of the training set. Then during inference, we obtain the
embedding of ĥ, represented as ẑ, calculate its cosine sim-
ilarity with the dictionary D, and retrieve the top-k most
similar “high-level” training descriptions Hp = hp

1:k. Fi-
nally, we form pairs of “high-level” texts in Hp with their
corresponding “low-level” counterparts lp1:k from the train-
ing dataset, and concatenate these pairs with ĥ to create a
prompt of the form [hp

1, l
p
1, h

p
2, l

p
2, ...h

p
k, l

p
k, ĥ]. These pairs

are used as examples for GPT-3, which generates the corre-
sponding “low-level” description of ĥ. Given the stochastic
nature of GPT-3, this generated description, which is then
provided at inference time as the “low-level” conditioning
for our model, is different every time, but still consistent
with the provided query, thus enabling motion augmenta-
tion.

We bring to the reader’s attention that this approach does
not require fine-tuning GPT-3, nor manually engineering
prompts.

4. Results
Details on the datasets and metrics are provided in Sec-

tion 4.1. We present the results of the model for the case of
text-to-motion task in Section 4.2. Given the work’s empha-
sis on complex actions with dual conditioning, no action-
to-motion tests or comparisons were performed. We in-
clude figures for qualitative inspection, comparing the cur-
rent SOTA results [51] with ours. The prompt retrieval re-
sults using GPT-3 are shown in Section 4.3. Training was
performed using a single NVIDIA RTX A4000 and took
about 2-3 days. The model was trained with T = 1000 de-
noising steps and a cosine noise schedule. The weights on
the language models were frozen during training.

4.1. Data and evaluation metrics

Data. During training, a batch of text-motion pairs is sam-
pled for each iteration and is fed to their respective en-

coders. The AMASS [27] dataset was used for 3D motion
capture data, containing high-quality motion capture data of
multiple actions being performed. The HumanML3D [15]
dataset was chosen for “high-level” text, featuring three
to four descriptions of the actions contained in AMASS.
For “low-level” text descriptions, during training, the BA-
BEL [36] dataset was used, as it contains per-frame descrip-
tions of the action, which were concatenated in a single
sentence containing the sequence of actions present in the
motion. When a corresponding BABEL label was not avail-
able, the HumanML3D [15] prompt was used for both high-
and “low-level” conditioning.

For inference, only “high-level” descriptions must be
provided. The “low-level” conditioning can be automat-
ically generated by means of GPT-3, and, similar to the
behavior of other proposed models, only a single text de-
scription of the motion is needed. This possibility allows
for practical data augmentation, as multiple motions can be
generated from a single text description due to the stochas-
tic nature of GPT-3 prompts.

Another possibility is having both “high-” and “low-
level” descriptions provided by the user. This is useful for
cases where the user wishes to specify a particular variant
of the motion being generated that includes a certain action,
as shown in Fig. 1.

Evaluation metrics. We use the Fréchet Inception Dis-
tance (FID), Diversity, and MultiModality metrics, common
for evaluating this task [15, 35, 50, 51]. We also include the
metrics proposed and described in [15] and used in [15,51],
namely R-precision and Multimodal Distance, which eval-
uate how much the motions fit the description.

4.2. Text-to-motion

Quantitative results. We compare our results with
the SOTA text-conditioned motion generation method
MDM [51], JL2P [2], Text2Gesture [6], and T2M [15].
We tested the proposed architecture using DistilBERT [41],
Sentence-T5 [32] and MiniLM [54] as language encoders
for the “low-level” text. We performed two sets of exper-
iments, one using “low-level” descriptions from the BA-
BEL [36] test set, and another using GPT-3 prompts as
described in Section 3.3, using 10 examples when query-
ing GPT-3. Both experiments were conducted using Hu-
manML3D [15] and BABEL [36] (training) data, following
the HumanML3D train-test split. For each set, we tested the
three “low-level” encoders. When no “low-level”match was
present in BABEL, we chose to repeat the “high-level” de-
scription for “low-level” as well. We summarize the results
in Table 1.

Qualitative results. We further provide qualitative com-
parisons with the state-of-the-art approach MDM [51], in



Figure 3. Overview of our GPT-3 Prompting Method. The Sentence-T5 encoder is used to map the “high-level” test query and the “high-
level” texts of the training set to the embedding space. We retrieve the top-k “high-level” training texts that are closest to the test query in
terms of cosine distance, as well as their respective “low-level” counterparts. The GPT-3 prompt is formed by concatenating the retrieved
“high-” and “low-level” training texts and the test query.

Multimodal
Method R-Precision ↑ FID↓ Distance ↓ Diversity → Multimodality ↑
Ground Truth [51] 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

JL2P [2] 0.486±.002 11.02±.046 5.296±.008 7.676±.058 -
Text2Gesture [6] 0.345±.002 7.664±.030 6.030±.008 6.409±.071 -
T2M [15] 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083

MDM [51] 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

Ours w. DistilBERT [BABEL] 0.637±.007 0.425±.051 5.319±.032 9.511±.078 2.607±.107

Ours w. Sentence-T5 [BABEL] 0.631±.006 0.783±.065 5.420±.027 9.227±.088 2.464±.092

Ours w. MiniLM [BABEL] 0.618±.006 0.466±.041 5.523±.036 9.800±.078 2.523±.031

Ours w. DistilBERT [GPT-3] 0.634±.008 0.574±.077 5.336±.035 9.502±.079 2.457±.779

Ours w. Sentence-T5 [GPT-3] 0.645±.007 0.571±.054 5.267±.021 9.662±.062 2.393±.043

Ours w. MiniLM [GPT-3] 0.616±.007 0.507±.046 5.577±.032 9.679±.082 2.446±.032

Table 1. Quantitative experimental results on the HumanML3D test set. Results of baseline models are taken from [51]. ↑ represents higher
scores being better, ↓ represents lower scores being better, and → indicates that closer to ground truth value is better. Each evaluation was
performed 20 times, except for MultiModality, which was done 5 times. ± denotes the 95% confidence interval. Winning numbers are
highlighted in bold. Second-best are underlined. Our doubly text-conditional model is trained with ground truth “high” and “low-level” text
from the BABEL dataset. It performs better in terms of FID and diversity metrics, while maintaining competitive R-precision, Multimodal
Distance, and Multimodality. We also ablated results for the “low-level” language encoder (DistilBERT, Sentence-T5, and MiniLM) and
GPT-3 prompting.

Fig. 4. For additional examples, we kindly forward the
reader to the supplementary material.

User study. 32 participants took part in a survey where
they were shown motions from our model and MDM [51],
and asked to choose which motion simultaneously fit the
description better, and looked more natural. Each partic-

ipant was shown 30 motions generated from descriptions
randomly sampled from HumanML3D [15] training set.
“Low-level” prompts were provided by the BABEL [36]
dataset. The second language encoder for this task was
MiniLM [54]. Our method was strictly preferred over
MDM [51] for 61% of the motions presented, and there was
no preference over either model for 30% of the motions.



“High-level” text: “a man does a push-up and then uses his arms to balance himself back to his feet”
“Low-level” text: “lie down, push up, lie stretch, stand up”

MDM [51]

Ours

“High-level” text: “walk from side to side”
“Low-level” text: “walk from side to side”

MDM [51]

Ours

“High-level” text: “a person flaps their arms quickly like a chicken”
“Low-level” text: “None”

MDM [51]

Ours

Figure 4. Qualitative experimental results on the HumanML3D test set. “Low-level” text is provided either by the BABEL dataset, by
repeating the “high-level” variant, or by not specifying a “low-level” prompt and using ’None’ as description. Our approach generates
more detailed and realistic motions than MDM [51].

4.3. GPT-3 prompt retrieval

We conducted a comparison between the “low-level” text
generated by GPT-3 using prompts retrieved through our
method (Section 3.3), and the prompts generated by query-
ing GPT-3 with random samples from the training set as
examples. 500 testing samples were performed, and the
average cosine similarity between the resulting “low-level”
prompt and the ground truth description are used as the met-
ric for evaluation. The results are as shown in Table 2, in
which we also investigate the impact of the number of sam-
ples in the prompt on the similarity of the obtained “low-
level” text. To assess the significance of the difference in
average similarity, we performed a one-sided Kolmogorov-
Smirnov test between the two methods with null hypothesis
of our similarity being higher than random sampling. With
the resulting p-value > 0.05, there is no evidence that the
null hypothesis is not correct, thus should not be rejected.

We also show some examples of the generated prompts
by GPT-3 when queried with descriptions from the test set
of HumanML3D dataset, and which were used as “low-

Cosine similarity

Method 10 samples 20 samples 30 samples

Random 0.8602±.057 0.8611±.062 0.8625±.061

Ours 0.8688±.063 0.8735±.064 0.8744±.065

Table 2. Average cosine similarity between the “low-level” texts
generated by GPT-3 when using examples from our method vs.
random samples from the training set. Similarity increases with
higher number of examples for both cases, but our method remains
consistently higher. A one-sided Kolmogorov-Smirnov test was
conducted between the two methods, which shows no evidence in
rejecting the hypothesis of our method’s similarity being higher
than random prompting (p-value<0.05).

level” descriptions for the experiments in 4.2 in Table 3.
The model was queried using the prompt “Convert scene
to motion sequences according to the examples.” and then
given the examples and target “high-level” prompt for con-



high-level text low-level text
a person, searching for something with
their right hand, picks up the item with
their left hand and places it in something
by their head

stand, reach down with right hand, pick up
object, move left arm to the back, pick up
more object, move left arm to the back

a man using both hands to lift something
off ground and places it back on ground in
a slightly different position

stand, lift object, move object, set down
object, stand

a man walks forward, then turns around
and walks back before facing back and
standing still

walk, turn, walk, stand still

Table 3. Table containing the generated “low-level” text when
GPT-3 is prompted with examples from the HumanML3D test set.
10 examples pairs were used when querying GPT-3.

version. For these examples, 10 example sentences were
provided, in order to mimic a more plausible scenario where
the user wishes to minimize costs prompting GPT-3. For
additional examples of generated prompts using GPT-3, we
kindly forward the reader to the supplementary material.

5. Discussion
The proposed dual-conditioning approach is able to

achieve metrics that either surpass or rival state-of-the-art
results2. The better embedding of the prompt improves the
R-precision and multimodal distance metrics, and achieves
the best results for the FID and diversity metrics, as shown
in Table 1.

This observation of improvement is not limited to the
metrics evaluated using the BABEL dataset, which matches
the data being used in training, but also GPT-3 gener-
ated “low-level” descriptions using the previously described
method (Section 4.3 and Fig. 3).

Given the diversity of motions that may be described, the
model is asked to interpret prompts not present in the train-
ing set. GPT-3 helps minimize this problem, by providing
“low-level” prompts with actions that were in the training
set. These generated prompts are in accordance with the
training set distribution, as GPT-3 results can be better than
BABEL results (Table 1), which use human annotations to
describe the motions. Essentially, GPT-3 tells the model
how to perform a new motion by breaking it down into ac-
tions present in the training examples.

Leveraging GPT-3, the potential for data augmentation is
significant, as the user needs only specify the “high-level”
description of the action, and multiple “low-level” prompts
are provided. This results in a multitude of motions that
are in accordance with the description, with slight variations
(Fig. 1). Descriptions not present in training are realistically
generated by means of this translation of new motions into
previously known actions.

2It is worth noting that during the writing of this work, a similar work
called T2M-GPT (https://mael-zys.github.io/T2M-GPT/) was published,
setting a new state-of-the-art. While we do not directly compare with T2M-
GPT, our claims regarding the efficacy of dual-conditioning in improving
performance remain valid.

Another aspect of this dual-conditioning is that the user
can be the one to provide the “low-level” description. This
allows an additional level of control on the generated se-
quence, not present in current models. This ability may
be interesting to explore the diversity in actions that de-
pends on context and culture, with which current models
may struggle (Fig. 1).

Failure cases for MotionGPT include: 1) prompts that
require counting, e.g. ”take 3 steps forwards” might walk
indefinitely; 2) long sequences with many actions, where
order and actions may sometimes be ignored, 3) motions
very specific or ambiguous, such as ”celebrate a goal like
Ronaldo”, and 4) interacting with ’hallucinated’ objects,
such as throw a ball, or sit on a chair.

The proposed approach does not require fine-tuning
GPT-3 or manually crafting prompts. Nonetheless, delv-
ing into the potential ramifications of such techniques is
a possible path for future investigation. While the GPT-3
model’s outputs could align more closely with the dataset
through fine-tuning, there exists a concern that such align-
ment might harm the model’s capacity for effective gener-
alization towards novel scenarios.

Overall, our proposed approach is able to outperform the
current state of the art MDM [51], with the added benefit
of allowing greater diversity of motions, as well as some
degree of control over the generated motion.

6. Conclusion
In this work we propose MotionGPT, a novel approach

to human motion synthesis that aims to leverage language
models’ common sense information, by allowing a dual-
conditioning of the “high-level” description of a motion,
and also a “low-level” description of the basic actions that
compose it. This “low-level” description may be obtained
by GPT-3, allowing an increased diversity of motions with-
out additional input from user. It may be provided by the
user instead, increasing their control over the action. We
found that this approach resulted in a better embedding in
latent space and increased motion diversity.

A limitation of this approach, due to the diffusion model
architecture, is the long inference time. For this reason, the
method does not scale to very long sequences. Another as-
pect worth pointing out is the dependence on datasets suited
for this approach. The popularity of AMASS [27] motivated
multiple annotations datasets, namely BABEL [36] and Hu-
manML3D [15]. The availability of these datasets allowed
our approach, and it would be interesting if other motion
capture datasets could benefit from the same treatment.

Overall, the potential for data augmentation is significant
and the information contained in LLMs is helpful for the
task of human generation, by breaking down abstract and
ambiguous motions, allowing for data augmentation and an
increased diversity of generated motions.
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