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Figure 1. Given an image set of an object under unknown illumination, MaterialFusion recovers the object’s geometry, BRDF appearance,
and the environmental illumination, via inverse rendering. Our method utilizes a 2D material diffusion prior to accurately reconstruct
these properties. On the left, we display the input image set of the bills alongside the output of the reconstructed properties, visualized as
the materials, albedo, and mesh from top to bottom, respectively. On the right, we show different objects rendered under novel lighting
conditions with the reconstructed physical properties.

Abstract

Recent works in inverse rendering have shown promise
in using multi-view images of an object to recover shape,
albedo, and materials. However, the recovered components
often fail to render accurately under new lighting conditions
due to the intrinsic challenge of disentangling albedo and
material properties from input images. To address this chal-
lenge, we introduce MaterialFusion, an enhanced conven-
tional 3D inverse rendering pipeline that incorporates a 2D
prior on texture and material properties. We present Sta-
bleMaterial, a 2D diffusion model prior that refines multi-
lit data to estimate the most likely albedo and material
from given input appearances. This model is trained on
albedo, material, and relit image data derived from a cu-

rated dataset of approximately ~12K artist-designed syn-
thetic Blender objects called BlenderVault. we incorporate
this diffusion prior with an inverse rendering framework
where we use score distillation sampling (SDS) to guide
the optimization of the albedo and materials, improving
relighting performance in comparison with previous work.
We validate MaterialFusion’s relighting performance on 4
datasets of synthetic and real objects under diverse illu-
mination conditions, showing our diffusion-aided approach
significantly improves the appearance of reconstructed ob-
jects under novel lighting conditions. We intend to publicly
release our BlenderVault dataset to support further research
in this field.
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1. Introduction
Recently, there has been an increased interest in methods
that try to recover 3D representations from 2D images.
Novel view synthesis approaches, particularly Neural Radi-
ance Fields (NeRF) [35] and follow-up works have proven
highly effective for accurately representing 3D scenes from
posed 2D images. Nevertheless, one of the main drawbacks
of these approaches is relighting, since novel view synthesis
methods bake in all the lighting information into the 3D rep-
resentation, rather than disentangling it from the underlying
scene data. In this paper, our goal is to infer relightable
3D representations that factorize these properties, allowing
for the editing of materials, geometry, and lighting indepen-
dently.

Some approaches do pursue factorized, relightable 3D
representations [5, 19, 57]. These methods employ signed
distance functions (SDFs), meshes, or volumetric represen-
tations to model geometry, while also estimating underly-
ing properties like diffuse albedo and specular parameters
and their results can be used for relighting in novel environ-
ments. However, as these approaches are supervised on cap-
tured image data under a fixed illumination, there still exists
an ambiguity between the underlying properties that images
alone cannot explain. Multiple possible materials and tex-
tures could be composed onto the geometry to produce the
same final images in the training data, leading to fundamen-
tal ambiguities when inferring underlying albedo and mate-
rial properties using a simple pixel-level reconstruction loss.
The ill-posed nature of this problem ultimately leads to sub-
optimal factorization.

Our key insight is that 2D priors over plausible materials
and albedos, in addition to reconstruction losses, can re-
solve ambiguities in factorized inverse rendering. We learn
a large scale conditional diffusion prior over likely materi-
als for RGB images under different illuminations. In ad-
dition to reconstruction loss, we distill the fine-tuned dif-
fusion model to provide additional signal about plausible
texture and material combinations for the depicted object
during 3D optimization.

We demonstrate our 3D inverse rendering approach,
MaterialFusion, on the NeRF Synthetic, NeRFactor
datasets [35, 62], a test set of our BlenderVault dataset
and the Stanford-ORB dataset [25]. We use these datasets
to show significant improvements in novel view synthe-
sis under relighting as well as material estimation com-
pared to prior state-of-the-art work on both synthetic and
real data. We trained a conditional diffusion model, Sta-
bleMaterial, with albedos, materials, and relit images ren-
dered from ~29K high quality objects, augmented with our
own BlenderVault dataset of ~12K high quality synthetic
Blender objects curated from online sources, and show its
superior performance compared to previous approaches that
recover albedo and materials from input images. Using our

prior, our learned factorized representation generalizes bet-
ter to novel lighting conditions across diverse lighting, ob-
ject, and underlying material scenarios, as shown in the re-
lighting results in Fig. 1.

2. Related Works
2.1. Inverse Rendering

In recent years, reconstruction methods that learn a 3D rep-
resentation from a set of multi-view images have rapidly im-
proved [1, 2, 23, 35, 37] in terms of quality and speed. How-
ever, many of these methods do not disentangle the under-
lying texture and materials, from the illumination. There-
fore, rendering the acquired scene under novel lighting con-
ditions remains a challenge.

To address this, inverse rendering works have begun fo-
cusing on reconstructing the 3D appearance along with the
underlying materials of a scene or object. Given a set
of images of a scene or object under a fixed illumination,
some works have aimed to recover the texture, materials,
and lighting [4, 16, 19, 22, 27, 38, 62, 63]. This task is
inherently challenging due to its high dimensionality and
ambiguity in explaining the image appearance, as multi-
ple illumination and material parameter combinations can
be used to reproduce the final appearance. To tackle this
ambiguity, other works simplify the problem setting by as-
suming or modeling scene lighting [10, 18, 22, 61] or em-
ploying domain-specific priors [3, 9, 62] to inject additional
information on physical properties. Nevertheless, assump-
tions about lighting limit the applicability of these methods
in real-world scenarios such as online marketplaces, where
lighting conditions can be difficult to capture and are con-
stantly changing. Moreover, the priors used in the afore-
mentioned works are either trained on small-scale or proce-
durally generated data or focus on a specific object category.

In contrast, our approach does not rely on controlled
lighting conditions; instead, it primarily utilizes a large-
scale 2D texture and material prior trained with a large syn-
thetic object dataset we curated. The objects in this dataset
contain complex Physically Based Rendering (PBR) assets,
enhancing our prior’s predictions.

2.2. 2D Diffusion Priors For 3D Tasks

The success of diffusion models in text-to-image synthe-
sis [20, 42, 43] has also brought attention to employing large
scale 2D priors for 3D generation [8, 28, 34, 40, 50, 53, 55].
Dreamfusion [40] and SJC [53] first propose Score Distil-
lation Sampling (SDS) to optimize a 3D representation us-
ing 2D diffusion model gradients. Some follow-up works
enriched the 2D model prior with 3D knowledge by fine-
tuning the model to generate novel views of an object [31],
to generate images of several views simultaneously [32, 49,
54]. Moreover, it has been shown that such enriched mod-



els perform better in generating 3D models from scratch
and in single-view reconstruction [29–33, 48, 49, 54, 64].
Additionally, ReconFusion [58] also uses 2D diffusion pri-
ors to improve sparse-view 3D reconstruction. However,
common to all of these works is the lack of material and il-
lumination disentanglement, thereby limiting the relighting
performance of the generated or reconstructed objects.

To predict physical properties, previous works showed
success in finetuning a pretrained diffusion model. Specif-
ically, some works predict material parameters given an
RGB image [24, 46, 52, 60]. However, these works recon-
struct only a 2D representation of the underlying physical
properties, and do not consider the 3D reconstruction from
a set of images. In contrast to the aforementioned works,
our approach reconstructs the underlying 3D geometry, ma-
terial properties, and environmental lighting from a set of
multi-view images via score distillation. Closest to ours,
[59] concurrently used a 2D diffusion model to guide re-
lightable 3D inference, but used diffusion samples to guide
the optimization while ours uses likelihood maximization
via SDS.

2.3. 3D Datasets with PBR assets

The availability of 3D datasets is considerably smaller than
the availability of 2D datasets, even more so in terms of
PBR information, imposing a challenge in 3D-related tasks.
In particular, commonly used 3D datasets [15, 21, 41] lack
PBR information. Some datasets [11, 39] offer 3D objects
with PBR information but are limited in diversity to only
furniture. Objaverse [13] offers diversity yet contains many
objects that are partial reconstructions, low in quality, or
cartoonish. Artist-designed high-quality 3D objects with
PBR data are available in different sources, but are not or-
ganized in a dataset suitable for research. In this work, we
introduce a new dataset of Blender objects containing high
quality PBR assets curated from online sources. We use this
dataset to augment previous datasets, greatly enhancing the
diversity of PBR information available for training.

3. Methodology
This section introduces MaterialFusion, our approach to re-
constructing a 3D representation of an object from a set of
multi-view images. An overview of our approach is shown
in Fig. 3. Specifically, given a set of posed images of the
object captured under an unknown illumination, our goal is
to reconstruct the object’s geometry and BRDF appearance,
as well as recover the environmental illumination. Accu-
rately reconstructing these components allows us to faith-
fully recreate the object appearance under new lighting con-
ditions. We represent the geometry as a mesh, as its explicit
nature is more suitable for downstream tasks. For the ma-
terial, we use a simplified Disney principled BRDF model
[7] representation. Specifically, the material texture con-

tains three components per texel, albedo a ∈ R3, roughness
r ∈ R, and metallicness m ∈ R. Following prior works
[19, 38], we represent the albedo texture as an albedo UV-
map kd, and roughness and metallicness as part of an occlu-
sion, roughness, metallicness (ORM) UV-map korm, where
each texel is (o, r,m) with o unused. The environment il-
lumination is represented as a high dynamic range (HDR)
environment map.

Our key idea is to leverage a strong 2D prior obtained
from an image diffusion model which is trained to estimate
the underlying material given a RGB image input. To ac-
complish this, we first adapt an existing image diffusion
model (Stable Diffusion 2.1 [42]) to predict the albedo and
ORM from an image of an arbitrary object rendered under a
randomly selected illumination. This allows us to extend an
existing 2D diffusion prior such that it has material under-
standing. The finetuning procedure is shown in Fig. 2. We
then leverage the extended 2D prior in an inverse rendering
framework to infer a disentangled 3D representation of a
given object and an HDR map of the environment lighting.
Specifically, we utilize a variant of SDS loss [40] to employ
the 2D prior for 3D optimization. We show an overview of
the 3D inference procedure in Fig. 3.

3.1. Training Data

Learning a diffusion prior for albedo and ORM prediction
from images we leverage a diverse dataset of synthetic ob-
ject renderings with high-quality PBR textures. Using such
data, we generate training images with a graphics engine ca-
pable of reproducing realistic appearances such as Blender.
We examined existing datasets such as Objaverse [13] and
ABO [11] for this purpose.

Objaverse is a large and diverse dataset, but it contains
many unrealistic, low-quality, or textureless objects. To ad-
dress this, we followed a similar filtering procedure as [51],
and then further filtered for non-cartoon objects with PBR
textures. This resulted in a filtered subset of ~8.5K objects
from Objaverse.

While the filtered Objaverse dataset provided good cov-
erage, we found that augmenting it with the ABO dataset
(which contains ~8K objects from only 63 categories) was
not sufficient to achieve the desired diversity in our training
data. To further improve the diversity, we created our own
BlenderVault dataset, which contains an additional ~12K
high-quality, PBR-textured objects. BlenderVault consists
of Blender obejcts designed and validated by artists across
arbitrary categories for use in commercial projects.

To render the training images, we replaced any glass
surfaces in the objects with a black surface of roughness
0.25 and metallicness 0. We then rendered 30 images of
each object, with randomly selected azimuth ∼ [0◦, 360◦]
and elevation ∼ [−15◦, 90◦] on a hemisphere with a ra-
dius ∼ [1.5, 2.0]. The lighting conditions were also varied,



Figure 2. StableMaterial receives an RGB image as input and outputs the albedo Îd and ORM Îorm 2D maps. To train StableMaterial, we
use BlenderVault objects to render a dataset of multi-view images under varying illuminations as well as the corresponding albedo and
ORM maps. Given a triplet (x, Id, Iorm) of an image and its albedo and ORM maps, we encode them using the pretrained Stable Diffusion
encoder and concatenate the image latent with the noisy albedo and ORM latents. The model is then trained with a diffusion loss to denoise
the albedo and ORM maps.

using a random selection of StreetLearn [36] environment
maps, Laval [17] indoor environment maps, point lights, or
directional sun lights.

In total, our training dataset consists of ~28K synthetic
objects with high quality PBR assets, combining the filtered
Objaverse, ABO, and our own BlenderVault data.

3.2. StableMaterial – 2D Material Denoising Diffu-
sion Prior

To have a strong 2D material prior, we build on Stable Dif-
fusion 2.1 [42] and fine-tune it from the pretrained model
on a dataset consisting of triplets (x, Id, Iorm), where x is an
RGB image of the object, and Id, Iorm are its corresponding
rendered albedo and ORM components, respectively. For-
mally, given an RGB input x of an object under unknown
illumination, we fine-tune Stable Diffusion to output its un-
derlying albedo Id and ORM Iorm components.

Model Architecture. We modify only Stable Diffusion’s
UNet, so that it is conditioned on the input image x in two
ways. First, we encode it with Stable Diffusion’s pre-trained
frozen VAE E and concatenate the resulting clean latent z0x
to the noisy latent codes zt in the channel dimension, where
t is the diffusion timestep. Specifically, the noisy latent code
zt = [ztd, z

t
orm], i.e. the concatenation of the noisy albedo

latent ztd and the noisy ORM map ztorm in the channel di-
mension. The input of our UNet is then

(
z0x, z

t, t
)
. The

text conditioning is also replaced with a CLIP image em-
bedding of the input image. These two ways of inputting
the image into the model allow it to have both global and
local reasoning about the image.

To output both albedo and ORM maps, our noisy la-
tent codes zt consist of 8 channels, 4 corresponding to the
albedo and the other 4 corresponding to the ORM. In to-
tal, the input of our network is composed of 12 channels

consisting of the encoded input image, noisy albedo latents
and the noisy ORM latents. To obtain the RGB albedo
and ORM maps we decode the denoised ẑ through the pre-
trained Stable Diffusion decoder D. To account for the dif-
ferent input and output channels, the first and last layers are
changed and randomly initialized, while the other UNet pa-
rameters are kept unchanged.

Loss. To fine-tune the model, we utilize v-prediction dif-
fusion loss [44]. At each training iteration, we sample a
triplet (x, Id, Iorm), and encode each of the images with
E . We concatenate E(Id), E(Iorm) in the channel dimension
and denote their concatenation by z. We sample a diffusion
timestep t along with an 8-channel random noise ϵ, and add
the noise to z to obtain zt. The diffusion loss is defined as

Ldiff = Ex,kd,korm,ϵ∼N (0,I),t

[
∥ϵθ

(
E(x), zt, t

)
− vt∥22

]
,
(1)

where x, zt are as defined above. As in [44], vt = αtϵ −
σtz, where αt, σt are the parameters of the scheduler. Simi-
larly to [6], we enable classifier-free guidance by setting the
input images, input image prompt, or both to all zeros with
a 5% probability each and set the guidance scale to 3.0.

3.3. Prior-guided Inverse Rendering

Having material knowledge in our trained StableMaterial
model, we can distill this knowledge and reconstruct a
3D disentangled representation of the object. Specifically,
given a set of multi-view images under an unknown illumi-
nation depicting an object, we aim to reconstruct the under-
lying geometry represented as a mesh and denoted by G,
the underlying UV material texture denoted by (kd,korm),
and the environment illumination L. To this end, we di-
rectly optimize these representations and build on recent
advancements in the distillation of 3D information from 2D



Figure 3. MaterialFusion reconstructs an object’s geometry, PBR materials, and environmental illumination from a set of multi-view images
under a fixed lighting condition. In addition to the reconstruction and regularization losses computed between our rendered images x̂ and
reference RGB images x, MaterialFusion employs priors from our pre-trained StableMaterial to enhance PBR material reconstruction.
Specifically, it calculates an SDS loss for the rendered albedo and ORM components, Îd and Îorm conditioned on x.

diffusion models [40], in conjunction with the off the shelf
nvdiffrecmc inverse rendering pipeline [19] as part of Ma-
terialFusion.

Following previous works [19, 38] we parameterize the
geometry through an SDF denoted by S, and extract a mesh
G in each optimization iteration using DMTet [47]. Given
the mesh G, the texture (kd,korm), a camera view C, and
an HDR environment light map L, we use nvdiffrecmc’s
differentiable renderer to produce a 2D rendering.

In each optimization iteration, we sample some images
and their associated views x, C, respectively, from the train-
ing set, and differentiably render the object using the op-
timized parameters from the views C. We obtain the ren-
dered image x̂ with nvdiffrecmc’s renderer and apply a re-
construction loss to optimize (S,kd,korm,L):

Lrecon = EC [L2(x̂,x)] , (2)

At the same time, we also render the corresponding com-
ponents of the albedo and the material, Îd and Îorm, respec-
tively, encode them with the Stable Diffusion model en-
coder and concatenate their latent representations to get z.
Then, we sample a Gaussian noise ϵ and add it to z ac-
cording to a random diffusion timestep t ∈ [0.02, 0.98], to
obtain zt. We then denoise zt using the diffusion model,
and sample a clean latent representation of the materials de-
noted by ẑ via DDIM sampling for 5 steps, conditioned on
x. We use the SDS loss in both latent and pixel space:

LSDS+ = Et,ϵ,v

[
λlatent||z− ẑ||2 + λrgb||D(z)−D(ẑ)||2

]
,

(3)

where D is the Stable Diffusion decoder. This loss is in-
spired by HiFA [65], as we empirically found the RGB term
important for boosting the quality of materials estimated
during training, shown in Tab. 4. Using 5 denoising steps
was key for producing crisp and accurate predictions for the
albedo and ORM materials. Finally, our total loss consists
of the reconstruction loss, regularization loss, and SDS loss:

LMaterialFusion = Lrecon + Lreg + γiLSDS+, (4)

where γi is an iteration dependent hyperparameter which
decays as training progresses. We find that reducing the
weight on SDS loss towards the end of the optimization
helps preserve finer details that may be lost due to the en-
coder/decoder operation. We use the same Lreg as nvd-
iffrecmc [19]. Conceptually, using SDS loss during inverse
rendering maximizes the likelihood of the ORM and albedo
under our prior for all training images.

4. Experiments
We evaluate MaterialFusion and StableMaterial on image
sequences of objects made of various materials and textures
and show the qualitative and quantitative comparisons. We
first evaluate MaterialFusion against prior inverse rendering
methods for object relighting on a number of synthetic and
real diverse objects and highlight the advantages of our ap-
proach in terms of appearance relighting. We further com-
pare the trained 2D prior against other previous approaches
that predict albedo and material from a single image using
test data from BlenderVault excluded from training.
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Figure 4. Qualitative comparison for MaterialFusion vs. other methods. We present the 3D reconstructed albedo, ORM, environment light
map, and relit rendered images for three different objects, both synthetic and real. Our method demonstrates better accuracy compared to
the baseline methods, as can be seen by the accuracy of the reconstructed materials and the relit image appearance. Our prior also acts as
an additional regularizer on other 3D properties such as geometry and illumination.

4.1. Relightable 3D Reconstruction

For MaterialFusion, we adopt a validation setup similar to
nvdiffrecmc by relighting the objects under novel illumina-
tions and then comparing to the groundtruth relit object im-
ages. For synthetic objects, we acquire the groundtruth re-
lightings by rendering images of synthetic objects under un-
seen illuminations, while real objects are captured in novel
environments for which the illuminations are computed.

Datasets. We use 4 objects from NeRFactor [62], 5 ob-
jects from the NeRF synthetic dataset [35], 9 test ob-
jects from BlenderVault, and 14 objects from the Stanford-
ORB [25] datasets. The first three datasets consist of diverse
synthetic objects with camera poses and their groundtruth
data allows for us to re-render and compare objects with
different illuminations. The NeRFactor and BlenderVault
objects are relit by eight low resolution environment maps
while NeRF synthetic objects are relit by four high resolu-
tion environment maps, and the quality comparison is com-
puted on a test set of eight unseen poses per environment
map. We also show our relighting performance on real ob-
jects from the Stanford-ORB dataset, which has images,
corresponding poses, and groundtruth illuminations allow-
ing us to re-render and relight objects. Objects are relit un-
der two novel illuminations and the relighting comparison is
done using a test set of unseen poses per environment map.

Metrics. The final results for the 3D pipeline relighting
comparison are the average PSNR, SSIM, and LPIPS across
all relighting test views for each dataset. The metrics for the

albedo used were PSNR, SSIM, and L1, and PSNR and L1
for ORM. LPIPS was excluded for both since perceptual
similarity does not matter for ORM, and the VGG network
likely has not seen albedo images. Given the scaling am-
biguity between the albedo and light intensity during infer-
ence, the channels of RGB and albedo images are scaled
against groundtruth during validation [19]. Since the ORM
and albedo are fundamentally pixel-wise material parame-
ters, we use the L1 metric to measure physical similarity.

Baselines. We compare MaterialFusion against three cur-
rent state-of-the-art inverse rendering methods that estimate
geometry, albedo, roughness, and metallicness from a set of
images. These approaches are nvdiffrecmc [19], which is
the method our pipeline is built upon, Relightable 3D Gaus-
sian [16], and TensoIR [22].

Results. We present qualitative and quantitative results
for both albedo and ORM estimation quality as well as per-
formance during relighting. Fig. 4 shows a visual compari-
son of the albedo and ORM estimated by all methods. Our
method is able to recover high frequency details in both
the albedo and ORM that other methods are not able to.
This in turn leads to better performance under novel relight-
ing, where Tab. 1 shows our method achieving the highest
scores across all three datasets. The source of improvement
in the relighting performance is best understood via the re-
sults in Tab. 2, where the estimated albedo and ORM qual-
ity for BlenderVault objects were directly compared to the
groundtruth. We were unable to compare for the NeRF and



NeRF Synthetic NeRFactor BlenderVault Stanford-ORB

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
nvdiffrecmc 25.70 0.924 0.090 25.91 0.921 0.092 25.11 0.910 0.167 31.10 0.968 0.048
TensoIR 24.32 0.923 0.090 24.87 0.916 0.094 25.01 0.903 0.162 28.81 0.959 0.047
Relightable3DG 23.08 0.897 0.094 23.99 0.908 0.082 22.83 0.909 0.148 27.40 0.955 0.048
MaterialFusion 26.26 0.927 0.085 26.31 0.922 0.091 26.33 0.921 0.143 31.68 0.967 0.046

Table 1. Comparison of novel view synthesis relighting. In each column, the best , second best , and third best results are marked.

Albedo ORM

PSNR ↑ SSIM ↑ L1 ↓ PSNR ↑ L1 ↓
nvdiffrecmc 28.24 0.939 0.021 15.93 0.062
TensoIR 25.82 0.927 0.026 14.19 0.063
Relightable3DG 24.30 0.925 0.036 20.96 0.041
MaterialFusion 29.31 0.949 0.015 22.21 0.033

Table 2. Reconstructed 3D albedo and ORM comparison on
BlenderVault objects.

NeRFactor datasets as the underlying material shaders used
did not conform directly to the albedo and ORM.

The comparisons show that our method performs best in
both albedo and ORM estimation, as other methods suffer
from poor albedo or ORM estimates, leading to poorer re-
lighting. The synthetic example of the clock in Fig. 4 shows
how MaterialFusion is able to accurately disambiguate dif-
ferent areas of the material and albedo, leading to a much
more accurate rendering under novel illumination where de-
tails aren’t lost like in the other methods’ renderings. This
can also be seen in the real can example where our method
accurately deduces it is metallic (shown by the strength of
the blue channel in the ORM map) and is able to accurately
replicate the reflection of the can similarly to the real world.
Our method shows better semantic material understanding
as it is able to correctly distinguish between different parts
of an object that are made of different materials, leading
to better decoupling between the reflectance and environ-
ment illumination. Our results confirm our prior’s improve-
ments against baselines by better inferring underlying phys-
ical properties on synthetic and real data.

4.2. Validating Material Inference from a 2D Input

To validate StableMaterial’s performance, we evaluate its
performance on RGB images of synthetic test objects cap-
tured under an unknown illumination. We then directly
compare the predictions to the groundtruth albedo and ma-
terials using extracted data from the synthetic objects.

Datasets. We utilize 8 diverse test objects from our
BlenderVault datasets whose material data was not seen dur-
ing training. We then render the groundtruth albedo, ORM,
and RGB appearance under an unknown randomly selected
fixed illumination for 4 views. This is done per each object.

Albedo ORM

PSNR ↑ SSIM ↑ L1 ↓ PSNR ↑ L1 ↓
Derender3D 21.69 0.874 0.025 – –
IIR 22.62 0.905 0.026 18.68 0.041
IID 21.71 0.871 0.031 18.87 0.045
StableMaterial 24.25 0.902 0.018 24.86 0.029
StableMaterialMV 24.70 0.907 0.018 26.34 0.014

Table 3. Comparison of albedo and ORM 2D predictions produced
by our method versus other methods. We use the mean of 10 sam-
ples generated by StableMaterial and StableMaterialMV for the
evaluation, where StableMaterialMV denotes our prior utilizing
multi-view attention during inference.

Metrics. To account for the variance in StableMaterial’s
outputs, we follow the procedure described in [24] and com-
pute 10 estimates for the albedo and ORM images and av-
erage them together before comparing to the groundtruth.
We further account for the scale ambiguity in the resulting
albedo for all the baselines by rescaling to the groundtruth
albedo. Similarly to the 3D evaluation, the metrics used for
the albedo were PSNR, SSIM, and L1, and PSNR and L1
for ORM. The final results are computed as the mean across
views for all objects.

Baselines. We test StableMaterial against Inverse In-
door Rendering (IIR) [66] and Intrinsic Image Diffusion
(IID) [24], which were trained on scene data to directly
predict the albedo, roughness, metallicness given a single
image. We also include [56], which was trained on diverse
data and predicts the albedo but not materials.

Multi-view Attention at Inference. To make StableMa-
terial produce material outputs consistent across 2D views,
we follow previous works [49, 54] and incorporate multi-
view attention. Specifically, we input a batch of 4 images,
and modify the self-attention layers of the model so that
each latent pixel in each of the images attends to the latent
pixels of all other images. As such, StableMaterial predicts
the most likely material given all input image appearances.
The self-attention layers of the network process the 4 im-
ages as a single large image, while the other layers process
them independently. Importantly, this multi-view attention
mechanism is only employed during inference for 2D im-
ages. We show that using multi-view attention improves the
quality of inferred materials against other baselines.
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Figure 5. Qualitative comparison of the albedo and ORM 2D predictions. The Derender3D ORM data is marked as N/A since it does
not offer ORM predictions. Given 4 images of an object, StableMaterial recovers complex material data. StableMaterialMV attends to
appearance details across views, recovering consistent and high quality materials across challenging views, as seen in the cup example.

BlenderVault

PSNR ↑ SSIM ↑ LPIPS ↓
γi = 1 25.50 0.916 0.150
λRGB = 0 21.41 0.871 0.233
λlatent = 0 26.12 0.917 0.147
Ours 26.33 0.921 0.143

Table 4. Effects of ablating elements from LMaterialFusion.

Results. As shown in Tab. 3, our trained model shows
strong performance across multiple objects in estimating
the Albedo and ORM quality. Notably, performance jumps
further when multi-attention is used across 4 views, as our
model can handle difficult views that offer little appearance
information during inference. Fig. 5 shows a qualitative
comparison of our model against previous approaches.

The consistent improvements in both 2D and 3D tasks
highlight the effectiveness of our approach in capturing the
underlying physical properties of objects. The multi-view
variant further demonstrates the benefits of leveraging addi-
tional viewpoints to enhance the albedo and ORM predic-
tion quality for difficult 2D views. We found no significant
differences when employing multi-view attention during in-
verse rendering, given that the albedo and ORM represen-
tations are already optimized to be multi-view consistent.
However, the performance boost for 2D images raises the
potential for usage in sparse view scenarios or where 3D
reconstruction is not needed or infeasible.

4.3. Ablation Studies

In Tab. 4, we ablate three terms of LMaterialFusion and evalu-
ate relighting performance on the BlenderVault test dataset.
All other parameters are unchanged when ablating one pa-
rameter. Setting λRGB = 0 particularly affects performance;
by backpropagating through the SD encoder, the latent SDS
term gradient introduces artifacts in the materials, degrad-
ing their quality. We also conduct an ablation where γi is
set to 1 throughout the inverse rendering optimization. This
leads to a noticeable drop in performance, as materials esti-
mated for objects with finer details suffer.

5. Conclusion

In this paper, we introduced MaterialFusion, a 3D inverse
rendering approach that utilizes StableMaterial, a 2D diffu-
sion model finetuned from Stable Diffusion as a prior for
enhancing the underlying materials during training. We in-
troduced BlenderVault, a dataset of high quality objects and
underlying PBR assets used to finetune our prior, enabling
it with knowledge to recreate complex materials from im-
ages. Utilizing our prior on top of an off the shelf inverse
rendering approach lead to a significant performance boost
when for inferring relightable 3D representations. While
our work introduces distillation of material knowledge in a
3D scenario, we believe there is great potential in utilizing
our prior for applications in 2D or sparse-view settings.
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Miloš Hašan. Rgb↔x: Image decomposition and synthe-
sis using material- and lighting-aware diffusion models. In
SIGGRAPH. ACM, 2024. 3

[61] Kai Zhang, Fujun Luan, Zhengqi Li, and Noah Snavely. Iron:
Inverse rendering by optimizing neural sdfs and materials
from photometric images. In CVPR, 2022. 2

[62] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul De-
bevec, William T Freeman, and Jonathan T Barron. Ner-
factor: Neural factorization of shape and reflectance under
an unknown illumination. ACM Transactions on Graphics
(ToG), 2021. 2, 6

[63] Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei
Jia, and Xiaowei Zhou. Modeling indirect illumination for
inverse rendering. In CVPR, 2022. 2

[64] Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Dis-
tilling view-conditioned diffusion for 3d reconstruction. In
CVPR, 2023. 3

[65] Junzhe Zhu and Peiye Zhuang. Hifa: High-fidelity text-to-
3d generation with advanced diffusion guidance. In ICLR,
2024. 5

[66] Jingsen Zhu, Fujun Luan, Yuchi Huo, Zihao Lin, Zhihua
Zhong, Dianbing Xi, Rui Wang, Hujun Bao, Jiaxiang Zheng,
and Rui Tang. Learning-based inverse rendering of complex
indoor scenes with differentiable monte carlo raytracing. In
SIGGRAPH Asia. ACM, 2022. 7



MaterialFusion: Enhancing Inverse Rendering with Material Diffusion Priors

Supplementary Material

7. Additional Visualizations
We show visualizations of StableMaterial and Material-
Fusion’s performance on additional examples from the
BlenderVault test dataset as well as the NeRFactor and
NeRF synthetic datasets. A webpage containing videos of
the material reconstruction and relighting results has also
been attached.

8. Additional Details
BlenderVault. To collect BlenderVault, we utilized
BlenderProc [14]to download objects from the BlenderKit
website. We use Blender in order to render out 30 512×512
multi-view images, specifically using Cycles engine with
64 SPP. At each rendering operation, we load in the light-
ing by randomly selecting between three options with equal
probability: StreetLearn environment maps that were re-
constructed into HDR maps [45], Laval indoor environment
maps, or a Blender light source. If a Blender light source
is picked, then either a point light is set up at the camera
location with 150W power, or a sun light points codirec-
tionally with the camera at the object, with power amount
randomly sampled between 10 and 20. To accurately render
the albedo and ORM parameters of objects, we tried to ap-
proximate them as a Disney principled BRDF model as best
as possible, corresponding to the ”Base Color” and rough-
ness and metalness parameters of the principled BSDF. Due
to the diversity of shaders used to represent materials, dome
objects had material or albedo that couldn’t be rendered due
to either the complexity of the object, size (>500MB), or
due to interference from features such as procedural gen-
eration. In such cases we skip the objects and continue to
rendering the next one. Overall, around 300 objects were
skipped but are still included in the final dataset.

Training Details. StableMaterial was trained in similar
fashion to Zero123, by using a batch size of 1536 with im-
ages resized to 256×256 and learning rate of 10−4 with an
AdamW optimizer for 25k steps. A fully connected layer
(1028 → 1024) that converts the concatenation of the CLIP
embedding and pose to a compatible embedding for Stable
Diffusion’s UNet was trained with a learning rate of 10−3,
where the pose representation used was similar Zero123’s.
Stable Diffusion’s UNet and the fully connected layers were
trained and all other components were frozen. Finetuning
took 2 days with 8× H100 GPUs. The filtering keys used
for including Objaverse data were [pbr, pbrtexture,
substance, substancepainter], while excluding
objects that included [style, stylized, cartoon,

lowpoly, poly]. These objects were filtered from the
dataset gathered by [51].

MaterialFusion utilizes the nvdiffrast [26] differentiable
renderer in order to render out the appearance. nvdiffrast
can also render other properties for the system, such as
the albedo, ORM, diffuse and specular lighting, and more.
In particular, we feed the rasterized estimated albedo and
ORM batches to StableMaterial. Lrecon required sRGB
tonemapped image inputs, and we took care to make sure
that the inputs to StableMaterial were converted to RGB.
Lreg contains a normal, albedo, and ORM smoothness regu-
larizers, as well as a normal perturbation regularizer that en-
courages normal map perturbations. The last term included
is a demodulated lighting regularization term that utilizes
the rendered specular and diffuse lighting on the object.
These regulaizations ae kept as they are as part of Mate-
rialFusion. For more details we refer the reader to the nvd-
iffrecmc paper [19]. We show relighting comparisons for
the rest of the objects used in our evaluation in Figs. 10– 12
along with the environment illumination used for rendering
the training data images.

TensoIR Details. Given that TensoIR doesn’t model
metallicness, we added it as an additional parameter to
the appearance representation decoded from the appearance
tensor Ga. The appearance features are interpolated from
Ga and are then decoded with a radiance network Dc, shad-
ing normal network Dn, and a material network Dβ to
produce the corresponding representations. Of interest is
the material decoder which we modify to decode the addi-
tional metallicness parameter in addition to the albedo and
roughness. All losses and hyperparameters are kept simi-
lar. Physically-based rendering is then used to render the
resulting image, where metallicness is applied to the diffuse
component of the Cook-Torrance reflectance model [12]:

fr = (1−m)
a

π
+ fs (5)

where fs is the specular component of the Cook-Torrance
model.



Input
GT

Albedo/ORM StableMaterialMV StableMaterial IID IIR

N/A

Derender3D

N/A

N/A

N/A

Input
GT

Albedo/ORM StableMaterialMV StableMaterial IID IIR

N/A

Derender3D

N/A

N/A

N/A

Figure 6. Full albedo and ORM comparison results for StableMaterial on the cup and armatures examples shown in Fig. 5.
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Figure 7. Additional albedo and ORM comparisons for randomly selected examples from the BlenderVault test dataset.
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Figure 8. Additional albedo and ORM comparisons for randomly selected examples from the BlenderVault test dataset.
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Figure 9. Comparison of MaterialFusion vs. other methods for relighting the clock object from the BlenderVault test dataset.
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Figure 10. Additional comparisons for MaterialFusion vs. other methods on 3D physical properties reconstruction on more objects from
the BlenderVault test dataset.
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Figure 11. Additional comparisons for MaterialFusion vs. other methods on 3D physical properties reconstruction on the NeRFactor
dataset.
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Figure 12. Additional comparisons for MaterialFusion vs. other methods on 3D physical properties reconstruction on the NeRF dataset.
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