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Abstract The need for early detection of temporal events
from sequential data arises in a wide spectrum of applica-
tions ranging from human-robot interaction to video security.
While temporal event detection has been extensively studied,
early detection is a relatively unexplored problem. This paper
proposes a maximum-margin framework for training tempo-
ral event detectors to recognize partial events, enabling early
detection. Our method is based on Structured Output SVM,
but extends it to accommodate sequential data. Experiments
on datasets of varying complexity, for detecting facial expres-
sions, hand gestures, and human activities, demonstrate the
benefits of our approach.

Keywords Early detection · Event detection ·
Structured output learning

1 Introduction

The ability to make reliable early detection of temporal events
has many potential applications in a wide range of fields,
including security (e.g., pandemic attack detection), envi-
ronmental science (e.g., tsunami warning), healthcare (e.g.,
risk-of-falling detection), entertainment (e.g., gaming), and
robotics (e.g., affective computing). A temporal event has a
duration, and by early detection, we mean to detect the event
as soon as possible, after it starts but before it ends, as illus-
trated in Fig. 1. To see why it is important to detect events
before they finish, consider a concrete example of building a
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robot that can affectively interact with humans. Arguably, a
key requirement for such a robot is its ability to accurately and
rapidly detect a human’s emotional states from facial expres-
sion so that appropriate responses can be made in a timely
manner. More often than not, a socially acceptable response
is to imitate the human’s current behavior. This requires facial
events such as smiling or frowning to be detected even before
they are complete; otherwise, the imitation response would
be out of synchronization.

Despite the importance of early detection, few machine
learning formulations have been explicitly developed for
early detection. Most existing methods for event detection
and modeling (e.g., Ke et al. 2005; Smith et al. 2005; Gorelick
et al. 2007; Oh et al. 2008; Satkin and Hebert 2010; Klaser
et al. 2010; Ali and Shah 2010; Niebles et al. 2010; Shi et
al. 2010; Pei et al. 2011; Liu et al. 2011; Marin-Jiménez et
al. 2011; Lan et al. 2011; Hoai and De la Torre 2012b; Amer
et al. 2012; Yang and Shah 2012) are designed for offline
processing. They have a limitation for processing sequential
data as they are only trained to detect complete events. But
for early detection, it is necessary to recognize partial events,
which are ignored in the training process of existing event
detectors.

This paper proposes Max-Margin Early Event Detec-
tors (MMED), a novel formulation for training event detec-
tors that recognize partial events, enabling early detec-
tion. MMED is based on structured output SVM (SOSVM)
(Taskar et al. 2003; Tsochantaridis et al. 2005), but extends it
to accommodate the nature of sequential data. In particular,
we simulate the sequential frame-by-frame data arrival for
training time series and learn an event detector that correctly
classifies partially observed sequences. Figure 2 illustrates
the key idea behind MMED: partial events are simulated and
used as positive training examples. It is important to empha-
size that we train a single event detector to recognize all
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Fig. 1 How many frames do we need to detect a smile reliably? Can we
even detect a smile before it finishes? Existing event detectors are trained
to recognize complete events only; they require seeing the entire event
for a reliable decision, preventing early detection. We propose a learning
formulation to recognize partial events, enabling early detection

Fig. 2 Given a training time series that contains a complete event, we
simulate the sequential arrival of training data and use partial events
as positive training examples. The red segments indicate the temporal
extents of the partial events. We train a single event detector to recognize
all partial events, but our method does more than augment the set of
training examples (Color figure online)

partial events. But MMED does more than augment the set
of training examples; it trains a detector to localize the tem-
poral extent of a target event, even when the target event has
not yet finished. This requires monotonicity of the detection
function with respect to the inclusion relationship between
partial events—the detection score (confidence) of a partial
event cannot exceed the score of an encompassing partial
event. MMED provides a principled mechanism to achieve
this monotonicity, which cannot be assured by a naive solu-
tion that simply augments the set of training examples.

The learning formulation of MMED is a constrained qua-
dratic optimization problem. This formulation is theoreti-
cally justified. In Sect. 3.3, we discuss two ways for quan-
tifying the loss for continuous detection on sequential data.
We prove that, in both cases, the objective of the learning
formulation is to minimize an upper bound of the true loss
on the training data.

MMED has numerous benefits. First, MMED inherits the
advantages of SOSVM, including its convex learning formu-
lation and its ability to accurately localize event boundaries.
Second, MMED, specifically designed for early detection, is
superior to SOSVM and other competing methods regarding
the timeliness of the detection. Experiments on datasets of
varying complexity, including sign language, facial expres-
sion, and human actions, showed that our method often made

earlier detections while maintaining comparable or even bet-
ter accuracy.

2 Previous Work

This section discusses previous work on event detection and
early detection.

2.1 Event Detection in Computer Vision

Events are integral parts of video, and many techniques for
event modeling and detection can be found in the literature of
video analysis, including facial expression recognition (e.g.,
Cohn et al. 2009; Nguyen et al. 2010; Lucey et al. 2010), ges-
ture and sign language interpretation (e.g., Nam et al. 1999;
Cooper and Bowden 2009), human action classification (e.g.,
Bobick and Davis 2001; Efros et al. 2003; Parameswaran
and Chellappa 2006; Jhuang et al. 2007; Duchenne et al.
2009; Patron-Perez et al. 2010; Hoai et al. 2011; Reddy and
Shah 2012), and activity recognition (e.g., Brand et al. 1997;
Yacoob and Black 1999; Chomat and Crowley 1999; Dollár
et al. 2005; Tran and Davis 2008; Nguyen et al. 2009; Ryoo
and Aggarwal 2009; Brendel and Todorovic 2011). Some of
the aforementioned techniques can be used for event detec-
tion while the others are only suitable for classification. These
techniques, however, are designed for offline processing.

2.2 Early Detection

While event detection has been studied extensively in the
literature of computer vision, little attention has been paid
to early detection. Davis and Tyagi (2006) addressed rapid
recognition of human actions using the probability ratio test.
This is a passive method for early detection; it assumes that
a generative HMM for an event class, trained in a standard
way, can also generate partial events. Schindler and Van Gool
(2008), Mauthner et al. (2009), Masood et al. (2011) pro-
posed to train one-frame or two-frame detectors, but these
detectors yield high false positive rates (FPR) for many types
of events. Ryoo (2011) considered the unseen part of an
event as a latent variable and developed two variants of the
bag-of-words representation. His approach failed to account
for the sequential nature of temporal events, and it mainly
addressed the computational issues, not the timeliness or
accuracy, of the detection process. Around the same time
that our method was being developed (Hoai and De la Torre
2012a), Nowozin and Shotton (2012) proposed low-latency
HMMs, but their approach required additional annotation
for Kinect data. More recently, Ellis et al. (2013) explored
the trade-off between accuracy and observational latency by
seeking distinctive canonical human poses.
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Previous work on early detection exists in other fields,
but its applicability to computer vision is unclear. Neill et al.
(2006) studied disease outbreak detection. Their approach,
like online change-point detection (Desobry et al. 2005),
is based on detecting the locations where abrupt statistical
changes occur. This technique, however, cannot be applied to
detect temporal events such as smiling and frowning, which
must and can be detected and recognized independently of
the background. Brown et al. (1992) used the n-gram model
for predictive typing, i.e., predicting the next word from pre-
vious words. However, it is hard to apply their method to
computer vision, which does not have a well-defined lan-
guage model yet. Early detection has also been studied in the
context of spam filtering, where immediate and irreversible
decisions must be made whenever an email arrives. Assum-
ing spam messages were similar to one another, Haider et
al. (2007) developed a method for detecting batches of spam
messages based on clustering. But visual events such as smil-
ing or frowning cannot be detected and recognized just by
observing the similarity between constituent frames, because
this characteristic is neither requisite nor exclusive to these
events.

It is important to distinguish between forecasting and
detection. Forecasting predicts the future while detection
interprets the present. For example, financial forecasting
(e.g., Kim 2003) predicts the next day’s stock index based
on the current and past observations. This technique cannot
be directly used for early event detection because it predicts
the raw value of the next observation instead of recognizing
the event class of the current and past observations. Perhaps,
forecasting the future is a good first step for recognizing
the present, but this two-stage approach has a disadvantage
because the former may be harder than the latter. For exam-
ple, it is probably easier to recognize a partial smile than to
predict when it will end or how it will progress.

2.3 Learning Formulations for Event Detectors

This section reviews SVM, HMM, and SOSVM, which are
among the most popular algorithms for training event detec-
tors. None of them are specifically designed for early detec-
tion.

Let (X1, y1), · · · , (Xn, yn) be the set of training time
series and their associated ground truth annotations for the
events of interest. Here we assume each training sequence
contains at most one event of interest, as a training sequence
containing several events can always be divided into smaller
subsequences of single events. Thus, yi = [si , ei ] consists of
two numbers indicating the start and the end of the event in
time series Xi . Suppose the length of an event is bounded by
lmin and lmax and we denote Y(t) the set of length-bounded
time intervals from the 1st to the tth frame:

Y(t) = {y ∈ N2|y ⊂ [1, t], lmin ≤ |y| ≤ lmax } ∪ {∅}.

Here | · | is the length function. For a time series X of length
l, Y(l) is the set of all possible locations of an event; the
empty segment, y = ∅, indicates no event occurrence. For an
interval y = [s, e] ∈ Y(l), let Xy denote the subsegment of X
from frame s to e inclusive. Let g(X) denote the output of the
detector, which is the segment that maximizes the detection
score:

g(X) = argmax
y∈Y(l)

f (Xy; θ). (1)

The output of the detector may be the empty segment, and if
it is, we report no detection. f (Xy; θ) is the detection score
of segment Xy, and θ is the parameter of the score function.
Note that the detector searches over temporal scales from
lmin to lmax . In testing, this process can be repeated to detect
multiple target events, if more than one event occurs.

How is θ learned? Binary SVM methods learn θ by requir-
ing the score of positive training examples to be greater than
or equal to 1, i.e., f (Xi

yi ; θ) ≥ 1, while constraining the score
of negative training examples to be smaller than or equal
to −1. Negative examples can be selected in many ways; a
simple approach is to choose random segments of the train-
ing time series that do not overlap with positive examples.
HMM methods define f (·, θ) as the log-likelihood and learn
θ that maximizes the total log-likelihood of positive training
examples, i.e., maximizing

∑
i f (Xi

yi ; θ). HMM methods
ignore negative training examples. SOSVM methods learn
θ by requiring the score of a positive training example Xi

yi

to be greater than the score of any other segment from the
same time series, i.e., f (Xi

yi ; θ) > f (Xi
y; θ) ∀y ̸= yi .

SOSVM further requires this constraint to be well satisfied
by a margin: f (Xi

yi ; θ) ≥ f (Xi
y; θ) + "(yi , y) ∀y ̸= yi ,

where "(yi , y) is the loss of the detector for outputting
y when the desired output is yi (Nguyen et al. 2010).
Though optimizing different learning objectives and con-
straints, all of these aforementioned methods use the same
set of positive examples. They are trained to recognize com-
plete events only, inadequately prepared for the task of early
detection.

3 Max-Margin Early Event Detectors

As explained above, existing methods do not train detectors to
recognize partial events. Consequently, using these methods
for online prediction would lead to unreliable decisions as
we will illustrate in the experimental section. This section
derives a learning formulation to address this problem. We
use the same notation as described in Sect. 2.3.
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3.1 Learning with Simulated Sequential Data

Let ϕ(Xy) be the feature vector for segment Xy. We consider
a linear detection score function:

f (Xy; θ) =
{

wT ϕ(Xy) + b if y ̸= ∅,

0 otherwise.
(2)

Here θ = (w, b), w is the weight vector and b is the bias
term. From now on, for brevity, we use f (Xy) instead of
f (Xy; θ) to denote the score of segment Xy.

To support early detection of events in time series data,
we propose to use partial events as positive training examples
(Fig. 2). In particular, we simulate the sequential arrival of
training data as follows. Suppose the length of Xi is li . For
each time t = 1, · · · , li , let yi

t be the part of event yi that
has already happened, i.e., yi

t = yi ∩ [1, t], which is possibly
empty. Ideally, we want the output of the detector on time
series Xi at time t to be the partial event, i.e.,

g(Xi
[1,t]) = yi

t . (3)

Note that g(Xi
[1,t]) is not the output of the detector running

on the entire time series Xi . It is the output of the detector
on the subsequence of time series Xi from the first frame to
the tth frame only, i.e.,

g(Xi
[1,t]) = argmax

y∈Y(t)
f (Xi

y). (4)

From (3)–(4), the desired property of the score function is:

f (Xi
yi

t
) ≥ f (Xi

y) ∀y ∈ Y(t). (5)

This constraint requires the score of the partial event yi
t to

be higher than the score of any other time series segment y
that has been seen in the past, y ⊂ [1, t]. This is illustrated in
Fig. 3. Note that the score of the partial event is not required
to be higher than the score of a future segment.

As in the case of SOSVM, the previous constraint can
be required to be well satisfied by an adaptive margin. This
margin is "(yi

t , y), the loss of the detector for outputting y
when the desired output is yi

t (in our case "(yi
t , y) = 1 −

2|yi
t ∩y|

|yi
t |+|y| ). The desired constraint is:

f (Xi
yi

t
) ≥ f (Xi

y) + "(yi
t , y) ∀y ∈ Y(t). (6)

This constraint should be enforced for all t = 1, · · · , li . As
in the formulations of SVM and SOSVM, constraints are
allowed to be violated by introducing slack variables, and
we obtain the following learning formulation:

Fig. 3 The desired score function for early event detection: the com-
plete event must have the highest detection score, and the detection
score of a partial event must be higher than that of any segment that
ends before the partial event. To learn this function, we explicitly con-
sider partial events during training. At time t , the score of the truncated
event (red segment) is required to be higher than the score of any seg-
ment in the past (e.g., blue segment); however, it is not required to be
higher than the score of any future segment (e.g., green segment). This
figure is best seen in color (Color figure online)

minimize
w,b,ξ i ≥0

1
2
||w||2 + C

n

n∑

i=1

ξ i , (7)

s.t. f (Xi
yi

t
) ≥ f (Xi

y) + "(yi
t , y) − ξ i

µ
( |yi

t |
|yi |

)

∀i,∀t = 1, · · · , li ,∀y ∈ Y(t). (8)

Here | · | denotes the length function, and µ
( |yi

t |
|yi |

)
is a

function of the proportion of the event that has occurred at

time t . µ
( |yi

t |
|yi |

)
is a slack variable rescaling factor and should

correlate with the importance of correctly detecting at time t
whether the event yi has happened. µ(·) can be any arbitrary
non-negative function, and in general, it should be a non-
decreasing function in (0, 1]. In our experiments, we found
the following piece-wise linear function a reasonable choice:
µ(x) = 0 for 0 < x ≤ α; µ(x) = (x − α)/(β − α) for
α < x ≤ β; and µ(x) = 1 for β < x ≤ 1 and x = 0. Here,
α and β are tunable parameters. µ(0) = µ(1) emphasizes
that true rejection is as important as true detection of the
complete event. This function is depicted in Fig. 5.

This learning formulation is an extension of SOSVM.
From this formulation, we obtain SOSVM by not simulating
the sequential arrival of training data, i.e., to set t = li instead
of t = 1, · · · , li in Constraint (8). Notably, our method does
more than augment the set of training examples; it enforces
monotonicity of the detector function, as shown in Fig. 4.
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Fig. 4 Monotonicity requirement—the detection score of a partial
event cannot exceed the score of an encompassing partial event. MMED
provides a principled mechanism to achieve this monotonicity, which
cannot be assured by a naive solution that simply augments the set of
training examples

Fig. 5 µ—a function to weigh the importance of partially observed
events. Here 0 and 1 correspond to the total absence and full completion
of the event of interest, respectively. µ(0) = µ(1) emphasizes that true
rejection is as important as true detection of the complete event

For a better understanding of Constraint (8), let us analyze
the constraint without the slack variable term and break it
into three cases: (i) t < si (event has not started); (ii) t ≥ si ,
y = ∅ (event has started; compare the partial event against
the detection threshold); (iii) t ≥ si , y ̸= ∅ (event has started;
compare the partial event against any non-empty segment).
Recall f (X∅) = 0 and yi

t = ∅ for t < si , cases (i), (ii), (iii)
lead to Constraints (9)–(11), respectively:

f (Xi
y) ≤ −1 ∀y ∈ Y(si − 1)\{∅}, (9)

f (Xi
yi

t
) ≥ 1 ∀t ≥ si , (10)

f (Xi
yi

t
) ≥ f (Xi

y) + "(yi
t , y) ∀t ≥ si , y ∈ Y(t)\{∅}. (11)

Constraint (9) prevents false detection when the event has
not started. Constraint (10) requires successful recognition of
partial events. Constraint (11) trains the detector to accurately
localize the temporal extent of the partial events.

In the formulation presented above, we learn a detection
score function that is a linear combination of the features in
a feature vector, Eq. 2. However, this is not restricted to lin-
earity because the feature function ϕ(·) can be non-linear. In
particular, we can kernelize our algorithm by using explicit
feature maps, which exist for several common kernels such
as intersection (Maji and Berg 2009), X 2 (Vedaldi and Zis-
serman 2010), and RBF (Le et al. 2013).

3.2 Optimization Algorithm

The proposed learning formulation Eq. (7) is convex, but it
contains a large number of constraints. Following Tsochan-
taridis et al. (2005), we propose to use constraint generation to
optimize it, i.e., we maintain a smaller subset of constraints
and iteratively update it by adding the most violated ones.
Constraint generation is guaranteed to converge to the global
minimum. In our experiments described in Sect. 4, this usu-
ally converges within 20 iterations. Each iteration requires
minimizing a convex quadratic objective. This objective is
optimized using Cplex1 in our implementation2.

Each iteration of constraint generation requires finding the
most violated constraints, one for each training time series.
The most violated constraint for training time series Xi can
be found by solving:

t̂, ŷ = argmax
t,y∈Y(t)

(
f (Xi

y) + "(yi
t , y) − f (Xi

yi
t
)
)

µ

( |yi
t |

|yi |

)
.

Recall that f (Xi
y) = wT ϕ(Xi

y) + b for y ̸= ∅, with w is the
SVM weight vector at the current iteration. This optimization
problem can be solved using exhaustive search, which has
complexity O((lmax − lmin)li 2

).

3.3 Loss Function and Empirical Risk Minimization

In Sect. 3.1, we have proposed a formulation for training early
event detectors. This section provides further discussion on
what exactly is being optimized. First, we briefly review the
loss of SOSVM and its surrogate empirical risk. We then
describe two general approaches for quantifying the loss of
a detector on sequential data. In both cases, what Eq. (7)
minimizes is an upper bound on the loss.

As previously explained, "(y, ŷ) is the function that quan-
tifies the loss associated with a prediction ŷ, if the true output
value is y. Thus, in the setting of offline detection, the loss of
a detector g(·) on a sequence-event pair (X, y) is quantified
as "(y, g(X)). Suppose the sequence-event pairs (X, y) are
generated according to some distribution P(X, y), the loss

1 www-01.ibm.com/software/integration/optimization/cplex-optimizer/.
2 http://www.robots.ox.ac.uk/~minhhoai/projects/mmed.html.
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of the detector g is

R"
true(g) =

∫

X×Y
"(y, g(X))d P(X, y). (12)

However, P is unknown so the performance of g(.) is
described by the empirical risk on the training data {(Xi , yi )},
assuming they are generated i.i.d according to P . The empir-
ical risk is

R"
emp(g) = 1

n

n∑

i=1

"(yi , g(Xi )). (13)

It has been shown that SOSVM minimizes an upper bound
on the empirical risk R"

emp (Tsochantaridis et al. 2005).
Due to the nature of continual evaluation, quantifying

the loss of an online detector on streaming data requires
aggregating the losses evaluated throughout the course of
the data sequence. Let us consider the loss associated with
a prediction y = g(Xi

[1,t]) for time series Xi at time t as

"(yi
t , y)µ

( |yi
t |

|yi |

)
. Here "(yi

t , y) accounts for the difference

between the output y and true truncated event yi
t . µ

( |yi
t |

|yi |

)

is the scaling factor; it depends on how much the temporal
event yi has happened. Two possible ways for aggregating
these loss quantities is to use their maximum or average. They
lead to two different empirical risks for a set of training time
series:

R",µ
max (g) = 1

n

n∑

i=1

max
t

{
"(yi

t , g(Xi
[1,t]))µ

( |yi
t |

|yi |

)}
,

R",µ
mean(g) = 1

n

n∑

i=1

mean
t

{
"(yi

t , g(Xi
[1,t]))µ

( |yi
t |

|yi |

)}
.

In the following, we state and prove a proposition that
establishes that the learning formulation given in Eq. 7 min-
imizes an upper bound of the above two empirical risks.

Proposition Denote by ξ∗(g) the optimal solution of the
slack variables in Eq. (7) for a given detector g, then
1
n

∑n
i=1 ξ i∗ is an upper bound on the empirical risks

R",µ
max (g) and R",µ

mean(g).

Proof Consider Constraint (8) with y = g(Xi
[1,t]) and

together with the fact that f (Xi
g(Xi

[1,t])
) ≥ f (Xi

yi
t
), we have

ξ i∗ ≥ "(yi
t , g(Xi

[1,t]))µ
( |yi

t |
|yi |

)
∀t. (14)

⇒ ξ i∗ ≥ max
t

{
"(yi

t , g(Xi
[1,t]))µ

( |yi
t |

|yi |

)}
. (15)

⇒ 1
n

n∑

i=1

ξ i∗ ≥ R",µ
max (g) ≥ R",µ

mean(g). (16)

This completes the proof of the proposition. This proposition
justifies the objective of the learning formulation. ⊓/

3.4 Slack Rescaling Versus Margin Rescaling: A
Comparison

This section describes an alternative formulation to Eq. 7 and

its disadvantages. Recall in Eq. 7, we use µ
( |yi

t |
|yi |

)
to rescale

the slack variable ξ i to weigh the importance for detecting the
partial event at time t . Alternatively, one can rescale the the
margin "(yi

t , y), which leads to the following formulation:

minimize
w,b,ξ i ≥0

1
2
||w||2 + C

n

n∑

i=1

ξ i , (17)

s.t. f (Xi
yi

t
) ≥ f (Xi

y) + "(yi
t , y)µ

( |yi
t |

|yi |

)
− ξ i

∀i,∀t = 1, · · · , li ,∀y ∈ Y(t). (18)

While it is possible to use the above formulation for early
event detection, it has a disadvantage compared with the for-
mulation proposed in Eq. 7. To see this disadvantage, con-
sider the difference between these two formulations, which
lies at their constraints, Constraint (8) versus (18). Consider
these two constraints for a particular time series Xi and at
a particular time t . Both constraints adjust the original con-
straint, f (Xi

yi
t
) ≥ f (Xi

y) + "(yi
t , y), based on the impor-

tance for recognizing the partial event at time t . The former
reweighs the original constraint, while the latter reweighs the
margin. In reality, not every event can be detected as soon as
a small fraction of the event occurs; therefore, it is important
to reweigh the constraint and even to deactivate it. This can
be achieved using the former constraint, but not the latter.
For example, the former allows the deactivation of itself by

setting the scaling factor µ
( |yi

t |
|yi |

)
to 0 (for |yt

t |/|yi | ≤ α as
in Fig. 5), while the latter does not.

3.5 Event Detectors in Action

The main novelty of this paper is the learning formulation
to train a detector for early detection. Once the detector has
been trained, it can be used in several ways, depending on
the event type and the application. This section discusses one
possible approach to use the trained detector at test time.

Early event detection requires realtime processing, and
therefore, target events, if they occur more than once, must be
detected sequentially. We propose a detection mechanism as
follows. The detector reads from a stream of data and keeps a
sequence of observations in its memory. It continuously mon-
itors for the occurrence of a target event. If a target event is
detected, the temporal extent of the event is returned. If a tar-
get event is recognized as complete, the detector’s memory is
cleared and the process restarts to detect the upcoming target
event. Thus, at any time, the detector needs to detect at most
one target event. Let t0 be the beginning of the data stream in
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consideration, and suppose the length of the partial and full
events that we need to detect are bounded by lmin and lmax .
We denote Y(t0, t) to be the set of length-bounded time inter-
vals from the time t0 to time t :

Y(t0, t) = {y ∈ N2|y ⊂ [t0, t], lmin ≤ |y| ≤ lmax } ∪ {∅}.

The output of the detector at time t is given by:

g(X[t0,t]) = argmax
y∈Y(t0,t)

f (Xy). (19)

The computation for finding the detector’s output at time t
can be reused at time t + 1 because:

max
y∈Y(t0,t+1)

f (Xy) = max
{

max
y∈Y(t0,t)

f (Xy), f (Xŷt+1)

}
.

where ŷt+1 is the segment that attains the maximum detection
score among all segments that terminate at t + 1:

ŷt+1 = argmax
y∈Y(t0,t+1),y(2)=t+1

f (Xy). (20)

To compute the detector’s output at time t + 1, it is sufficient
to compare the output of the detector at time t and the events
that terminate at t + 1. The complexity of this procedure is
O(lmax − lmin).

Using the above detection mechanism for detecting multi-
ple target events in sequential data requires knowing when a
target event has completed (so t0 can be reset to a new value).
The completion of a target event can be determined by mon-
itoring the current best event, ŷt . We consider a detected
event has completed if the value of f (Xŷt ) falls below some
threshold.

To detect target events of multiple classes, in this paper,
we train and use the event detectors separately, one for each
target event class. Another approach is to jointly train mul-
tiple event detectors and jointly detect multiple events, as in
the case of joint segmentation and recognition (Crammer and
Singer 2001; Hoai et al. 2011). This will be explored in our
future work.

4 Experiments

This section describes our experiments on several publicly
available datasets of varying complexity.

4.1 Evaluation Criteria

This section describes several criteria for evaluating the accu-
racy and timeliness of detectors. We used the area under
the Receiver Operating Characteristic (ROC) curve for accu-
racy comparison, normalized time to detection (NTtoD) for
benchmarking the timeliness of detection, and F1-score for
evaluating localization quality.

4.1.1 Area under the ROC Curve

Consider testing a detector on a set of time series. The FPR
of the detector is defined as the fraction of time series that
the detector fires before the event of interest starts. The True
Positive Rate (TPR) is defined as the fraction of time series
that the detector fires during the event of interest. A detector
typically has a detection threshold that can be adjusted to
trade off high TPR for low FPR and vice versa. By varying
this detection threshold, we can generate a ROC curve, which
is the function of TPR against FPR. We use the area under
the ROC for evaluating the detector accuracy.

4.1.2 AMOC Curve

To evaluate the timeliness of detection we used NTtoD which
is defined as follows. Given a testing time series where the
event of interest occurs from s to e. Suppose the detector starts
to fire at time t . For a successful detection, s ≤ t ≤ e, we
define the NTtoD as the fraction of event that has occurred,
i.e., t−s+1

e−s+1 . NTtoD is defined as 0 for a false detection (t < s)
and ∞ for a false rejection (t > e). By adjusting the detection
threshold, one can achieve lower NTtoD at the cost of higher
FPR and vice versa. For a complete characteristic picture,
we varied the detection threshold and plotted the curve of
NToD versus FPR. This is referred as the Activity Monitoring
Operating Curve (AMOC) (Fawcett and Provost 1999).

4.1.3 F1-Score curve

The ROC and AMOC curves, however, do not provide a
measure for how well the detector can localize the event
of interest. For this purpose, we propose to use the frame-
based F1-scores. Consider running a detector on a times
series. At time t the detector output the segment y while
the ground truth (possibly) truncated event is y∗. The F1-
score is defined as the harmonic mean of the precision and
recall values: F1 := 2×Precision×Recall

Precision+Recall , with Precision :=
|y∩y∗|

|y| and Recall := |y∩y∗|
|y∗| . For a new test time series, we

can simulate the sequential arrival of data and record the F1-
scores as the event of interest unrolls from 0 to 100 %. We
refer to this as the F1-score curve.

4.2 Synthetic Data

We first validated the performance of MMED on a syn-
thetically generated dataset of 200 time series. Each time
series contained one instance of the event of interest, sig-
nal Fig. 6a,i, and several instances of other events, signals
Fig. 6a,ii–iv. Some examples of these time series are shown
in Fig. 6b. We randomly split the data into training and
testing subsets of equal sizes. During testing we simulated
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Fig. 6 Synthetic data experiment. (a) Time series were created by con-
catenating the event of interest (i) and several instances of other events
(ii)–(iv). (b) Examples of testing time series; the solid vertical red lines
mark the moments that our method starts to detect the event of interest
while the dashed blue lines are the results of SOSVM (Color figure
online)

the sequential arrival of data and recorded the moment that
MMED started to detect the start of the event of interest. With
100 % precision, MMED detected the event when it had com-
pleted 27.5 % of the event. For comparison, SOSVM required
observing 77.5 % of the event for a positive detection. Exam-
ples of testing time series and results are depicted in Fig. 6b.
The events of interest are drawn in green and the solid ver-
tical red lines mark the moments that our method started to
detect these events. The dashed vertical blue lines are the
results of SOSVM. Notably, this result reveals an interest-
ing capability of MMED. For the time series in this exper-
iment, the change in signal values from 3 to 1 is exclusive
to the target events. MMED was trained to recognize partial
events, it implicitly discovered this unique behavior, and it
detected the target events as soon as this behavior occurred.
In this experiment, we represented each time series segment
by the L2-normalized histogram of signal values in the seg-
ment (normalized to have unit norm). We used linear SVM
with C = 1, 000,α = 0,β = 1.

4.3 Auslan Dataset—Australian Sign Language

This section describes our experiments on a publicly avail-
able dataset (Kadous 2002) that contains 95 Auslan signs,
each with 27 examples. The signs were captured from a native
signer using position trackers and instrumented gloves. The
location of two hands, the orientation of the palms, and the
bending of the fingers were recorded. We considered detect-
ing the sentence “I love you” in monologues obtained by
concatenating multiple signs. In particular, each monologue
contained an I-love-you sentence which was preceded and
succeeded by 15 random signs. The I-love-you sentence was
an ordered concatenation of random samples of three signs:
“I”, “love”, and “you”. We created 100 training and 200 test-
ing monologues from disjoint sets of sign samples; the first
15 examples of each sign were used to create training mono-
logues while the last 12 examples were used for testing mono-
logues. The average lengths and standard deviations of the

monologues and the I-love-you sentences were 1, 836 ± 38
and 158 ± 6 respectively.

Previous work (Kadous 2002) reported high recognition
performance on this dataset using HMMs. Following their
success, we implemented a continuous density HMM for I-
love-you sentences. Our HMM implementation consisted of
10 states, and each was a mixture of 4 Gaussians. To use the
HMM for detection, we adopted a sliding window approach;
the window size was fixed to the average length of the I-love-
you sentences.

Inspired by the high recognition rate of HMM, we con-
structed the feature representation for SVM-based detectors
(SOSVM and MMED) as follows. We first trained a Gaussian
mixture model of 20 Gaussians for the frames extracted from
the I-love-you sentences. Each frame was then associated
with a 20×1 log-likelihood vector. We retained the top three
values of this vector, zeroing out the other values, to create
a frame-level feature representation. This is often referred
to as a soft quantization approach. To compute the feature
vector for a given window, we divided the window into two
roughly equal halves, the mean feature vector of each half
was calculated, and the concatenation of these mean vectors
was used as the feature representation of the window.

A naive strategy for early detection is to use truncated
events as positive examples. For comparison, we imple-
mented Seg-[0.5,1], a binary SVM that used the first halves
of the I-love-you sentences in addition to the full sentences as
positive training examples. Negative training examples were
random segments that had no overlapping with the I-love-you
sentences.

We repeated our experiment 10 times and recorded the
average performance. Regarding the detection accuracy, all
methods except SVM-[0.5,1] performed similarly well. The
ROC areas for HMM, SVM-[0.5,1], SOSVM, and MMED
were 0.97, 0.92, 0.99, and 0.99, respectively. However, when
comparing the timeliness of detection, MMED outperformed
the others by a large margin. For example, at 10 % FPR, our
method detected the I-love-you sentence when it observed
the first 37 % of the sentence. At the same FPR, the best
alternative method required seeing 62 % of the sentence. The
full AMOC curves are depicted in Fig. 7. In this experiment,
we used linear SVM with C = 1,α = 0.25,β = 1.

4.4 Extended Cohn–Kanade Dataset—Facial Expression

The extended Cohn–Kanade dataset (CK+) (Lucey et al.
2010) contains 327 facial image sequences from 123 subjects
performing one of seven discrete emotions: anger, contempt,
disgust, fear, happiness, sadness, and surprise. Each of the
sequences contains images from onset (neutral frame) to peak
expression (last frame). We considered the task of detecting
negative emotions: anger, disgust, fear, and sadness.
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Fig. 7 AMOC curves on Auslan dataset; at the same false positive rate,
MMED detects the event of interest sooner than the others. This figure
is best seen in color (Color figure online)

We used the same representation as Lucey et al. (2010),
where each frame is represented by the canonical normal-
ized appearance feature, referred to as CAPP in Lucey et
al. (2010). For comparison purposes, we implemented two
frame-based SVMs: Frm-peak was trained on peak frames
of the training sequences while Frm-all was trained using
all frames between the onset and offset of the facial action.
Frame-based SVMs can be used for detection by classify-
ing individual frames. In contrast, SOSVM and MMED are
segment-based. Since a facial expression is a deviation of the
neutral expression, we represented each segment of an emo-
tion sequence by the difference between the end frame and
the start frame. Even though the start frame was not necessar-
ily a neutral face, this representation led to good recognition
results.

We randomly divided the data into disjoint training and
testing subsets. The training set contained 200 sequences
with equal numbers of positive and negative examples. For
reliable results, we repeated our experiment 20 times and
recorded the average performance. Regarding the detec-
tion accuracy, segment-based SVMs outperformed frame-
based SVMs. The ROC areas (mean and standard deviation)
for Frm-peak, Frm-all, SOSVM, MMED are 0.82 ± 0.02,
0.84±0.03, 0.96±0.01, and 0.97±0.01, respectively. Com-
paring the timeliness of detection, our method was signifi-
cantly better than the others, especially at low FPR. For exam-
ple, at 10 % FPR, Frm-peak, Frm-all, SOSVM, and MMED
can detect the expression when it completes 71, 64, 55, and
47 % respectively. Figure 8 plots the AMOC curves, and
Fig. 9 displays some qualitative results. In this experiment,
we used a linear SVM with C = 1000,α = 0,β = 0.5.
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Fig. 8 AMOC curves on CK+ dataset; at the same false positive rate,
MMED detects the event of interest sooner than the others. This figure
is best seen in color (Color figure online)

(a) 0.00 0.53 0.73 1.00

(b) 0.00 0.44 0.62 1.00

Fig. 9 Disgust (a) and fear (b) detection on CK+ dataset. From left to
right: the onset frame, the frame at which MMED fires, the frame at
which SOSVM fires, and the peak frame. The number in each image is
the corresponding NTtoD

4.5 Weizmann Dataset—Human Action

The Weizmann dataset contains 90 video sequences of 9 peo-
ple, each performing 10 actions. Each video sequence in this
dataset only consists of a single action. To measure the accu-
racy and timeliness of detection, we performed experiments
on longer video sequences that were created by concatenat-
ing existing single-action sequences. Following Gorelick et
al. (2007), we extracted binary masks and computed a Euclid-
ean distance transform for frame-level features. Frame-level
feature vectors were clustered using k-means to create a code-
book of 100 temporal words. Subsequently, each frame was
represented by the ID of the corresponding codebook entry
and each segment of a time series was represented by the
histogram of temporal words associated with frames inside
the segment.
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We trained a detector for each action class, but consid-
ered them one by one. We created 9 long video sequences,
each composed of 10 videos of the same person and had
the event of interest at the end of the sequence. We per-
formed leave-one-out cross validation; each cross validation
fold trained the event detector on 8 sequences and tested
it on the leave-out sequence. For the testing sequence, we
computed the normalized time to detection at 0 % false pos-
itive rate. This FPR was achieved by raising the threshold
for detection so that the detector would not fire before the
event started. We calculated the median normalized time to
detection across 9 cross validation folds and averaged these
median values across 10 action classes; the resulting values
for Seg-[1], Seg-[0.5,1], SOSVM, MMED are 0.16, 0.23,
0.16, and 0.10 respectively. Here Seg-[1] was a segment-
based SVM, trained to classify the segments corresponding
to the complete action of interest. Seg-[0.5,1] was similar
to Seg-[1], but used the first halves of the action of interest
as additional positive examples. For each testing sequence,
we also generated a F1-score curve as described in Sect. 4.1.
Figure 10 displays the F1-score curves of all methods, aver-
aged across different actions and different cross-validation
folds. MMED significantly outperformed the other meth-
ods. The superiority of MMED over SOSVM was especially
large when the fraction of the event observed was small.
This was because MMED was trained to detect truncated
events while SOSVM was not. Though also trained with trun-
cated events, Seg-[0.5,1] performed relatively poor because
it was not optimized to produce correct temporal extent of
the event. In this experiment, we used the linear SVM with
C = 1000,α = 0,β = 1.

5 Conclusions

This paper addressed the problem of early event detection.
We proposed MMED, a temporal classifier specialized in
detecting events as soon as possible. Moreover, MMED
provides localization for the temporal extent of the event.
MMED is based on SOSVM, but extends it to anticipate
sequential data. During training, we simulate the sequential
arrival of data and train a detector to recognize incomplete
events. It is important to emphasize that we train a single
event detector to recognize all partial events and that our
method does more than augment the set of training examples.
Our method is particularly suitable for events that cannot be
reliably detected by classifying individual frames; detect-
ing this type of events requires pooling information from
a supporting window. Experiments on datasets of varying
complexity, from synthetic data and sign language to facial
expression and human actions, showed that our method often
made faster detections while maintaining comparable or even
better accuracy. Furthermore, our method provided better
localization for the target event, especially when the frac-
tion of the seen event was small. In this paper, we illustrated
the benefits of our approach in the context of human activity
analysis, but our work can be applied to many other domains.
The active training approach to detect partial temporal events
can be generalized to detect truncated spatial objects (Vedaldi
and Zisserman 2009).
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