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A B S T R A C T
Many clinical applications involve in-bed patient activity monitoring, from intensive care and neuro-
critical infirmary, to semiology-based epileptic seizure diagnosis support or sleep monitoring at home,
which require accurate recognition of in-bed movement actions from video streams.

The major challenges of clinical application arise from the domain gap between common in-
the-lab and clinical scenery (e.g. viewpoint, occlusions, out-of-domain actions), the requirement of
minimally intrusive monitoring to already existing clinical practices (e.g. non-contact monitoring),
and the significantly limited amount of labeled clinical action data available.

Focusing on one of the most demanding in-bed clinical scenarios - semiology-based epileptic
seizure classification – this review explores the challenges of video-based clinical in-bed monitor-
ing, reviews video-based action recognition trends, monocular 3D MoCap, and semiology-based
automated seizure classification approaches. Moreover, provides a guideline to take full advantage
of transfer learning for in-bed action recognition for quantified, evidence-based clinical diagnosis
support.

The review suggests that an approach based on 3D MoCap and skeleton-based action recognition,
strongly relying on transfer learning, could be advantageous for these clinical in-bed action recognition
problems. However, these still face several challenges, such as spatio-temporal stability, occlusion
handling, and robustness before realizing the full potential of this technology for routine clinical usage.

1. Introduction
Clinical in-bed patient movement monitoring is crucial

for several aspects of disease management in many health-
care applications, such as intensive care and neuro-critical
infirmary, semiology-based epileptic seizure diagnosis sup-
port, or sleep monitoring at home. In several of these fields, it
is essential to provide quantified movement analysis, in order
to provide evidence-based diagnosis support for clinicians.
For example, in the case of epilepsy, this includes the move-
ment quantification of seizure semiology, advancing from
the current clinical practice, which is a qualitative visual
inspection of seizure videos, searching for Movement of
Interests (MOIs), to an automated evidence-based approach
[110, 111, 132, 64, 66, 65].
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The following review is presented from the perspective
of one of the most challenging applications of clinical in-
bed action recognition; epileptic seizure classification based
on seizure semiology in Epilepsy Monitoring Units (EMUs)
(Fig. 1). This sub-field includes all of the major clinical chal-
lenges and represents well the general principles, remaining
challenges, and possible solutions for video-based clinical
in-bed action recognition applications in general.

Although there are several approaches to monitor move-
ments, such as Inertial Measurement Units (IMUs), pressure
sensors embedded in the bed, and marker-based Motion
Capture (MoCap), it is not desirable to attach any sensor or
marker to the patient, as they can be displaced or detached
(for example during violent seizures), and these solutions
are rather uncomfortable for the patient. They interfere with
common clinical practice, therefore the most promising ap-
proaches are the markerless, computer vision (CV) technolo-
gies, specifically, Deep Learning (DL) based techniques, in
terms of performance these approaches dominate the CV
field, due to recent developments in the field. These can
include processing data streams of RGB, Infrared (IR), and
depth videos. For quantitative semiology characterization,
automated and semi-automated computer-vision analysis ap-
proaches have been a promising methodology [43], but still
depend on considerable human interaction [15]. In EMUs
IR video streams ensure nightly monitoring, without RGB
availability due to ambient lighting [52, 10, 68, 77]. Fur-
thermore, these movements can be classified as seizures
or MOIs, which can be utilized as a diagnosis support
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Figure 1: A complex application of in-bed movement action recognition demonstrated through diagnosis support of epileptic
seizure classification in an Epilepsy Monitoring Unit (EMU) environment, highlighting the common challenges of in-bed action
recognition of this in-bed patient monitoring scenarios that are common to many others.

tool, alarms, and prediction of seizures in clinics. The cur-
rent state-of-the-art (SOTA), end-to-end DL approaches for
epileptic seizure classification are promising; however, they
are not yet explainable, and can not be utilized for movement
quantification [64, 66], or they suffer from significant noise
from the background, modest performance or overfitting to
subject-specific features [2, 3, 5, 7, 6, 4].

In summary, computer vision-based markerless approaches
are ideal approaches for clinical movement-based diagnosis
support, which can be utilized for movement quantification,
classification, and quantified disease analysis. However they
require significant amounts of research before overcoming
their limitations and including them in clinical practice.

The contributions of this paper are the following:
• Identifying clinical challenges of video-based clinical

in-bed action recognition and MoCap
• Provide a review of video-based motion capture and

action recognition from a clinical in-bed monitoring
perspective

• Provide a review of state-of-the-art semiology-based
epileptic seizure classification approaches from videos

• Discusses challenges and possible solutions and deter-
mines that a 2-stage 3D MoCap and action recognition
approach is a promising future research direction

2. Challenges of video-based clinical in-bed
movement classification and MoCap
There are two main directions to classify actions from

the movements of a person, either utilizing the raw video and
classifying the action in an end-to-end fashion [19, 72, 172,
175], or utilizing keypoint, skeleton feature extraction as a
first stage and then carry out classification on the skeletons
[99, 27, 142].

Figure 2: Overview of the topics covered by this review and
their relations
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Due to the clinical non-contact monitoring requirement
only marker-less motion capture approaches are considered,
which extract from the raw video the skeleton keypoints of
the person during the movement. To achieve a viewpoint
invariant representation for the later action recognition stage,
achieving 3D MoCap is preferred to only 2D approaches.
Furthermore, due to the limited clinical action training data
it is advantageous to solve the challenge of viewpoint invari-
ance during MoCap, where general datasets can be utilized
for training, as opposed to utilizing scarce clinical data to
learn viewpoint invariance, as detailed later. Thus, in the
following, we cover the review of the challenges of 3D
MoCap in this scenario, the full overview of the topics
covered by this review and their relations are summarized
on Fig. 2.

These markerless MoCap systems include, single monoc-
ular RGB [131, 119, 167] RGB-D [161], only depth [176,
179], image or video data-based approaches to mention
a few. These perform well in controlled scenarios, with
sufficient lightning, HD RGB input, and with minimal
occlusions. However, they do not or only partially address
the clinical MoCap challenges originating from 24/7 in-bed
monitoring. These challenges are the following: 1) Due the
clinical practice markers can not be attached to the patient,
2) uncommon viewpoint, 3) the presence of continuous
occlusions, 4) clinical personnel and soft occlusions such as
blanket, 5) close background, 6) exceptionally irregular and
unusual movements during seizures, 7) scarcity of labeled
clinical data 8) and the varying clinical video data quality
(Fig. 1).

Here the uncommon viewpoint refers both to people
lying in bed as opposed to the standing/sitting scenario,
which builds up the majority of the relevant datasets, and
the view angle related to the person. The common camera
viewpoint of available 3D MoCap datasets is pointing from
the frontal direction from around eye height, usually ranging
from around hip height to above the head point of view,
however in this scenario as the camera is hung from the
ceiling from below the plane of the feet (Fig. 1), practically
translating this to the standing person scenario this would
refer to placing a camera to the ground level and even
below ground level. Both of these are quite rarely repre-
sented in datasets, leading to a slightly out-of-distribution
scenario, which might impact the performance of the ar-
chitectures. Moreover, segmenting subjects with a close
background presents difficulties as the person in bed may
blend seamlessly into their surroundings. Traditional depth-
based segmentation methods, which typically employ point
cloud-based semantic segmentation or depth thresholding,
face major challenges in these settings. The primary issue
arises from the continuous surface where the subject is in
contact with the background. Likewise, RGB segmentation
encounters some obstacles in clearly defining boundaries
when the subject is in contact and surrounded close by a soft
fabric as a background, often leading to minor but impactful
occlusions around the edges, breaking the smooth continuity
of the boundaries. Additionally, due to the 24/7 h monitoring

requirement, at night only IR B/W, sometimes with low-
resolution and depth videos may be available.

Although occlusions can be partially addressed with
multi-camera systems, and tracking performance can be
improved [128]. However, in clinical practice, the system
has to be cost-efficient, occupy minimal space, and has
to store monitoring data for several days on a reasonable
PC. Moreover, clinical monitoring rooms are commonly
optimized to fit the maximum number of patients and are
cluttered with clinical equipment, thus the available space
and positions to mount cameras can be significantly re-
stricted. These parameters point to limiting the number of
used cameras, therefore the most widespread solution is to
utilize a single camera for monitoring. Considering the large
data requirement for DL classification of clinical actions
such as MOIs and seizures the approach has to be scalable on
already existing clinical practices and data. Thus the research
will focus on monocular monitoring approaches.

In summary, video-based clinical in-bed action recog-
nition and 3D MoCap, also commonly referred to in the
literature as 3D Human Pose Estimation (HPE) and tracking,
have to be adopted for the clinical scenarios, integrated and
improved to overcome the challenges of clinical applica-
tions.

3. Deep learning for video-based action
recognition
Human actions can be represented using various data

modalities, such as RGB, skeleton, depth, infrared, point
cloud, event stream, audio, acceleration, radar, and even
WiFi signals [147]. We kindly refer the reader to an extensive
review for the general details of all these modalities used in
human action recognition and their benefits and disadvan-
tages to [147], moreover a more general outlook is provided
in [117].

In clinical action monitoring, such as epileptic seizure
monitoring, the widespread monitoring infrastructure con-
sists of clinical-grade monocular RGB and IR IP cameras
compatible with other clinical systems. Thus, it is advan-
tageous to consider this existing infrastructure for the ac-
tion recognition approaches, as clinics already store these
historical clinical RGB and IR data, which can be vital for
up-scaling data collection for training of DL approaches to
classify clinical actions. Therefore, these two raw modalities
are the most favorable.

Infrared data can be utilized with similar approaches for
action recognition as RGB, as described in detail in [147]. It
is optimal for night monitoring, however, faces challenges,
like low contrast and poor signal-to-noise ratio, making ro-
bust action recognition difficult in standard and even more so
in clinical settings. As thoroughly analyzed in [147], depth
data or point clouds could also be viable options. Yet, their
drawbacks, such as significant computational complexity,
extensive data storage needs, and the absence of pre-existing
clinical data, infrastructure, and the lack of color and texture,
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combined with their typically limited resolution, frame rate,
and effective range, make them less desirable approaches.

As stated before for clinical applications in EMUs,
such as for epileptic seizure classification, the 3D skeleton,
MoCap-based approaches are the most advantageous. Be-
sides the inherent quantification of movements and some
degree of explainability of this approach, 3D skeleton-
based human action recognition (HAR) is insensitive to
the viewpoint and background of the videos. Therefore,
already available datasets, which commonly represent stand-
ing people from a frontal view, may still be utilized for
pre-training the action classification network in a transfer
learning approach. Additionally, the lack of appearance
and detailed shape information is an advantage for this
application, as it promotes generalizability across patients.

RGB and skeleton human action recognition approaches
commonly utilize the NTU RGB+D [137], NTU RGB+D
120 [93], Kinetics-400, Kinetics-600, Kinetics-700 [67, 18,
141], UCF101 [143], and HMDB51 [73] datasets and their
derivatives for training and evaluation.

Both RGB and IR modalities, commonly recorded in
clinical settings, can be employed in two primary ways:
through end-to-end processing or by extracting skeletons for
action recognition. Our goal here is to outline the princi-
pal methods in both end-to-end and skeleton-based tech-
niques. With a significantly larger body of research avail-
able on RGB-based end-to-end methods, our focus will
predominantly be on comparing RGB and skeleton-based
approaches. While IR-based methods adhere to similar prin-
ciples, they face unique challenges due to smaller and less
frequent training datasets. Often, they rely on common RGB-
based datasets and must address the domain shift issues we
previously discussed.

In the following sections, state-of-the-art RGB-based
end-to-end approaches, as the most widely utilized ap-
proaches, and skeleton-based methods are reviewed.
3.1. Monocular RGB end-to-end approaches

The RGB-based approaches provide rich appearance
information, are easy to obtain and operate, and have a
wide range of operations; however, they are sensitive to the
viewpoint, background, and illumination [147]. Moreover,
this representation stores the spatio-temporal features rep-
resenting the actions with massive data sizes, which lead
to large computational costs to capture these connections
[147].

These approaches can be categorized as multi-stream
2D CNN, RNN, 3D CNN-based, and transformer-based
methods and combinations of these. The 2D CNN-based
methods generally are very limited in capturing the long-
term dependencies, therefore 2D CNN-s were combined
with LSTMs to capture the long-term connections [147].
In order to improve the capture of local and global spatio-
temporal connection of the actions through the videos 3D
CNNs were utilized, such as I3D [19]. To further enhance the
capture of long-term connections a 3D CNN-LSTM archi-
tecture was proposed [162]. Recently, MoViNets, an efficient

3D CNN approach was proposed [72], which has state-of-
the-art performance, among 3D CNN based approaches, on
several benchmark datasets [72]. It utilizes the 3D CNNs
with stream buffers and temporal ensembles, which enables
the architecture to be online inferred with a fraction of the
memory and computational footprint, than other state-of-
the-art methods with retaining state-of-the-art performance.
Recently, transformer-based architectures further advanced
the state-of-the-art previously set by 3D CNNs, achieving
significant performance improvements [172, 175]. These
RGB video-based end-to-end approaches establish a strong
baseline for action recognition.
3.2. Skeleton-based approaches

Skeleton-based action recognition approaches have re-
ceived increasing attention in recent years, as a compact,
but an informative representation of human actions. It is
insensitive to viewpoint, background, and provides the 3D
trajectories of human motion. However, it lacks of appear-
ance and detailed shape information and can be a noisy rep-
resentation [147]. These later properties may be disadvan-
tageous in some HAR cases, where the surrounding scene
or appearance may have additional features to improve HAR
performance. Nevertheless, in the case of seizure classifica-
tion these properties are advantages, as these mitigate any
overfit originating from the patient, background, or scenery-
related features. In contrast, RGB video-based approaches
may include these seizure unrelated features.

Early approaches of skeleton-based HAR utilized RNNs
and CNNs, which recently were outperformed by Graph
Convolutional Networks (GCNs) [147]. Skeleton-based ac-
tion recognition can naturally be represented in graphs, due
to the joint dependency structure, therefore utilizing GCNs is
beneficial. Current top performing GCNs are MS-G3D [99],
ST-GCN++ [40], CTR-GCN [27] and EfficientGCN vari-
ants [142]. MS-G3D introduced disentangled and unifying
graph convolutions to improve spatio-temporal information
flow for feature extraction [99]. ST-GCN++ [40] modified
the temporal module from a 1D convolution to a multi-
branch temporal ConvNet (TCN) and the spatial module
joint features fusing strategy of the original Spatial Temporal
GCN [173]. EfficientGCN proposed to utilize [142] early
fused multiple input branches (relative and absolute joint
position, velocity, lengths and angles of bones), spatial-
temporal joint attention, moreover to further improve model
efficiencies and reduce the model complexity introduced
four temporal convolutional layers based on separable con-
volution [142]. Currently, this approach achieves SOTA
performance on NTU RGB+D [137], NTU RGB+D 120
[93], while keeping the network very efficient.

A strategy to train symbiotic GNNs for HAR and motion
prediction was proposed [83], these two goals during train-
ing can complement each other and improve performance
for both [83]. Although GCNs are dominating currently
the field, PoseConv3D a CNN-based method was proposed
recently utilizing 3D heatmaps volumes [41]. The authors
suggested that it is more effective in learning spatiotemporal

Karácsony et al.: Preprint submitted to Elsevier Page 4 of 19



Deep Learning Methods for Single Camera Based Clinical In-bed Movement Action Recognition

General datasets

Dataset name Top Model Note Data
Year

Human3.6M [56] TesseTrack [128] Largest base 2014

CMU Panoptic [61] TesseTrack [128]
10 (RGB-D) + 480 (VGA) +
+ 30 (HD) camera dome

2016-
2019

3DPW [102] DynaBOA [47] Best in the wild 2018
MPI-INF-3DHP [104] SPIN [71] In & outdoor 2018

HumanEva-I [140]
Lifting
Transformer [84] - 2010

Total Capture [153] GeoFuse [182] 8 camera, 12 IMU 2017
AGORA [118] SPEC [70] Synthetic 2021
Surreal [155] [165] Synthetic 2017

(a) General datasets for 3D MoCap
Clinical datasets

Dataset name Top
Model Note Data

Year
SLP [96, 95] [95] Clinical multimodal Lying Pose 2019

BlanketGen [16] [16]
Synthetic Blanket occlusion
on 3DPW [102] 2022

BlanketSet [17] [16]
Clinical RGB-D-IR
semi-synchronized 2022

MVOR [144] [62] Clinical multivew RGB-D 2018
Patient Mocap [1] [1] Synthetic Blanket occlusion 2016

(b) Clinically relevant datasets for evaluation of 3D MoCap
Table 1
Current popular and clinically relevant datasets for evaluation
of 3D MoCap

features, more robust against pose estimation noises, and
generalizes better in cross-dataset settings, moreover, it can
handle multiple-person scenarios without additional compu-
tation cost [41].

In conclusion, the state-of-the-art suggests that utilizing
skeleton data GCN-based action recognition is the most
advantageous approach for seizure classification. Although
there is a risk of low performance due to noisy skeleton
information [147], which strongly depends on the MoCap
performance in the clinical environment. In this case, an
alternative approach may be a CNN-based approach, such
as PoseConv3D [41].

4. Monocular Video Based Clinical 3D
Motion Capture

4.1. Datasets
There are a vast amount of datasets available for 3D hu-

man MoCap, an extensive review of 171 3D skeleton-based
human representations, including 150 papers is presented by
Han et. al. [49] represents the SOTA, up until 2017. Most of
these datasets however are not utilized for SOTA solutions.
Therefore a short summary of current popular datasets for
3D human pose estimation is presented in Tab. 1a.

Datasets from the perspective of clinical patient monitor-
ing are summarized in Tab. 1b. A Multi-view RGB-D oper-
ating room (MVOR) dataset was developed to test the visual
challenges present in such environments, such as occlusions
and clutter. The dataset consists of 732 synchronized multi-
view frames recorded by three RGB-D cameras [144]. In this
paper, the issue of data privacy was also addressed, which
is required for medical confidentiality. In order to publicly

release the dataset the authors were obligated to hide the
identity and nudity of people, thus blurring some parts of
the images, which presents another visual challenge with
clinical monitoring. In the presented comparative study of
how the baselines have been impacted by the blurring it
was concluded that it only affects mildly the accuracy of
detections [144].

The Simultaneously-collected multimodal Lying Pose
(SLP) dataset [96, 95] was collected with the goal to improve
in-bed human pose estimation for clinical applications. It
consists of 14.7K images from 109 participants captured
using multiple imaging modalities including RGB, long
wave infrared (LWIR), depth, and pressure map. The partic-
ipants lie in bed in different positions and blanket occlusion
conditions.

BlanketSet [17] is a real-word clinical action recognition
and semi-synchronized MoCap dataset, consisting of 405
RGB-D-IR videos, with 15 participants carrying out 8 differ-
ent actions, with movements semi-synchronized in different
blanket occlusion conditions [17].

BlanketGen [16] a synthetic blanket occlusion augmen-
tation pipeline [16] was proposed and demonstrated on
3DPW [102], generating BlanketGen-3DPW [16]. Another
semi-synthetic clinical dataset was proposed, where an
occluding blanket was simulated to improve patient MoCap
[1]; however, this dataset only utilized depth data and it was
not made publicly available.
4.2. SOTA markerless 3D MoCap

An extensive review of 3D human pose estimation al-
gorithms for markerless motion capture is provided in [37],
which summarizes the previous surveys on the field, and ex-
tends the full review until 2021. Even broader surveys cover
both 2D and 3D Human Pose Estimation (HPE) [184, 98],
including additionally commonly used evaluation metrics,
popular datasets, architectures, and approaches. Here, the
SOTA is covered from a clinical patient monitoring perspec-
tive of RGB inputs.
4.2.1. Top-down vs bottom-up approaches of 3D

MoCap
The Top-Down approach first detects all individual per-

sons on the frame and extracts them, relying on a SOTA
object detection network. Then for each person individually
estimates the 3D human poses and meshes. This approach
can take more advantage of models, such as SMPL-X, as
on each extracted frame there is one person centered, thus
the parameters of the body model can be directly estimated
from the frame. However, this method is computationally
expensive, especially in crowded scenes, thus inference time
can become high. Moreover, as persons are extracted from
the frame general, contextual information may be reduced or
lost [184].

On the other hand, bottom-Up approaches first estimate
all keypoints on the frame and then associate the detected
body parts with individual people. This approach has the
advantage of lower computational cost, in case only joint
coordinates are estimated. However, if the goal is to estimate
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the full body mesh it requires additional body mesh approx-
imation modules. The main challenge of this approach is the
grouping of the joints and handling occlusions [184].
4.2.2. RGB Monocular 3D MoCap

Monocular RGB MoCap is a challenging problem, as in
this case the real 3D scenario is projected to 2D, meaning
one dimension is lost. Therefore the inverse projection is
not a one-to-one projection, the 3D pose extraction from 2D
images can lead to pose ambiguities, as different 3D poses
can be projected to similar 2D poses. As only one viewpoint
is observed the target person suffers from self-occlusion and
occlusions from other objects. Approaches to address the
occlusions are presented in Sec. 4.3.1. RGB Monocular 3D
MoCap can be organized into two main categories, skeleton-
only and human mesh recovery approaches.
Skeleton only For skeleton-only approaches one straight-
forward method is to directly estimate the 3D skeleton
parameters from the 2D images [150, 90, 121, 120].

As 2D HPE is a wildly explored area, utilizing that
knowledge, by 2D to 3D lifting is a popular approach. In
this case, a SOTA pre-trained 2D HPE network is used to
estimate the 2D poses, and then utilizing this in the second
stage the 3D parameters are inferred. These approaches
usually outperform direct 3D skeleton estimation, as they
build on the existing SOTA 2D HPE knowledge [138, 58,
160, 185, 151, 106, 103, 23, 81]. As the human body can be
naturally represented as a graph, where joints representing
the nodes and bones the edges, it is natural to apply Graph
Convolutional Networks (GCNs), to address the 2D to 3D
lifting problem. [183, 180, 94, 33, 34]

During skeleton-only approaches it is advantageous to
utilize a kinematic model, as these can provide kinematic
constraints for the pose estimation, thus realistic poses are
estimated, which can improve performance by introducing
prior knowledge. [187, 75, 80, 169, 157, 109, 108, 76, 45]

As MoCap is performed not only on one image, but
commonly it is required to be performed on videos, where
temporal consistency is essential, thus including this infor-
mation into the MoCap pipeline can improve the perfor-
mance and robustness of MoCap. This approach aims to
mitigate the effect of short-term occlusions, by exploiting
temporal information from the pose sequences [53, 188, 159,
152, 123, 29, 14, 36]. This can be achieved by including
LSTMs [53], spatial-temporal relationships and constraints,
such as bone length [14, 36, 87], or temporal convolution
[123].
Human mesh recovery Human mesh recovery networks
take advantage of sophisticated human body models. There
are two main directions to estimate the model parameters.
Firstly, optimization-based methods fit a parametric body
model to 2D observations in an iterative manner, leading to
accurate image model alignments, but are often slow and
sensitive to the initialization [154, 148, 11, 124, 78, 71].
On the other hand, regression-based methods, that use a
deep network to directly estimate the model parameters from

pixels, tend to provide a reasonable, but not pixel-accurate
result, while requiring huge amounts of supervision [71, 114,
122, 63]. A recent approach, FrankMocap, aims to improve
the full-scale human body regression, including body, face,
and hands, by utilizing separate SOTA expert modules for
each of them, thus taking full advantage of recent high-
performance modules and then eventually integrate them to
one SMPL-X model with an integration module [131].

In order to close the gap between the two approaches
SPIN (SMPL oPtimization IN the loop) [71] was proposed,
combining together regression and optimization.

An adversarial training approach was proposed, “Video
Inference for Body Pose and Shape Estimation” (VIBE) [69],
to take advantage of several MoCap datasets combined to-
gether, called (AMASS) [100]. The adversarial training en-
courages the regressor to produce realistic and accurate mo-
tions and decide if the proposed motion capture is realistic.
The architecture takes advantage of a temporal generation
network trained together with a motion discriminator [69].
The idea of temporal consistency was further improved, by
focusing on the past and future frames’ temporal information
without being dominated by the current static features [32].

One of the most recent architectures, which performs
the best on the 3DPW dataset [102], utilizes transformer
architectures [92], named Mesh Graphormer, which is an
improved version of the Metro architecture [91]. Mesh
Graphormer is a graph-convolution-reinforced transformer,
that aims to combine the advantages of transformer-based
approaches, such as modeling non-local interactions among
3D mesh vertices and body joints, and the advantage of
graph-convolutions of exploiting neighborhood vertex inter-
actions based on a pre-specified mesh topology [92].
4.3. Approaches to solving clinical challenges of

3D MoCap
4.3.1. Occlusions and viewpoints

One of the main challenges of 3D MoCap and clinical
patient monitoring is the handling of occlusions. Therefore
there are several approaches to addressing this issue.

First of all, it can be approached from a data acquisition
aspect, such as acquiring multi-modal data, specially tar-
geted for clinical in-bed monitoring with blanket occlusions,
including RGB, LWIR, depth and pressure sensors [95, 174,
130]. Then fusing these modalities together can improve the
performance of MoCap [95, 174, 130, 96]. Another approach
was proposed utilizing synthetic data by simulating the
blanket occlusion on depth data and train the architectures
with this data [1]. Additionally, a synthetic blanket occlusion
augmentation pipeline [16] was proposed and demonstrated
on 3DPW [102], then the trained architecture was evaluated
on a real-world clinical RGB-D-IR action recognition and
semi-synchronized MoCap dataset [17].

Moreover, multi-view approaches are able to overcome
some occlusions, as if one keypoint is occluded on one
viewpoint, then from other viewpoints it can still be visible.
It has a clear advantage when it is utilized in the multi-
view scenario; however, these methods usually need large
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memory and expensive computational cost, especially for
multi-person 3D HPE, as several video streams have to
be inferred. Most of these strategies utilize a multi-stage
approach [60, 57, 42, 39, 38, 9, 129, 12, 8], where first the
2D poses are estimated for each frame, then the poses are
clustered across views, from these clusters the 3D poses are
reconstructed based on triangulation, and finally linked over
time [9, 12]. The current top performing approach is Tesse-
Tract [128], which instead of formulating the learning in a
multi-stage manner combines together person detection (3D
CNN), tracking (4D CNNs) and pose estimation into one
end-to-end network, with separate sub-losses for each sub-
task. During the person detection, the feature maps coming
from all the camera views are aggregated into a common 3D
voxelized volume, thus there are no assumptions posed on
the available number of viewpoints, therefore it is able to
operate in a monocular setting as well.

As discussed earlier in Sec. 4.2.2 temporal connections
are essential for consistent MoCap in videos [105, 178,
28]. It is especially advantageous to address tracking with
spatiotemporal representation learning, utilizing Spatio-
Temporal Descriptors (4D volumes), as shown in [128].
This approach has a two-fold advantage, once, this temporal
context allows to extrapolate/interpolate occluded joints
and handle pose or appearance ambiguities, secondly, it
improves tracking by generating a descriptor that overlaps
with adjacent frames [128]. Another approach proposed, is
temporal gated convolutions to recover missing poses and
address the occlusion issues in the pose estimation, inspired
by the image inpainting tasks [46]. As a post-processing step,
refining the predicted trajectories through a Kalman filter
in clinical environment [25], or learning motion priors, to
smooth the movement [181] can be advantageous.

Occlusions were addressed in training time, with occlusion-
aware training [30, 28, 134, 97]. During training time,
occlusions were added as data-augmentation, either by
occluding, practically set to zero, the whole frame, or
keypoints, or some arbitrary area of the frame. The shape
of the synthetic occlusions, also influenced performance,
from the investigated basic shapes, the circle shape occlusion
decreased the performance the most for architectures not
trained specifically for occlusions [134]. Occlusion augmen-
tation during training time, also had a regularizing effect,
improving baseline performance [134].

Depending on the viewpoint, different self-occlusions
are present in the 2D projection. In order to improve view
invariance and occlusion robustness of the architecture met-
ric learning approaches were proposed. It enables to capture
measures of similarity between inputs, map close together
similar 3D poses, and further away different 3D poses in the
embedding space [97]. It is commonly achieved by utilizing
contrastive loss [115, 113, 48, 26, 13] or triplet loss (based
on tuple ranking) [166, 158, 135, 51]. These methods, train
the networks with multiple inputs. In the case of triplet
loss, a reference input (anchor) is compared to a matching
input (positive sample) and a non-matching input (negative
sample). The loss function is based on the distance between

their embeddings, see Eq. 1,
𝐿(𝐴, 𝑃 ,𝑁) = 𝑚𝑎𝑥(∥ 𝑓 (𝐴) − 𝑓 (𝑃 ) ∥2 − ∥ 𝑓 (𝐴) − 𝑓 (𝑁) ∥2 +𝛼; 0) (1)

where A-Anchor, P-Positive sample, N-Negative sample, 𝛼
- margin, f- embedding. During training, the distance of
the positive sample is minimized from the anchor and the
distance of the negative sample is maximized.

The probabilistic re-formulation of this approach is de-
scribed in detail in [97]. With this probabilistic approach
input ambiguities of 2D poses originating from projection
and occlusion can be mitigated. Deterministic embedding
has to be close to either one of the similar embedding clusters
or stay in the middle, even when there is uncertainty due to
occlusion, or ambiguities in 2D pose [97]. On the other hand,
probabilistic formulation, allows the embedding to hedge
their bets across the embedding space [113], [97]. View
invariance can be also improved, by estimating the camera
parameters and perspective, and then utilizing these and the
image features together to regress 3D body shape and pose
as described in SPEC [70].
4.3.2. Low resolution 3D MoCap

Most of the 3D MoCap, HPE, and hand MoCap datasets
are based on lab-captured HD data, which is not always
available in the wild. From the clinical and monitoring
perspective, storing and processing large amounts of data is
not desirable. Moreover, during monitoring, it is necessary
to provide precise 3D MoCap for hands and face as well.
As the cameras have to be positioned relatively far away for
monitoring, the extracted hands from the captured videos are
only available in low resolution (LR).

There are a very limited number of approaches address-
ing 3D human pose and shape estimation on low-resolution
videos [171, 170, 156]. However in low-resolution image
processing, there are approaches to address this issue in 2D
body pose estimation [107], face recognition [44, 31], image
classification [163], image retrieval [149, 112], and object
detection [50, 82]. There are two common approaches to
handling low-resolution images. One of them is applying
super-resolution or image enhancement techniques to the
input [31, 163, 50] or in the feature space [44, 149, 112, 82],
however it may result in unpleasant artifacts. The other
approach is to simply train one model for each resolution,
which is impractical in many realistic applications [170,
171].

In order to overcome the limitations of handling low res-
olution with the aforementioned techniques, RSC-Net was
proposed, which consists of a Resolution-aware network,
a Self-supervision loss, and a Contrastive learning scheme
in [170], this approach was extended to videos and texture
reconstruction in [171]. This approach enforces the feature
and scale consistency, across different resolutions [170].

It is possible to utilize in the case of low-resolution
videos super-resolution DL architectures, to improve the
quality of the videos, thus decreasing the domain gap be-
tween pre-trained MoCap datasets and architectures, thus
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improving results [139, 133, 85, 22]. There are two main cat-
egories of super-resolution (SR) techniques, SR on images,
and SR on videos [21, 20, 88, 59]. There are extensive re-
views on the topic, for details see survey papers [86, 24, 164],
also reviewing previous reviews. However, SR techniques
on synthetic data usually overestimate the capacity to super-
resolve real-world images and domain-specific images [24].
The most successful modern SR architectures are based on
generative adversarial networks (GANs) [136, 79, 20], auto-
encoder [116, 146] and transformer architectures [89, 88].
SOTA video SR techniques aim to make full use of comple-
mentary information across frames to reconstruct the high-
resolution sequence [88, 59].
4.3.3. Others

As essentially a post-processing step of 3D MoCap,
physics-based human motion estimation, and synthesis were
proposed, that corrects imperfect image-based pose estima-
tions by enforcing physics constraints and reasons about
contacts in a differentiable way [168]. This can be also
achieved by including an inverse kinematics solver, which
can significantly improve occlusion robustness [127].

To further improve results and improve domain transfer
instance aware re-colorization might be applied [74, 145].
Additionally, video inpainting techniques, such as [177,
186], might be considered to be utilized as a pre-processing
step to remove some of the occlusions. However, the perfor-
mance impact of these techniques has not been evaluated for
downstream tasks such as 3D MoCap or action recognition.
However, addressing these challenges are beyond the scope
of this review.

5. Semiology-based automated seizure
classification
One of the most challenging applications of clinical

in-bed action recognition is epileptic seizure classification
based on seizure semiology in EMUs. Which includes all of
the clinical challenges discussed above. Therefore in the fol-
lowing a critical review of this sub-field is presented, which
well represents the general principles, remaining challenges,
and possible solutions for clinical in-bed action recognition
applications.

The motivation to quantitatively analyze seizure semi-
ology, specific movements during the seizures, and classify
epileptic seizures, was expressed by several earlier research
[35, 64, 2, 101, 3, 4, 5, 7, 54, 126, 55, 6, 125].

These approaches utilize classical computer vision based
[35], image or video classification [2, 3, 101, 5, 4, 126, 55],
keypoint, or keypoint stream [7, 6, 54] and action recognition
based approaches [64, 66, 125], a summary is presented
from these approaches in Table 2. All of these are utilizing
private clinical datasets that are not publicly accessible due
to clinical and personal data protection concerns. The lack
of a standard public benchmark dataset makes it hard to
evaluate and directly compare these methods.

These approaches highlight the importance of spatio-
temporal information of the movements during the seizures

and utilizing an action recognition approach [64, 66, 125].
Moreover, to guide the architecture training and relevant
feature extraction a multistep approach is beneficial. In this
context, the initial phase of extracting keypoint features plays
a crucial role in isolating the most significant movement
features, which are then utilized in the subsequent phase of
classification [7, 6, 54, 125]. These show that a 3D MoCap
based first step to extract these features describing the move-
ment, as precisely as possible, during the full seizure would
be essential.

However, the above mentioned approaches do not utilize
3D MoCap, a spatio-temporally consistent detection, track-
ing, and 3D HPE. As the 3D keypoint feature extraction is
carried out frame by frame it neglects temporal connections,
which provide a noisy input for the classification step [54].
Therefore exploring the possibility to approach the first step
with 3D MoCap, to improve the spatio-temporal consistency
of the extracted features in a clinical environment is impor-
tant.

Moreover, several works reported very promising per-
formance on small datasets utilizing the same patient both
in training and testing, validation sets [5, 126, 7, 6, 125] or
highly aggregated performance metrics, such as classifying
snippets with low performance, but aggregated up to the
patient level to achieve very high-performance [4, 125].

The issue of utilizing the video data from the same
subject in train and test sets is well known. Subject-specific
features can cause data leaks, which may misleadingly im-
prove performance, but not due to the target basis of classi-
fication. Such as utilizing the raw images, and videos with
facial recognition-based feature extraction is very concern-
ing that subject-specific features were contributing more to
the classification and not seizure-type specific features. It
is suggested by the low Leave-One-Subject-Out (LOSO)
Cross Validation (CV) performance in many works. This
holds for the keypoint feature extraction-based approaches,
as this step can be still a subject-specific representation of
the seizure. Moreover, the extracted keypoints represent the
distance in space of 3D joints, which represents the body size
and proportions, which is a highly subject-specific feature
and may lead to overfitting to this subject-specific feature.
Certainly, another explanation for the low LOSO-CV per-
formance may be that there could be seizure-specific features
not represented in the training set, due to the small available
dataset. Nevertheless, separating the patients to have all the
seizures of a patient in either the training or the testing sets
is essential to undoubtedly prove the generalizability of the
proposed system.

The limitation of the reported highly aggregated results
is that a small variation of the data can cause this aggregated
performance to drop significantly, as it relies on sub-results
with significantly lower performance, which raises questions
about the generalization of the network. Moreover, an ap-
proach, which aggregates the results through the full seizure
may not be utilized well for near real-time applications.
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6. Discussion
6.1. Clinical in-bed monocular video-based action

recognition
Clinical in-bed video-based action recognition can be

utilized in many diagnosis support scenarios, such as epilep-
tic seizure and sleep disease monitoring, classification, and
real-time alarms, however still face many computer vision
challenges (Fig. 1), which are rarely and only partially ad-
dressed in the literature. Here, the perspective of the epileptic
seizure classification was reviewed, which represents one of
the most challenging clinical in-bed action recognition sce-
narios, with spatio-temporal features, several occlusions, un-
common viewpoint, and many other challenges. The current
state-of-the-art solutions for this clinical challenge are fur-
ther discussed in section 6.4. From the clinical perspective,
movement quantification is essential in clinical diagnosis,
therefore it is advantageous to include it already in these
systems.

As clinical data is scarce, it is essential to utilize the la-
beled clinical action data efficiently. Collection and labeling
of clinical video data, for example, epileptic seizure data,
can spawn a very long time, as collection depends on the
capacity of hospitals, patients manifesting the seizures, and
ground truth labeling is only available after full clinical diag-
nosis. Therefore it is advantageous to utilize already existing
data; however, this legacy data may be low-resolution RGB
or IR videos with varying quality of the videos. For these
differences, the designed action recognition approach has
to be adopted. Moreover, as the data collection takes place
over an extended period of time, it has to be considered in
the implemented MLOps approach as well. Training action
recognition networks end-to-end, mapping the raw video
data to the action classes, is computationally expensive. On
the other hand, a two-stage approach with MoCap as the
first stage can alleviate this challenge. Moreover, the MoCap
architecture can heavily rely on transfer learning to tackle the
clinical challenges, as further discussed in Sec. 6.3.

A two-stage action recognition approach, where move-
ment features are extracted with a 3D MoCap network, is
advantageous. This way training for detection, tracking, and
extraction of motion features is clearly separated from the
clinical features of the movement, thus several other datasets
can be utilized in a transfer learning approach to training the
first stage. On the contrary, in end-to-end approaches, the
clinical and general features are not separated clearly, thus
during training of the network clinical data may contribute
to the movement feature extraction training as well, which
may lower clinical performance and generalization of the
network.

This approach however has some drawbacks. The action
recognition heavily relies on the performance of the MoCap
approach, therefore the noise and errors generated by the
MoCap can propagate to the classification, thus can reduce
performance. Therefore it is essential to enforce spatio-
temporal stability as much as possible for the MoCap system.

Here we have to note that the near real-time perfor-
mance of either of the presented architectures vary, largely
dependent on available computational resources and code
optimization, such as quantization and pruning, further in-
fluenced by the software framework and the efficiency of
the implementation. While some models may run efficiently
on mid-range gaming PCs, others require high-end GPU
clusters. Although the inference phase of these architectures
is significantly less demanding than training, its resource
intensity still varies based on model complexity and input
resolution. Additionally, most of these methods are designed
to process sequences of frames rather than just individual
ones, enabling them to capture essential temporo-spatial fea-
tures. However, these approaches may introduce an inherent
lag, potentially spanning a few seconds, depending on the
specific implementation. Therefore, while these systems can
achieve near real-time performance, most of them do not
strictly conform to real-time processing standards. In certain
contexts, such as in-bed monitoring applications, this level
of performance may be considered effectively real-time,
despite the slight delay in processing.

In summary for clinical in-bed monocular video-based
action recognition a 2 stage approach is promising with
Motion capture as a first stage, as it can provide clinically
relevant quantification of movements, contribute to efficient
utilization of clinical data and establish a practical MLOps
approach.
6.2. Clinical monocular video based 3D MoCap

for in-bed monitoring
As discussed earlier there are several challenges to ap-

plying 3D MoCap for in-bed scenarios (Fig. 1); however,
for action recognition for in-bed scenarios, it is essential to
address these. It has to be emphasized that the goal is to
extract spatio-temporal features of the movement from the
raw video (3D MoCap), not just spatial features from images,
as in some human pose estimation approaches. Utilizing
temporal connections additional to the spatial features is
essential for downstream tasks and may improve spatio-
temporal stability of this feature extraction. Moreover, uti-
lizing 3D MoCap as the first stage for action recognition in-
troduces many advantages over an end-to-end action recog-
nition approach, such as inherent quantitative movement pa-
rameters of the action, which may provide an explanation of
movement classes; additionally, it introduces further datasets
and options to apply transfer learning (See Sec. 6.3).

In the following, we discuss the most promising direc-
tions for these clinical challenges.
6.2.1. Occlusions and viewpoints

One of the main challenges of in-bed MoCap is the
occlusions present. This can be divided into three main
categories: self-occlusions, attending clinicians, and blanket
occlusion.

Self occlusions are generally addressed by 2D and 3D
HPE literature, such as multi-view approaches, utilizing
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triplet loss and metric learning approaches, which already
address partially the viewpoint challenges as well.

Attending clinicians are present on the scene in a rela-
tively short temporal range, moving around, causing a dy-
namic occlusion. However, this occlusion is present usually
when important data is recorded, such as seizures, therefore
it is an important aspect to address. Due to the dynamic
nature of the occlusion, (i.e they move around), it can be
partially addressed with temporal feature considerations in-
cluded in the MoCap. The attending clinicians close to the
patient raise the issue of keypoint assignment and grouping,
thus top-down approaches might be more advantageous to
utilize, where the full person is identified first and then
cropped. Moreover, in this case, the higher performance
requirement of such approaches for crowded scenes is neg-
ligible, as only a few people are in the scene.

The most challenging category is blanket occlusion as
it is prevalent almost the entire monitoring, covering a
significant portion of the target for extended periods of time.
There are attempts to solve this challenge of clinical in-bed
HPE. Occlusion-aware training already showed increased
performance with occlusion generated just as black hold-
out areas, thus utilizing real blanket occlusions, which still
have useful features is advantageous. Datasets addressing
this challenge are rare, one containing only multimodal
images of in-bed poses, with high occlusion (SLP [96, 95]),
and ground truth joint coordinate locations. However, as it
only contains images it neglects temporal features, which
would be essential to extract more information about limbs
moving under the blanket to improve MoCap performance.
Acquiring the ground truth joint positions under blanket
occlusion is not straightforward, such as when utilizing long
wave infrared (LWIR), as in SLP dataset it is not possible
to track quick movements. IMUs could be utilized on each
joint; however, it would require attaching an IMU to each
point of interest, which already significantly alters the visual
representation of the scene, moreover, these can be dislodged
due to friction with the blanket. As the acquisition of new in-
bed data with blanket occlusion and ground truth labels of
the joint coordinates is so challenging it is highly beneficial
to utilize pre-existing datasets with synthetic augmentation
[16, 17]. Synthetic augmentation of already existing large
MoCap datasets provides the opportunity to generate vir-
tually unlimited augmented data, with varying blankets in
color, thickness, position, and other parameters. Although
there is a domain shift caused by synthetic data, the oppor-
tunity to generate massive amounts of data with ground truth
labels outweighs the disadvantages.

In order to address the viewpoint challenge it is essential
to utilize large datasets well covering all the viewpoints;
however, existing datasets do not fully represent these, es-
pecially lacking the common viewpoint in hospital moni-
toring (Fig. 1). Thus it would be advantageous to develop
or extend a dataset that represents these viewpoints as well.
Furthermore, it is advantageous to utilize multi-view data for
training. Either by utilizing metric learning to map 2D poses
from different viewpoints of the same 3D pose close to each

other in feature space or achieving it by training end-to-end
with multi-view input, such as TesseTract [128], which in-
herently has these advantages. To further improve viewpoint
invariance of the estimated pose it can be advantageous to
estimate the camera parameters (SPEC [70]).

In summary, these challenges do not require clinically
relevant data, containing clinical actions such as seizures,
most of these can be addressed based on already publicly
available MoCap and HPE datasets. In the case of general oc-
clusions spatio-temporal descriptors can assist to interpolate
or extrapolate the occluded keypoints, moreover utilizing
synthetic dataset augmentation can be effective to address
blanket occlusions, as a specific case of occlusion-aware
training. Besides training on large datasets containing many
viewpoints, utilizing multiview or multimodal datasets is
advantageous, additionally, including metric learning, and
triplet loss in the training strategy is highly desirable.
6.2.2. Low resolution

The challenge of dealing with low-resolution data is the
most prevalent for legacy data, however as data collection
and labeling in the clinical domain require a long time
span it is essential to address to broaden the amount of
available clinical data. Moreover, it is relevant for more
detailed motion capture including the hands, fingers, and
facial expressions as well, due to the common viewpoint
in clinics monitoring the full body from a distance, which
will result in relatively low-resolution segments representing
these even on 1080p videos. For example, most hand MoCap
systems are optimized for close-up monitoring of hands,
utilizing HD data.

Training networks for multiple resolutions, including
low-resolution videos is not practical. Super-resolution tech-
niques, and image enhancement techniques to the input or
in the feature space are commonly utilized techniques in
2D HPE; however, may introduce unwanted artifacts. There-
fore resolution-aware networks with a contrastive learning
scheme may be the most beneficial to address this challenge,
such as RSC-Net [171, 170].
6.3. Datasets and Transfer learning for clinical

MoCap and action recognition
As discussed earlier, labeled clinical data is very scarce,

moreover, it is very challenging to acquire additional data,
therefore efficient data utilization is essential. Namely uti-
lizing the clinical data only for clinical feature classification.
As presented in Sec. 5 approaches heavily relying on transfer
learning to extract low-level image, video, movement or
action features perform significantly better, as they are able
to incorporate a lot more training data.

In conclusion, we can articulate the requirement deduced
from previous works to propose a 2 stage approach to address
clinical in-bed action recognition, utilizing transfer learning
for feature extraction such as 3D MoCap and action recog-
nition.

In order to achieve efficient data utilization, exploiting
several levels of transfer learning the following options may
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Table 3
Optional levels of transfer learning to be considered for clinical action recognition

Levels of transfer learning Feature extraction 1.
stage

2.
stage

Clinical data
utilization

1. Image/object recognition, segmentation spatial yes no no
2.a Image-based Human Pose estimation
2D-3D, human mesh recovery spatial yes no no

2.b Image-based Face, hand features and
keypoint estimation spatial yes no no

3.Video-based: Motion capture: detection,
tracking, and HPE, hand, face tracking Spatio-temporal yes no no

3.b + challenges - occlusion aware training,
low resolution, etc. Spatio-temporal yes no no

4. Skeleton based action recognition
Spatio-temporal features ->
classification no yes no

4.b Emotion recognition
Spatio-temporal facial
features -> classification no yes no

5. Clinical action recognition e.g. Semiology
and seizure classification

Spatio-temporal features ->
classification no yes yes

be utilized, which are summarized in Tab. 3. The first level of
transfer learning is sourcing training data from image/object
recognition and segmentation datasets, which can be used
for pre-training the architecture such as the authors did
in I3D[19]. The second level is utilizing data from 2.a
Image-based Human Pose estimation 2D-3D, human mesh
recovery, including 2.b face, hand features and keypoint
estimation. As there are HPE datasets that contain only
images, thus only the spatial features of the poses can be
extracted, these can be datasets such as SLP a specialized
in-bed occlusion dataset [95] or face recognition datasets
The third level, 3.a consists of the MoCap, the final goal of
the first stage, which extracts the spatio-temporal features of
movements, and other relevant keypoints on the hands, and
face. Here 3.b the additional challenges can be addressed
as well, such as occlusions, by occlusion-aware training.
The fourth level, 4.a and 4.b, are the skeleton-based action
recognition and emotion recognition to extract features from
the movements extracted by the first stage. Eventually, the
clinical data has to be utilized only in the fifth stage for
the transfer learning of the action recognition networks for
clinical purposes. In this stage, the transfer learning from
action recognition level 4 is essential to train a generalizing
network and not to fit for patient-specific clinical features.

Utilizing a two-stage network is advantageous from an
MLops approach, as the method of motion capture of the
skeleton can be replaced by improved architectures, may
include additional modalities, or even rely on a different data
capture method. This way the second stage, the clinical ac-
tion classification, which only relies on the tracked keypoints
does not require re-training from scratch only fine training,
which promotes the flexibility and rapid development of the
architecture, contrary to the end-to-end action recognition
approaches.

The drawback of such as 2-stage architecture is the
propagation of error, from the first stage to the second stage,

which is highly dependent on the quality of the spatio-
temporal feature extraction of the first stage.
6.4. Current state of semiology-based seizure

classification
Many earlier approaches neglect the seizure semiologys’

spatio-temporality of features, more recent approaches uti-
lizing some way of spatio-temporal feature extraction and
classification achieved higher performance.

In the literature, a common challenge is the scarcity of
clinical data, thus efficient data utilization is essential for
future approaches. Therefore, clinical data should only be
utilized for the action classification highly depending on
transfer learning. The transfer learning can rely on many
levels as discussed above, the most advantageous approach
is to separate the motion capture, essentially the spatio-
temporal feature extraction of movements and the action
classification, and utilize clinical data, such as videos from
epileptic seizures, only for fine training of the action classi-
fication architecture.

One major barrier to the existence of a publicly avail-
able benchmark clinical datasets for comparing different
approaches stems from concerns over clinical and personal
data protection. Patients can potentially be identified from
raw video data. However, adopting a two-stage approach,
where the first stage involves extracting skeletons from the
raw videos, could pave the way for creating a shareable
public benchmark dataset. These extracted skeletons, being
privacy-preserving, can be exchanged among clinics and
research groups and made publicly available. This strategy
has the potential to mitigate the current scarcity of clinical
data for research purposes.

A good practice is to separate the action videos by
patients, so the videos from one patient are only included
in either train or validation or test set, thus preventing
any data leakage of patient-specific features, thus ensuring
generalization of the architecture. In some articles, this data
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separation was not considered, which might have produced
misleadingly high performances.

The explainability of classification would be an im-
portant aspect to provide for the eventual users of such
diagnostic support systems, however, this issue has not been
addressed yet in the analyzed articles.

7. Future challenges and research directions
In the future, the main challenge is related to stage 1,

developing a spatio-temporally stable and robust MoCap,
including body, hands, and face, to extract the movement fea-
tures and the challenges arising from this. These challenges
include occlusion handling, with a special focus on blanket
occlusions, the low resolution of the full scenes of legacy
data, or the relatively low resolution of the face and hand,
addressing the bias arising from uncommon viewpoints and
extending the architectures to be able to handle IR videos to
be able to monitor 24/7.

In stage 2, the clinical action recognition, an important
aspect of future research would be to include the explain-
ability of the classifications, which is essential in diagnostic
support systems

8. Conclusion
In conclusion, monocular video-based clinical in-bed

action recognition was reviewed from an epileptic seizure
classification perspective. The main challenges of such sys-
tems were identified and possible approaches to address
these were reviewed. The feasibility of semiology-based
automated seizure classification was already established by
several papers reviewed here, from these it can be deduced
that a 2-stage quantified approach with motion capture and
action recognition is the most promising research direction
in the future.

Clinical action recognition is required for several diag-
nosis support scenarios, such as seizure diagnosis support,
sleep monitoring, and clinical research among others, there-
fore advancing such systems can have a significant impact in
many fields.
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