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Abstract: This paper focuses on detecting freezing of gait in Parkinson’s patients using body-worn
accelerometers. In this study, we analyzed the robustness of four feature sets, two of which are
new features adapted from speech processing: mel frequency cepstral coefficients and quality
assessment metrics. For classification based on these features, we compared random forest, multilayer
perceptron, hidden Markov models, and deep neural networks. These algorithms were evaluated
using a leave-one-subject-out (LOSO) cross validation to match the situation where a system is being
constructed for patients for whom there is no training data. This evaluation was performed using the
Daphnet dataset, which includes recordings from ten patients using three accelerometers situated
on the ankle, knee, and lower back. We obtained a reduction from 17.3% to 12.5% of the equal error
rate compared to the previous best results using this dataset and LOSO testing. For high levels of
sensitivity (such as 0.95), the specificity increased from 0.63 to 0.75. The biggest improvement across
all of the feature sets and algorithms tested in this study was obtained by integrating information
from longer periods of time in a deep neural network with convolutional layers.

Keywords: Parkinson’s disease; freezing of gait; mel frequency cepstral coefficients; MFCCs;
robust detection; deep learning; convolutional neural networks; CNNs; consecutive windows

1. Introduction

The population structure in Europe will change significantly over the next 40 years, with the
elderly (defined as people over 65 years of age) increasing to 30% of the population by 2060 [1].
The growth of this population will introduce new demands for managing quality of life and promoting
independence. Home care monitoring offers the potential for continuous health and well-being
supervision at home. This supervision is particularly important for people who are frail or have chronic
diseases such as Parkinson’s disease (PD). When falls occur, such a system can alert a nurse, family
member, or security staff [2]. Several monitoring systems have been presented for the detection of falls
or motion disorders in PD patients using on-body accelerometers [3,4]. Many of the falls in PD patients
are caused by a locomotion and postural disorder called freezing of gait (FOG) [5]. FOG is a frequent
PD symptom that affects almost 50% of Parkinson’s patients, and it is defined as a “brief, episodic
absence or marked reduction of forward progression of the feet despite the intention to walk” [6].
This problem can last from a few seconds to a minute [7]. FOG events appear more often during turns,
with gait initiation, and in stressful situations. A successful intervention for reducing the duration and
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frequency of FOG episodes is to induce external cues, such as a rhythmic acoustic beat. The cueing
system provides real-time auditory stimuli, helping the patient to maintain speed and amplitude of
movements when walking. These cueing systems are more effective when applied only during FOG
episodes [8,9] and, therefore, a system for reliably detecting FOG events is required.

The accurate supervision of patients is also important for monitoring the progression of PD.
PD patients need to visit a physician every few months to monitor the illness progression. During their
visit, the physician evaluates each patient by asking them to perform a set of activities specified in
the Movement-Disorder-Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) [10]. The information gathered by the doctor is subjective because it is limited to a
short session every few months, so the physician evaluation can be influenced by the patient’s mood
that day [11] or nontypical patient behavior during the session [12]. Automatic tools for continuously
supervising PD symptoms during daily activities would provide objective long-term data to improve
the physician’s assessment. One of the symptoms that must be monitored to assess disease progression
is FOG.

This paper describes some advances in using body-worn accelerometers to detect FOG in
Parkinson’s patients. We compared different feature sets and machine learning (ML) algorithms
using a leave-one-subject-out (LOSO) cross validation. This type of evaluation is necessary to assess
the robustness of these algorithms when monitoring patients whose data are not present in the training
set. We evaluated two feature sets already applied to FOG detection and two new feature sets adapted
from speech processing: mel frequency cepstral coefficients (MFCCs) and speech quality assessment
(SQA) metrics. We analyzed four ML algorithms: random forest, multilayer perceptron, hidden
Markov models (HMMs), and deep neural networks with convolutional layers. This study was
performed using the Daphnet dataset [13], which includes recordings from ten patients. Our best result
shows a reduction from 17.3% to 12.5% of the equal error rate, relative to the best reported results on
this dataset with a LOSO evaluation.

2. Related Work

In this section, we review related work in body-worn sensors for monitoring Parkinson’s patients.
We also survey previous studies where several feature sets and classification algorithms were proposed
and compared for FOG detection. We pay special attention to previous studies that used the
Daphnet dataset.

Previous studies have placed ultrathin force-sensitive switches inside the subject’s shoes [14] or
used vertical ground reaction force sensors [15] or multiaxis accelerometers [16]. Accelerometers
located on the patient’s body have been widely used to detect FOG [7,13,17,18]. The recent
widespread availability of wearable devices (fit bands, smartwatches, and smartphones) equipped
with accelerometers has facilitated this approach. The Daphnet dataset has also played a key role in
this development. Daphnet is a public dataset that includes inertial signals from ten patients registered
through three accelerometer sensors situated on the ankle, knee, and lower back. Several papers have
been published using this dataset [13,17–19].

The detection of FOG requires the application of specific signal processing and classification
methods adapted to this type of phenomenon. Initial efforts were focused on extracting good
features [13,17,20]. Moore et al. [20] found that frequency components of leg movements in the
3–8 Hz band during FOG episodes are characteristic of this symptom and do not appear during
normal walking. They introduced a freeze index (FI) to objectively identify FOG. This FI is
defined as the power in the “freeze” band (3–8 Hz) divided by the power in the “locomotor” band
(0.5–3 Hz). FOG episodes were detected using an FI threshold, and this feature was used in later
experiments [13,18]. Assam and Seidl [21] presented a study of wavelet features with different
windows lengths, and Hammerla et al. [17] proposed the empirical cumulative distribution function
as feature representation. Mazilu et al. [18] described a detailed analysis of different features using
the Daphnet dataset. The first set included FOG-oriented features such as the freezing index and
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the sum of energy in the freezing (3–8 Hz) and locomotor (0.5–3 Hz) frequency bands. The second
set contained some features often used in activity recognition: 18 features extracted from each of the
three accelerometer axes (x, y, and z) and 6 features using data from all three axes. The best features
in the second set were the signal variance, range, root mean square, and eigenvalues of dominant
directions in the three accelerometer axes. However, the performance of these features was lower
than using FOG-specific features. Mazilu et al. also evaluated principal component analysis (PCA)
applied to the raw accelerometer signal for obtaining unsupervised features. In this paper, the authors
reported a pre-FOG status where some freezing characteristics became apparent a few seconds before
the FOG occurs.

In another paper [22], Mazilu et al. selected the best features for FOG detection: mean, standard
deviation, variance, entropy, energy, freeze index, and power in freeze and locomotion bands.
They evaluated different algorithms: random trees, random forest, decision trees and pruned decision
trees (C4.5), naive Bayes, Bayes nets, k-nearest neighbor with one and two neighbors, multilayer
perceptron (MLP), boosting (AdaBoost), and bagging with pruned C4.5. The best performance
was obtained with AdaBoost (with pruned C4.5 as a base classifier) and random forest classifiers.
All the ensemble methods (boosting, bagging, random forests) obtained better results than the
single classifiers, with the boosting classifiers obtaining slightly better performance than the bagging
classifiers. In this evaluation, the authors used a random 10-fold cross validation (R10Fold) for each
patient, including data from the same patient in training and testing. The authors also reported an
isolated result using LOSO evaluation. This result is our baseline using the same dataset and LOSO
evaluation. We compare our results to it in Section 4.2

In the literature, there are also papers proposing conditional random fields [21] and deep
learning algorithms for FOG detection. Ravi et al. [23] used a convolutional neural network (CNN)
with one convolutional layer for feature extraction and one fully connected layer for classification.
They obtained a specificity and a sensitivity of 0.967 and 0.719, respectively, for their R10Fold
experiments. Alsheikh et al. [19] used a deep neural network with five fully connected layers obtaining
a specificity and sensitivity of 0.915 in a R10Fold validation. The weights of the fully connected layers
were initialized using the weights of a previously trained autoencoder.

In most of these experiments, the authors used a random 10-fold cross validation including data
from the same patient in training and testing. Our paper addresses this flaw in the analysis by using a
LOSO cross validation. LOSO evaluation is required to develop a robust FOG detection system that
can handle new patients.

3. Methods

In this section, we detail the dataset, the signal preprocessing step, and the algorithms for feature
extraction and FOG detection. For feature extraction, we used four feature sets. The first was the set
proposed by Mazilu et al [22]. The second consisted of features used in human activity recognition
(HAR). The third set was composed of MFCCs, and the fourth included features derived from the
SQA literature, such as harmonicity, predictability, and spectral flux. For classification algorithms, we
compared random forest, multilayer perceptron, hidden Markov models, and deep neural networks
with convolutional layers.

3.1. Gait Dataset

We used the Daphnet dataset [13] in our experiments. This public dataset contains recordings
from ten PD subjects (7 males, 66.5 � 4.8 years) diagnosed with PD showing large variability in their
motor performance. Some participants maintained regular gait during nonfreezing episodes, while
others had a slow and unstable gait. The recordings include 3D accelerations (x, y, and z axes) obtained
from three sensors located on the ankle, thigh, and trunk (lower back) for a total of nine inertial signals.
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The data were collected more than 12 h after the participants had taken their medication to
ensure that treatment did not prevent FOG symptoms from being observed. Participants 2 and 8
reported frequent FOG episodes with medication, so they were not asked to skip any medication intake.
The protocol consisted of several sessions, including three walking tasks performed in a laboratory:
(1) Walking back and forth in a straight line, including several 180� turns. (2) Random walking,
including a series of starts and stops and several 360� turns. (3) Walking simulating activities of daily
living (ADL), such as entering and leaving rooms or carrying a glass of water while walking.

All sessions were recorded on a digital video camera. The ground truth labels were generated by
a physiotherapist using the video recordings. The beginning of a FOG event was specified when the
gait pattern disappeared, and the end of FOG was defined as the point in time at which the pattern was
resumed. A total of 237 FOG episodes were recorded with durations between 0.5 and 40.5 s (time while
the subject was blocked and could not walk). Two subjects in the dataset (4 and 10), did not have
FOG. These subjects were excluded from all experiments except for the results in Section 4.1, where all
subjects were considered for a better comparison with the results in the literature.

3.2. Preprocessing

The raw accelerometer signals were recorded with a sampling rate of 64 Hz. This sampling rate
was adequate because the information for FOG event detection is below 20 Hz [20]. To remove the
influence of gravity, we filtered the data with a high-pass third-order Butterworth filter at 0.3 Hz.
The sample sequence was divided into a sequence of 4-s windows (256 samples) with 3-s overlap and
1-s advance. A window was labeled as a FOG window if more than 50% of its samples were labeled
as FOG.

3.3. Feature Extraction

The main characteristic of FOG is the power increment in the frequency band of 3–8 Hz that
does not appear during normal walking [20]. When patients wanted to walk and they could not
because of freezing, a vibration often appeared in all sensors (Figure 1).

Figure 1. Spectrogram for three accelerometer signals: forward axis of ankle, knee, and back sensors.
The log energy at different frequencies is coded with blue for low energy and red for higher energy,
ranging from 0 to 80 dB. During a FOG episode, the power increases in the frequency band of 3–8 Hz.

Table 1 summarizes the four features sets considered in this study. The first set of features
contained the seven features per signal used in Mazilu et al. [22]. With nine signals, we obtained a
7 � 9 feature vector for each 4-s window. The second set of features was composed of 90 features
per signal (90 � 9 signals) that have often been used in HAR [24]. This set included metrics obtained
from the accelerometer signals in the time and frequency domains. The third set of features consisted
of MFCCs adapted to inertial signals [25]: 12 coefficients were considered from every inertial signal
(12 � 9 signals).
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The fourth set consisted of three metrics adapted from the SQA field [26]. Many of these metrics
are based on the speech signal periodicity presented during vowel pronunciation. When a person
walks naturally, the accelerometer signal has high levels of periodicity and harmonicity and this
structure is broken during a FOG event. The first quality metric used was harmonicity. This metric
was computed as the autocorrelation of every window in time and frequency domains, generating
two features. Lower autocorrelation values can be observed during FOG episodes. The second quality
metric was signal predictability. This metric, which tries to measure how easy is to predict the signal
using a linear model, was calculated by applying a linear prediction model with three coefficients and
computing the error between the real signal and the prediction, both in time and frequency domains,
generating two features. Higher errors are expected when FOG occurs. Finally, the spectral flux
was computed as the Euclidean distance between two normalized consecutive window spectrums.
A higher spectral flux can be observed when a FOG event starts. A total of five features per signal
(5 � 9 signals) were included in this feature set.

Table 1. Summary of the four feature sets used in this study.

Feature Set Number of Features
per Signal Description

Mazilu et al. [22] 7

Signal mean, standard deviation, variance, frequency
entropy, energy, freeze index (power of the freeze
band (3–8 Hz) divided by power in locomotor band
(0.5–3 Hz)), and power in both bands.

Human activity recognition
(HAR) [24] 90

Time domain
Signal mean value, standard deviation, median
absolute deviation, largest value, smallest value,
signal magnitude area, energy, interquartile range,
ecdf, entropy, auto regression coefficients, and the
correlation coefficient between two axes.
Frequency domain
Those considered in the time domain, and frequency
with largest magnitude (in a 64-bin fast Fourier
transform (FFT)), power, weighted average,
skewness, kurtosis, and the energy of six equally
spaced frequency bands.

Mel frequency cepstral
coefficients (MFCCs) [25] 12 Mel frequency cepstral coefficients adapted to

inertial signals.

Speech quality assessment
(SQA) metrics 5

Harmonicity in time and frequency domains,
predictability in time and frequency domains, and
spectral flux.

Figure 2. Deep learning structure including convolutional and fully connected layers.

3.4. Classification Algorithms

We analyzed several classification algorithms: random forest (baseline) with 100 decision trees,
a multilayer perceptron with three fully connected layers, and five-state hidden Markov models.
Additionally, a deep neural network was evaluated. This deep neural network was composed of
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six layers (Figure 2) organized in two parts: the first part included two convolutional layers with
an intermediate maxpooling layer for feature extraction, and the second part integrated three fully
connected layers for classification (CNN + MLP). The inputs were the nine spectra (one for every
accelerometer signal and direction) with 128 points each. In the first and second convolutional layers,
32 5 � 5 filters and 32 3 � 5 filters were considered, respectively. The configuration that achieved the
best performance in the training set (using part of the training set for validation) was three epochs,
batch size equal to 50, and ReLU as the activation function in all layers except the output layer that
used a sigmoid function instead. The loss function was the binary cross entropy and the optimizer was
the root-mean-square propagation method [27].

4. Experiments

The majority of the experiments in this work were carried out with a LOSO cross validation.
We created the training set including sessions from all subjects except the one used for testing.
This process was iterated several times using a different subject for testing in each experiment. The final
results were computed by averaging all the experiments. In order to create baseline performance
numbers, we used a random 10-fold cross validation (R10Fold) for each subject independently.
This evaluation methodology was used in Mazilu et al. [22]. In this methodology, the sessions from
every subject were randomly divided into 10 folds; 9 folds were used for training and 1 for testing.
The process was repeated 10 times for each subject and the results were averaged. Only data from
one subject was used. The final results were computed by averaging across the subjects included
in the study. We computed specificity (true negative rate, the ratio of negatives that are correctly
identified) versus sensitivity (true positive rate, the ratio of positives that are correctly identified)
curves to compare the performance. These measurements are the most common metrics used in human
sensing studies. We also calculated F1-score, area under the curve (AUC), and equal error rate (EER)
in some experiments for an additional comparison.

4.1. Baseline and Comparison with Previous Work

The best results on the Daphnet dataset were reported by Mazilu et al. [22]. The authors used
seven features extracted from each acceleration signal: signal mean, standard deviation, variance,
frequency entropy, energy, the ratio of the power in the freeze band to that in the locomotor band
(i.e., the freeze index), and the power in both bands individually. Mazilu et al. [22] compared several
ML algorithms and reported that the best results were with the random forest algorithm. They also
reported experiments with different window sizes in order to evaluate different latencies when
detecting FOG events. They achieved a sensitivity, specificity, and F1-score of 0.995, 0.999, and 0.998,
respectively, for their R10Fold experiments using a 4-s window. With LOSO evaluation, the sensitivity
and specificity decreased to 0.663 and 0.954, respectively.

Most results in the literature used R10Fold evaluation rather than the more rigorous LOSO
evaluation. R10Fold validation, with overlapped windows, is a weak evaluation because consecutive
windows share data. Therefore, when the windows are shuffled before computing the folds, there is
a high probability that windows in training and testing sets include some of the same raw data
(Figure 3). Some of the previous results in the literature did not report the overlap when using the
R10Fold evaluation [22]. Others proposed alternatives for dividing the 10 folds in a manner that
avoids the inclusion of the same data in training and testing [18]. For comparison with previous
studies, we did some experiments using R10Fold with 4-s windows without excluding subjects 4 and
10 and considering several overlaps. Table 2 shows that Mazilu and colleagues’ results [22] could be
reproduced only with a significant overlap.
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Figure 3. Example of random assignment to train or test in a sequence of 50%-overlapped windows.

Table 2. Sensitivity, specificity, and F1-score varying amount of overlap for 4-s windows using R10Fold
evaluation with all subjects.

Overlap Sensitivity Specificity F1-Score System

Unknown 0.995 0.999 0.998 Mazilu et al. [22]

90% 0.995 0.998 0.998 Ours (reproducing
Mazilu et al.’s system)

75% 0.934 0.939 0.961 Ours (reproducing
Mazilu et al.’s system)

50% 0.923 0.928 0.948 Ours (reproducing
Mazilu et al.’s system)

50% 0.915 0.915 - Alsheikh et al. [19]
50% 0.820 0.820 0.830 Hammerla et al. [17]

0% 0.910 0.915 0.931 Ours (reproducing
Mazilu et al.’s system)

0% 0.719 0.967 - Ravi et al. [23]

The use of a single value metric for evaluating performance, such as sensitivity, specificity,
accuracy, or F1-score, is problematic. These single value metrics depend on the threshold used by the
classifier to make a decision, increasing the difficulty of comparing different systems. Additionally,
some metrics (such as accuracy) have a strong dependency on the class balance in the testing dataset.
In the Daphnet dataset, less than 10% of the data pertains to FOG episodes (positive examples), while
the rest contains normal walking (negative examples), so classifying all examples as negative gives
an accuracy higher than 90%. In this paper, we used specificity and sensitivity because these metrics
do not depend on the class balance in testing.

4.2. Evaluation of the Different Feature Extraction Strategies

Figure 4 compares several feature sets using a random forest classifier with 4-s windows and 75%
overlap. Figure 4 shows specificity vs. sensitivity curves and AUC and EER values, all computed using
R10Fold cross validation. HAR and Mazilu et al.’s [22] feature sets performed better than MFCCs
in this evaluation. The quality metrics (blue line) provided an intermediate level of performance.
Mazilu et al.’s features, with only seven values per signal, obtained similar results compared to the
HAR feature set with 90 features per signal.

When we compared the results per subject using Mazilu et al.’s [22] features with the results
reported by Bächlin et al. [13] (Figure 5), we saw an improvement in all subjects except for subject 1.

Figure 6 compares the different feature sets with LOSO evaluation. MFCCs obtained slightly better
results than Mazilu et al.’s features. MFCCs create a smooth distribution (very similar to a Gaussian
distribution [28]) which is less likely to overfit and, therefore, has better generalization behavior. HAR
and quality metrics provided the worst results: they fit the data well in the R10Fold experiment but
were not able to generalize to held-out subjects. The best results were obtained when combining
Mazilu et al.’s [22] and MFCC features (concatenating the two feature vectors). Mazilu et al. [22]
reported a sensitivity of 0.66 and a specificity of 0.95, but these values included subjects 4 and 10,
each of whom were associated with a sensitivity of 1.0. Removing these two subjects, the sensitivity
decreased to 0.55 for a specificity of 0.95 (isolated point in Figure 6).
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Figure 4. Specificity vs. sensitivity curves, area under the curve (AUC), and equal error rate (EER) for
the four sets of features, using random forest with 4-s windows and 75% overlap, a random 10-fold
cross validation (R10Fold) evaluation, and excluding subjects 4 and 10.

Figure 5. Results for Mazilu et al.’s features [22] (curves) for each subject compared to [13] when using
optimized thresholds and R10Fold evaluation.

Figure 6. Specificity vs. sensitivity curves, AUC, and EER for the four sets of features using random
forest with 4-s windows and 75% overlap, a leave-one-subject-out (LOSO) evaluation, and excluding
subjects 4 and 10. The isolated point shows the results reported in Mazilu et al. [22] without subjects 4
and 10 (sensitivity = 0.55 and specificity = 0.95).
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Figure 7. Results per subject for MFCCs and Mazilu et al.’s features using a LOSO evaluation and
excluding subjects 4 and 10.

Figure 7 shows the results per subject using MFCCs and Mazilu et al.’s features together. Subject 8
provided the worst results. This subject had many FOG events with a different pattern than the other
subjects, showing no increase in energy in the 3�8-Hz band. This unique pattern produced bad results
in a LOSO scenario, as it did not appear sufficiently in the training set.

4.3. Evaluation of Different Classification Algorithms

We tested four different classification algorithms: random forest, multilayer perceptron, and
hidden Markov models (Figure 8), using MFCCs and Mazilu et al.’s features, and the deep neural
network described in Section 3.3. The performance of the HMMs is represented with two isolated
points corresponding to different probabilities for the transitions between FOG and non-FOG HMMs.
Hidden Markov models are finite state machines. Every time t that a state j is entered, a feature
vector Ot is generated from the probability density bj(Ot). The transition from state i to state j is also
probabilistic and modeled by the discrete probability aij. Figure 9 shows an example of this process
where the five-state model moves through the state sequence X = 1; 2; 3; 3; 4; 5; 5 in order to generate
the feature vector sequence O1 to O7. The weakest results were obtained with HMMs. The HMMs
required defining a sequential model with five states to achieve reasonable discrimination. Therefore,
a minimum number of windows (five windows corresponding to 5 s) was necessary to make a decision.
Short FOG episodes were missed when they appeared in isolation, or consecutive FOG episodes were
combined if the time between them was shorter than 5 s. In this dataset, more than 30% of the FOG
episodes lasted less than 5 s.

Figure 8. Specificity vs. sensitivity curves, AUC, and EER for the four classification algorithms with
LOSO evaluation and excluding subjects 4 and 10. The two isolated points represent the performance
using hidden Markov models with different probability transition between FOG and non-FOG models.
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The results obtained with random forest and multilayer perceptron were very similar and better
than HMMs. Both classifiers are discriminative algorithms using the same set of features. We obtained
slightly lower EER for the deep neural network.

Figure 9. Structure of the hidden Markov models.

4.4. Using Contextual Windows

In the time leading up to a FOG event, there is an initial phase where some of the FOG
characteristics appear [18]. With this idea in mind, we tested whether or not the inclusion of features
from adjacent time windows, referred to here as contextual windows, would improve classification
performance. The effect of including the contextual windows in the classification task was evaluated
for the deep learning strategy with LOSO evaluation (CNN+MLP in Figure 10). The results improved
when previous and subsequent windows were included in the analysis but were saturated when
using three previous and three subsequent 4-s windows with a 75% overlap. The CNN filters were
able to find patterns between the spectra of consecutive windows. We did not obtain significant
improvements when including contextual windows with MFCCs and Mazilu et al.’s features and a
random forest classifier.

Figure 10. Specificity vs. sensitivity curves, AUC, and EER when including previous and posterior
windows in the deep neural network, using a LOSO evaluation and excluding subjects 4 and 10.
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Table 3. AUC and EER when including only previous windows in the deep neural network, using a
LOSO evaluation and excluding subjects 4 and 10.

Contextual Windows AUC EER (%)

CNN+MLP 0.917 14.9%
CNN+MLP with 1 previous window 0.922 14.0%
CNN+MLP with 2 previous windows 0.928 13.4%
CNN+MLP with 3 previous windows 0.930 12.7%

When using subsequent windows, a 1 second delay in the system response was introduced for
each subsequent window included in the decision. In order to reduce this delay, we repeated the
experiments using only previous windows (Table 3). Although the results were slightly worse than
when both previous and subsequent windows were included, we achieved significant improvement
without increasing the system delay.

Table 4 shows the performance for independent sensors (ankle, knee, and back accelerometers)
when including only previous windows. With the knee accelerometer, the results were very
similar to the case of using the three sensors. The worst results were obtained when using only
the back accelerometer.

Table 4. AUC and EER for independent sensors (ankle, knee, and back) when including only previous
windows in the deep neural network, using a LOSO evaluation and excluding subjects 4 and 10.

Sensors AUC EER (%)

All three accelerometers 0.930 12.7%
Ankle accelerometer 0.925 14.4%
Knee accelerometer 0.930 12.9%
Back accelerometer 0.914 15.0%

Figure 11. Specificity vs. sensitivity curves, AUC, EER, and specificity (Spe) for a sensitivity of 0.95
when comparing the baseline and the best system in this paper with a LOSO evaluation and excluding
subjects 4 and 10.

Figure 11 shows a comparison between the baseline (Mazilu et al.’s features [22] with random
forest) and the best system obtained in this paper (CNN+MLP with three previous and three subsequent
windows) using a LOSO evaluation. This figure also includes the results for the CNN+MLP structure
when including only three previous windows. The EER decreased from 17.3% to 12.5% and the AUC
increased from 0.900 to 0.931. With this dataset, a difference of 0.015 (1.5%) in AUC can be considered
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significant with p < 0.0005, according to Hanley’s method [29]. For high levels of sensitivity (0.95),
the specificity increased more than 0.12 when using previous and subsequent windows and more than
0.10 when using only previous windows.

5. Discussion and Conclusions

We evaluated the robustness of different feature sets and ML algorithms for FOG detection using
body-worn accelerometers. The evaluation was carried out with subjects whose data was held out
from the training set (LOSO evaluation). We found that MFCCs were very good features in the LOSO
evaluation. The combination of the features proposed by Mazilu et al. [22] and MFCCs were the best
set of handcrafted features evaluated in this paper.

Hidden Markov models did not work well in this task because, in order to increase their
discrimination capability, the number of states had to be increased, losing resolution in the
segmentation process. The best results were obtained with a deep neural network that included two
convolutional layers combined with a maxpooling layer (for extracting features from the accelerometer
signal spectra) and three fully connected layers for classification. We obtained a further improvement
when we included temporal information in the detection process via contextual windows. When
comparing Mazilu et al.’s system [22] with our best system, the EER decreased from 17.3% to 12.5%
and the AUC increased from 0.900 to 0.931, obtaining the best results for this dataset with a LOSO
evaluation. Regarding the sensor placement, when using only the knee accelerometer, the performance
was very close to the case of using the three accelerometers.

A FOG detection system can be used to activate external cues, such as rhythmic acoustic ones.
These cueing systems help the patient to maintain a certain speed and amplitude of movements when
walking, reducing the duration and frequency of FOG episodes. These cues are more effective when
applied only during FOG episodes or in difficult walking situations. Therefore, FOG event detection
must have a high sensitivity (true positive rate) in order to activate the cueing system. For high levels of
sensitivity (95%), our best system increased the specificity from 0.63 to 0.73 without adding delays to
the detection process.

The main characteristic of FOG is a significant power increment in the 3�8 Hz band. However,
the FOG pattern varies across subjects. For example, for subject 8, some FOG episodes did not show
an increase in power in the 3�8-Hz band. Differences among subjects present a challenge for a system
that must maintain high accuracy for unseen subjects. For future work, we would like to validate
these results using a larger number of subjects to deal with FOG variability across subjects. With more
data from a larger subject pool, it might be possible to train more complex deep learning models and
achieve better performance. Moreover, we could analyze different FOG patterns in order to define
distinct classes of this symptom that might help in designing better detection systems.
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