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Abstract

Text-to-image generative models often reflect the biases
of the training data, leading to unequal representations of
underrepresented groups. This study investigates inclusive
text-to-image generative models that generate images based
on human-written prompts and ensure the resulting images
are uniformly distributed across attributes of interest. Un-
fortunately, directly expressing the desired attributes in the
prompt often leads to sub-optimal results due to linguistic
ambiguity or model misrepresentation. Hence, this paper
proposes a drastically different approach that adheres to the
maxim that “a picture is worth a thousand words”. We show
that, for some attributes, images can represent concepts
more expressively than text. For instance, categories of skin
tones are typically hard to specify by text but can be eas-
ily represented by example images. Building upon these in-
sights, we propose a novel approach, ITI-GEN1, that lever-
ages readily available reference images for Inclusive Text-
to-Image GENeration. The key idea is learning a set of
prompt embeddings to generate images that can effectively
represent all desired attribute categories. More importantly,
ITI-GEN requires no model fine-tuning, making it computa-
tionally efficient to augment existing text-to-image models.
Extensive experiments demonstrate that ITI-GEN largely
improves over state-of-the-art models to generate inclusive
images from a prompt.

1. Introduction
In recent years we have witnessed a remarkable leap in

text-based visual content creation, driven by breakthroughs
in generative modeling [70, 28, 60, 59, 64] and the access to
large-scale multimodal datasets [68, 36]. Particularly, pub-
licly released models, such as Stable Diffusion [64], have
matured to the point where they can produce highly realis-
tic images based on human-written prompts.

However, one major drawback of existing text-to-image
models is that they inherit biases from the training data [6,

1Project page: https://czhang0528.github.io/iti-gen
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Figure 1. (a) Given a human-written prompt (“a headshot of a per-
son”), existing text-to-image models [64] can hardly synthesize
pictures representing minority groups (i.e., people with eyeglasses
in this example). (b) Conventional hard prompt searching [19]
is sub-optimal due to linguistic ambiguity. (c) We address these
problems by leveraging a small set of reference images for inclu-
sive text-to-image generation (ITI-GEN).

59, 64, 12, 5] and thus have yet to exhibit inclusiveness —
the generated images based on the input text may reflect
stereotypes, leading to the exclusion of certain attributes or
minority groups. For instance, given the prompt “a headshot
of a person”, Figure 1(a) shows how a state-of-the-art sys-
tem generates about 92% images of subjects without eye-
glasses, and only 8% with eyeglasses, showing a clear bias
towards people without eyeglasses. Alternatively, as shown
in Figure 1(b), one could specify the attribute in the prompt,
resulting in better outcomes; however, this will still result
in a sub-optimal solution due to linguistic ambiguity. While
inclusiveness has been critical to responsible AI, existing
text-to-image models are still lagging [12, 5, 56, 54, 47]. In
this work, we propose a new method that achieves inclusive-
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ness2 in text-to-image generation using only a few example
images, as illustrated in Figure 1(c).

To advance inclusive generation, a straightforward way
is to retrain or fine-tune the model upon request, using truly
inclusive training data [18, 84]. Doing so, however, is in-
surmountably challenging as collecting large-scale train-
ing data that is balanced/inclusive across all attributes of
interest is impractical, and training generative models is
highly compute-intensive [68, 66, 18]. Another principled
approach towards inclusiveness is to specify or enumerate
each category in natural language (i.e., hard prompt search-
ing) [19, 56]. However, many categories are difficult to
specify with natural language (e.g., skin tone) or cannot be
well synthesized by the existing models due to linguistic
ambiguity or model misrepresentation [30].

At first glance, these seem to paint a grim picture for in-
clusive text-to-image generation. However, we argue that
instead of specifying attributes explicitly using descriptive
natural language, images can represent specific concepts or
attributes more efficiently. Observing the availability of
a shared vision-language embedding in many multimodal
generative models [57], we raise the question: can we learn
inclusive prompt embeddings using images as guidance?

To achieve this goal, we introduce ITI-GEN, a novel
and practical framework that creates discriminative prompts
based on readily available reference images for Inclusive
Text-to-Image GENeration. Concretely, we leverage the
vision-language pre-trained CLIP model [57] to obtain the
embeddings of the reference images and learnable prompts.
In the joint embedding space, we design a new training ob-
jective to align the directions of the image and prompt fea-
tures. The core idea is to translate the visual attribute dif-
ferences into natural language differences such that the gen-
erated images based on the learned prompts can effectively
represent all desired categories. By equalizing the sampling
process over the learned prompts, our method guarantees
inclusiveness for text-to-image generation.

We validate our framework with Stable Diffusion [64].
ITI-GEN can leverage reference images from different do-
mains, including human faces [44, 35, 21] and scenes [69],
to achieve inclusive generation in single or multiple at-
tributes of interest. ITI-GEN needs neither prompt speci-
fication nor model fine-tuning, bypassing the problems of
linguistic ambiguity as well as computational complexity.
Moreover, ITI-GEN is compatible with the existing text-
based image generation models (e.g., ControlNet [83] and
instruction-based image editing models [7]) in a plug-and-
play manner. To the best of our knowledge, this is the first
method that allows inclusive text-to-image generation over
a frozen model and obtains competitive results throughout.

2Few works [12, 5] have studied fairness issues in text-to-image genera-
tion but mainly focused on social biases (e.g., perceived gender, ethnicity).
This paper incorporates a broader spectrum of attributes.

2. Related Work

Text-to-Image Generative Models. Text-based image gen-
eration has been widely studied with numerous model ar-
chitectures and learning paradigms [49, 63, 72, 60, 24,
81, 19, 20, 9, 70, 80, 16, 18, 39]. Recently, the over-
whelming success of diffusion-based text-to-image mod-
els [59, 67, 59, 52] has attracted significant attention. A key
factor to this success is their ability to deal with large-scale
multimodal datasets [68, 36, 11]. Thus, questions concern-
ing inclusiveness while learning with biased datasets remain
a crucial open problem [12, 5, 3].
Bias Mitigation in Text-to-Image Generation. While fair-
ness has been studied extensively in discriminative mod-
els [75, 76, 77, 43], research on developing fair genera-
tive models is limited [85, 31, 23, 14, 47]. Most efforts
focus on GAN-based models [13, 58, 32, 61, 82, 37, 79,
71, 34, 48], restricting their applicability to the emerging
diffusion-based text-to-image models. Recently, there have
been some efforts to address this limitation. For instance,
Bansal et al. [5] proposed to diversify model outputs by eth-
ical intervention3. Ding et al. [19] proposed to directly add
attribute words to the prompt. However, these hard prompt
searching methods have limitations such as being opaque
and laborious [5], and not always generating diverse im-
ages reliably [30, 5]. In this work, we incorporate a broad
spectrum of attributes beyond social groups. Moreover, we
learn inclusive prompts in the continuous embedding space,
requiring no hard prompt specification.

To learn a fair generative model, Wu et al. [78] employed
off-the-shelf models, such as CLIP [57] and pre-trained
classifiers, as guidance. Choi et al. [13] used a reference
dataset to train the model via sample re-weighting. In con-
trast, we use reference data in a drastically different way —
treating the images as proxy signals to guide prompt learn-
ing but without retraining the text-to-image model.
Image-Guided Prompt Tuning. Our method is inspired
by Prompt Tuning (PT) [42, 33]. Typically, PT methods
insert small learnable modules (e.g., tokens) into the pre-
trained models and fine-tune these modules with down-
stream tasks while freezing the model parameters. Recently,
PT has been leveraged in personalized text-to-image gen-
eration [25, 65, 40]. By providing several reference im-
ages with the customized subject, they use a special to-
ken to represent the object by optimizing the token embed-
ding [25, 40] or the diffusion models [65, 40]. This moti-
vates us to learn the specific token embedding for each at-
tribute category for inclusiveness. However, we note that
the previously mentioned methods for personalization do
not effectively capture the attributes in the images. Thus, we
propose to optimize the directions of the attribute-specific

3e.g., appending “irrespective of their gender” to the end of a neutral
prompt “a photo of a lawyer” for generating diverse pictures w.r.t. genders.
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Figure 2. Illustration of Inclusive Text-to-Image GENeration (ITI-GEN) with the example of two binary attributes: perceived gender
and skin tone. (a) Given an input prompt, (b) ITI-GEN learns discriminative token embeddings to represent each category of every target
attribute. (c) By injecting the learned tokens after the original input prompt, ITI-GEN synthesizes an inclusive prompt set that can be used
to (d) sample equal (or controllable) numbers of images for any category combination. Further, our framework can be easily extended
to multi-category multi-attribute scenarios of inclusive text-to-image generation. Note that, in practice, multi-category skin tones beyond
{“light”, “dark”} as in this example may be challenging to specify with language (see Figure 3). Please see Section 3.1 for details.

prompts in the joint vision-language embedding space, by-
passing training text-to-image generative models.

3. Inclusive Text-to-Image Generation
To drive the progress of Inclusive Text-to-Image Genera-

tion, we propose ITI-GEN, which creates inclusive prompts
that represent various attributes and their combinations.
This is particularly challenging for attributes that are dif-
ficult to describe in language or underrepresented. To ad-
dress this, ITI-GEN uses readily available reference images
as guidance, enabling unambiguous specification of differ-
ent attributes. Figure 2 illustrates the overall framework. In
this section, we first introduce the framework of ITI-GEN
in Section 3.1, then describe the details of the learning strat-
egy in Section 3.2, and finally discuss the key properties of
ITI-GEN in Section 3.3.

3.1. Overview

Problem Statement. Given a pre-trained text-to-image
generative model G and a human-written prompt (e.g., “a
headshot of a person”) tokenized as T ∈ Rp×e, where p is
the number of tokens and e is the dimension of the embed-
ding space, we aim to sample equal (or controllable) num-
bers of images that can represent any category combination
given the attribute set A. Formally,

A = {Am|1 ≤ m ≤ M};Am = {amk |1 ≤ k ≤ Km} (1)

contains M different attributes (e.g., perceived gender, skin
tone, etc.), where amk records a mutually exclusive category
(e.g., a specific type of skin tone) in attribute Am and Km

denotes the number of categories in Am. Note that Km may
vary among different attributes.

Inclusive Prompt Set. Inspired by [42, 33], we propose
prompt tuning for inclusive generation. Specifically, for a
given category amk within attribute Am, we inject q learn-
able tokens Sm

k ∈ Rq×e after the original T to construct a
new prompt Pm

k = [T ;Sm
k ] ∈ R(p+q)×e. By querying the

model G with Pm
k , we can generate images exhibiting the

characteristics of the corresponding category amk . To differ-
entiate the new tokens Sm

k from the original prompt T , we
refer to them as inclusive tokens.

When jointly considering M attributes, we aggregate M
separate inclusive tokens S1

o1 ,S
2
o2 , . . . ,S

M
oM to represent a

specific category combination (a1o1 , a
2
o2 , . . . , a

M
oM ), e.g., the

concept of (“woman”, “dark skin”, . . . , “young”). We thus
expect to create a unique So1o2...oM ,

So1o2...oM = f(S1
o1 ,S

2
o2 , . . . ,S

M
oM ) (2)

that can be injected after T to generate images for this par-
ticular category combination. The aggregation function f
in Equation 2 should be able to take various numbers of at-
tributes while maintaining the permutation invariant prop-
erty4 with respect to attributes. Common options include
element-wise average, sum, and max operations. Follow-
ing [50], we adopt element-wise sum to preserve the text
semantics without losing information5. Finally, we define
the inclusive prompt set as follows:

Ptotal = {Po1o2...oM = [T ;

M∑
m=1

Sm
om ] ∈ R(p+q)×e |

1 ≤ o1 ≤ K1, . . . , 1 ≤ oM ≤ KM}. (3)

4That is, the output of f should be the same even if we permute the
indices m of the attributes in A (cf. Equation 1).

5Please see Appendix E.2 for more analysis and other options for ag-
gregating multiple tokens, e.g., concatenation.
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By uniformly sampling the prompts from Ptotal as the con-
ditions to generate images using the generative model G,
we achieve inclusiveness across all attributes (see Figure 2).
More generally speaking, the distribution of the generated
data is directly correlated to the distribution of the prompts,
which can be easily controlled.

In contrast to specifying the category name in discrete
language space [5, 19], we optimize prompts entirely in the
continuous embedding space. Additionally, we only up-
date the attribute-specific embeddings — the colors • and
• in Equation 3 indicate frozen and learnable parameters,
respectively. This decoupled optimization mechanism thus
provides the advantage of using the learned inclusive to-
kens in a plug-and-play manner across various applications,
as will be demonstrated in Section 3.3 and Section 4.3. We
elaborate on the learning process in the following section.

3.2. Learning Inclusive Prompts

Reference Image Set. We propose using reference images
to guide prompt learning, as they can provide more expres-
sive signals to describe attributes that may be challenging
to articulate through language. Specifically, we assume the
availability of a reference image set Dm

ref = {(xm
n , ymn )}Nm

n=1

for a target attribute Am, where Nm is the dataset size and
ymn ∈ Am (defined in Equation 1) indicates the category to
which xn belongs. When considering multiple attributes,
we only need a reference dataset for each attribute, rather
than one large balanced dataset with all attribute labels. This
property is extremely beneficial, as it is much easier to ob-
tain a dataset that captures only the distribution of one at-
tribute (i.e., the marginal distribution) rather than one that
captures the joint distribution of all attributes.

Aligning Prompts to Images with CLIP. Given reference
image sets for the target attributes, can we learn prompts
that align the attributes in the images? Recently, pre-trained
large-scale multimodal models have demonstrated strong
capabilities in connecting vision and language. One such
model is CLIP [57], which aligns visual concepts with text
embeddings by jointly training a text encoder Etext and an
image encoder Eimg. The output of the pre-trained CLIP
text encoder has also been used as the condition for text-
guided image generation [64, 59], opening up an opportu-
nity to align prompts to reference images without the need
to modify the text-to-image models.

One straightforward solution is to maximize the similar-
ity between the prompt and the reference image embeddings
in the CLIP space, as suggested by [57]. However, we found
it deficient for two reasons. First, this objective forces the
prompt to focus on the overall visual information in the im-
ages, rather than the specific attribute of interest. Second,
the generated images from the learned prompt often exhibit
adversarial effects or significant quality degradation, poten-
tially due to image features distorting the prompt embed-
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Figure 3. Translating visual differences into text embedding
differences. Given reference images of a multi-category attribute
(e.g., skin tone), we learn the inclusive tokens by direction align-
ment between images and prompts, ensuring that the visual dif-
ference matches the learned language description. In addition, we
propose semantic consistency loss to address language drift. Im-
ages are from FAIR benchmark [21]. Details are in Section 3.2.

ding. To address these, we propose direction alignment and
semantic consistency losses, as described below.

Direction Alignment Loss. Instead of directly maximizing
the similarity between the prompts and the images, we draw
inspiration from [55, 26] to induce the direction between
the prompt Pm

i and Pm
j to be aligned with the direction

between the averaged embeddings of the reference images
corresponding to a pair of categories ami and amj in Am.
This alignment of pairwise categories direction serves as a
proxy task for guiding the prompts to learn the visual differ-
ence among images from category ami and amj (Figure 3).

Specifically, we define the direction alignment loss Ldir
to maximize the cosine similarity between the image direc-
tion and the prompt direction as follows:

Lm
dir(S

m
i ,Sm

j ) = 1−
〈
∆m

I (i, j),∆m
P (i, j)

〉
. (4)

Here, the image direction ∆I is defined as the difference
of the averaged image embeddings between two categories
of the attribute Am. Let Xm

k = 1
|Bk|

∑
ym
n =am

k
Eimg(x

m
n )

be the averaged image embedding for category amk ; |Bk| is
the number of images from category amk in each mini-batch.
We denote the image direction as follows:

∆m
I (i, j) = Xm

i − Xm
j . (5)

Similarly, the prompt direction ∆P is defined as the dif-
ference of the averaged prompt embeddings between two
categories. Let Pm

k = 1
|Pm

k |
∑

P∈Pm
k
Etext(P ) be the av-

eraged prompt embedding for attribute amk . Specifically,
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Pm
k = {P ∈ Ptotal | om = k} is a collection of prompts

containing all the category combinations for other attributes
given the category amk for attribute Am (cf. Equation 3). Fi-
nally, we denote the prompt direction as follows:

∆m
P (i, j) = Pm

i −Pm
j . (6)

By inducing the direction alignment, we aim to facilitate
the prompt learning of more meaningful and nuanced dif-
ferences between images from different categories.
Semantic Consistency Loss. We observe that direction
alignment loss alone may result in language drift [46, 41,
65] — the prompts slowly lose syntactic and semantic prop-
erties of language as they only focus on solving the align-
ment task. To resolve this issue, we design a semantic con-
sistency objective to regularize the training by maximizing
the cosine similarity between the learning prompts and the
original input prompt (see Figure 3):

Lm
sem(S

m
i ,Sm

j ) = max
(
0, λ−

〈
Etext(P ), Etext(T )

〉)
(7)

where P ∈ Pm
i ∪ Pm

j and λ is a hyperparameter (see an
analysis in Section 4.3). This loss is crucial for generating
high-quality images that remain faithful to the input prompt.
Optimization. Building upon Lm

dir and Lm
sem, our total train-

ing loss for learning the inclusive tokens of a pair of cate-
gories in attribute Am is written as follows:

Lm
pair(S

m
i ,Sm

j ) = Lm
dir(S

m
i ,Sm

j ) + Lm
sem(S

m
i ,Sm

j ). (8)

At each iteration, we update the embeddings of inclusive to-
kens of all the categories from only one attribute but freeze
the parameters of inclusive tokens for all other attributes.
The final objective during the whole learning process is:

Ltotal =

M∑
m=1

∑
1≤i<j≤Km

Lm
pair(S

m
i ,Sm

j ), (9)

where the inner summation enumerates all pairwise cate-
gories for one attribute Am at each iteration, while the outer
summation alters the attribute across the iteration.

3.3. Key Properties of ITI-GEN

Generalizability. Unlike personalization methods that train
the embeddings for a specific model (because they use dif-
fusion losses [25, 40, 65]), the tokens learned by ITI-GEN
are transferable between different models. We highlight two
use cases for these tokens. (1) In-domain generation. We
use the user-specified prompt T to learn the inclusive to-
kens and then apply them back to T to generate inclusive
images. (2) Train-once-for-all. As shown in Equation 3, the
newly introduced inclusive tokens do not change the orig-
inal prompt T , which implies that the learned tokens can

be compatible with a different human-written prompt. For
human face images, an example T for training can be any
neutral prompt, e.g., “a headshot of a person”. After train-
ing, inclusive tokens can be used to handle out-of-domain
prompts (e.g., “a photo of a doctor”) or facilitate differ-
ent models [83, 7] in a plug-and-play manner, justifying the
generalizability of our approach.
Data, Memory, and Computational Efficiency. ITI-GEN
uses averaged image features to guide prompt learning, in-
dicating that (1) only a few dozen images per category are
sufficient, and (2) a balanced distribution across categories
within an attribute is not required. ITI-GEN keeps the text-
to-image model intact and only updates the inclusive to-
kens, allowing it to circumvent the costly back-propagation
step in the diffusion model. Training with a single attribute
takes approximately 5 minutes (1 A4500 GPU). In practice,
we set the length6 (q in Equation 3) of inclusive tokens to
3 (which is less than 10KB) for all attribute categories of
interest in our study. Hence, when scaling up to scenarios
with multiple attributes, ITI-GEN always has low memory
requirements for both training and storing inclusive tokens.
Comparison to Image Editing Methods. Our direction
alignment loss may be reminiscent of the directional CLIP
loss employed in image editing methods [26, 38]. How-
ever, they are fundamentally different. First, our ITI-GEN
is designed to promote the inclusiveness, while image edit-
ing methods focus on single image manipulation. Second,
image editing methods modify the source image according
to the change in texts (from source to target), whereas ITI-
GEN learns prompts by leveraging changes in images from
one category to another. This key difference suggests a sig-
nificant distinction: the two methods are learning the task
from completely different directions.

4. Experiments
We validate ITI-GEN for inclusive text-to-image gener-

ation on various attributes and scenarios. We begin by intro-
ducing the experimental setup in Section 4.1, then present
the main results in Section 4.2, and finally, show detailed
ablation studies and applications in Section 4.3. Please see
Appendix for additional details, results, and analyses.

4.1. Setup

Datasets. We construct reference image sets and investi-
gate a variety of attributes based on the following datasets.
(1) CelebA [44] is a face attributes dataset and each image
with 40 binary attribute annotations. We experiment with
these binary attributes and their combinations. (2) FAIR
benchmark (FAIR) [21] is a recently proposed synthetic
face dataset used for skin tone estimation. Following [21],

6The token length used here is generalizable across the attributes we
studied in this paper. See Appendix E.1 for a detailed ablation study.
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Table 1. Comparison with baseline methods with (a) single attribute and (b) multiple attributes. Reference images are from CelebA.
We use CLIP [57] as the attribute classifier [12, 14]. ITI-GEN achieves competitive results for both settings. SD: vanilla stable diffusion.
EI: ethical intervention. HPS: hard prompt searching. PD: prompt debiasing. CD: custom diffusion. See Appendix F for full results.

Method
(a) Single Attribute (b) Multiple Attributes

Dmale
KL ↓ Dyoung

KL ↓ Dpale skin
KL ↓ Deyeglass

KL ↓ Dmustache
KL ↓ Dsmile

KL ↓ Dmale×young
KL ↓ Dmale×young×eyeglass

KL ↓ Dmale×young×eyeglass×smile
KL ↓

SD [64] 0.343 0.578 0.308 0.375 0.111 0.134 0.882 1.187 1.406
EI [5] 0.143 0.423 0.644 0.531 0.693 0.189 0.361 1.054 1.311
HPS [19] 1 ×10−5 0.027 2.8 ×10−3 0.371 0.241 4.4 ×10−3 3.5 ×10−3 0.399 0.476
PD [14] 0.322 0.131 0.165 0.272 0.063 0.146 – – –
CD [40] 0.309 0.284 0.074 0.301 0.246 0.469 – – –

ITI-GEN 2 ×10−6 2 ×10−4 0 2 ×10−4 4.5 ×10−4 2.5 ×10−3 1.3 ×10−4 0.061 0.094
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Figure 4. Qualitative results of the combination of four binary attributes (the last column in Table 1). The input prompt (T ) is “a
headshot of a person”. By using the learned inclusive tokens (cf. Equation 3), ITI-GEN can inclusively generate images with all attribute
combinations. Images across each tuple are sampled using the same random seed. More examples are included in Appendix F.

CelebA FairFace FAIR benchmark LHQ

Figure 5. Examples of reference images. CelebA [44] and Fair-
Face [35] are real-face datasets with different resolutions and fo-
cuses. FAIR benchmark [21] is a synthetic dataset used for skin
tone estimation. Landscape (LHQ) [69] contains images from nat-
ural scenes. ITI-GEN can leverage various image sources to ben-
efit inclusive text-to-image generation for various attributes.

we use the ground-truth albedos to classify each facial crop
into one of six skin tone levels [22] and use FAIR for in-
clusiveness on skin tone type. (3) FairFace [35]7 contains
face images with annotations for 2 perceived gender and 9
perceived age categories. (4) Landscapes HQ (LHQ) [69]
provides unlabeled natural scene images. With the annota-

7We note that, while the FairFace dataset contains race categories, we
focus instead on skin tone in this study. This is because skin tone is more
readily inferable from pixels, whereas racial identities are better under-
stood as social concepts that are neither immutable nor biological in na-
ture [8, 15, 62, 4]; furthermore, phenotypic variation of skin tone within
racial identification groups is well documented [51].

tion tool from [74], each image can be labeled with 6 quality
(e.g., colorfulness, brightness) and 6 abstraction (e.g., scary,
aesthetic) attributes. Figure 5 shows example images.

Experimental Protocols. We only require that a reference
image set captures a marginal distribution for each attribute
(cf. Section 3.2). Note that, while images from CelebA
and FairFace are annotated with multiple attributes, we use
only the attribute label for each target category but not oth-
ers. We randomly select 25 reference images per category
as our default setting (and ablate it in Section 4.3). For at-
tribute settings, we consider single binary attribute, multi-
category attributes, and multiple attributes in the domains
of human faces and scenes. We study both in-domain and
train-once-for-all generations (cf. Section 3.3) and further
provide qualitative and quantitative analyses for each setup.

Quantitative Metrics. We use two metrics to quantify
distribution diversity and image quality. (1) Distribution
Discrepancy (DKL). Following [12, 14], we use the CLIP
model to predict the attributes in the images. For attributes
that CLIP might be erroneous, we leverage pre-trained clas-
sifiers [35] combined with human evaluations. Specifi-
cally, for skin tone, which is extreme difficult to obtain
an accurate scale [1, 2, 29], we adopt the most commonly
used Fitzpatrick skin type [10] combined with off-the-shelf
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Figure 6. Multi-category distribution with “a headshot of a per-
son”. For a reliable evaluation, the results of (a) are evaluated
using classifiers in [35], and (b) are evaluated using existing mod-
els [10, 21]. The generated images from ITI-GEN are more uni-
formly distributed across different sub-groups than the baseline
Stable Diffusion. See Figure 7 for qualitative results.

models [21] for evaluation. (2) FID. We report the FID
score [27, 53] (FFHQ [36]) to measure the image quality.
Please see Appendix E for more details.

Baselines. We compare ITI-GEN to the following methods.
(1) Stable Diffusion (SD) [64] without any modification. (2)
Ethical Intervention (EI) [5] that edits the prompt by adding
attribute-related interventions. (3) Hard Prompt Searching
(HPS) [19] that directly expresses the desired attribute cat-
egory in the prompt. (4) Prompts Debiasing (PD) [14] that
calibrates the bias in the text embedding by using the at-
tribute category names. (5) Custom Diffusion (CD) [40]
that fine-tunes the text-to-image model with reference im-
ages based on Textual Inversion [25, 65].

Implementation Details. We use Stable Diffusion [64] (sd-
v1-4) as the base model for all methods and show compat-
ibility with ControlNet [83] and InstructPix2Pix [7]. ITI-
GEN is model agnostic as long as they take token embed-
dings as the inputs. We set λ = 0.8 in Lsem across all exper-
iments and show that λ can be robustly selected according
to the prior knowledge (see Section 4.3). All the inclusive
tokens are initiated as zero vectors8. We set the length of the
inclusive tokens to 3 in all experiments. There is no addi-
tional hyper-parameter in our framework. The total number
of the parameters for the inclusive tokens that need to be op-
timized is

∑M
m=1 Km×3×768, where M is the number of

attributes, Km is the category number for attribute m, and
768 is the dimension of the embedding (e in Equation 3).
We train the models with 30 epochs on a batch size of 16
and a learning rate of 0.01. During training, we leverage
image augmentations used in the CLIP image encoder.

4.2. Main Results

Single Binary Attribute. To demonstrate the capability
of ITI-GEN to sample images with a variety of face at-
tributes, we construct 40 distinct reference image sets based
on attributes from CelebA [44]. Each represents a specific

8We investigated other options such as random initialization but did not
see notable differences in both generation quality and training speed.
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Figure 7. Results of ITI-GEN on multi-category attributes for
Gender×Age (Figure 6(a)) and Gender×Skin Tone (Figure 6(b)).
Examples are randomly picked with “a headshot of a person”.

binary attribute and contains an equal number of images
(50%) for the positive and negative categories9. Table 1(a)
shows a comparison to state-of-the-art methods. We evalu-
ate 5 text prompts — “a headshot of a {person, professor,
doctor, worker, firefighter}” — and sample 200 images per
prompt for each attribute, resulting in 40K generated im-
ages. We highlight the averaged results across 5 prompts of
6 attributes. We provide complete results in Appendix F.2.
ITI-GEN achieves near-perfect performance on balancing
each binary attribute, justifying our motivation: using sepa-
rate inclusive tokens is beneficial in generating images that
are uniformly distributed across attribute categories.

Multiple Attributes. Given multiple reference image sets
(each captures the marginal distribution for an attribute),
can ITI-GEN generate diverse images across any category
combination of the attributes? We provide an affirmative
answer and present results in Table 1(b) and Figure 4. As
we observe, ITI-GEN produces diverse and high-quality
images with significantly lower distribution discrepancies
compared to baseline methods. We attribute this to the ag-
gregation operation of inclusive tokens (Equation 3), allow-
ing ITI-GEN to disentangle the learning of different inclu-
sive tokens with images in marginal distributions.

Multi-Category Attributes. We further investigate multi-
category attributes including perceived age and skin tone.
Specifically, we consider two challenging settings: (1) Per-
ceived Gender × Age (Figure 6(a)), and (2) Perceived Gen-
der × Skin Tone (Figure 6(b)). ITI-GEN achieves inclu-
siveness across all setups, especially on extremely under-
represented categories for age (< 10 and > 50 years old
in Figure 6(a)). More surprisingly (Figure 6(b)), ITI-GEN
can leverage synthetic images (from FAIR) and jointly learn

9We found that different ratios do not lead to notable differences. We
provide an analysis of learning with imbalanced data in Appendix E.3.
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Figure 8. ITI-GEN with perception attributes on scene images.
The tokens of “colorfulness” are trained with “a photo of a natural
scene” and applied to “a castle on the cliff ” in this example (train-
once-for-all in Section 3.3). ITI-GEN (right) enables the baseline
Stable Diffusion (left) to generate images with different levels of
colorfulness. Same seed for each row. Better viewed in color. See
Appendix F.5 for results of other attributes, e.g., scary, brightness.
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Figure 9. Ablation on the quantity of reference images. More
reference images (> 10) help possibly due to more diversity and
less noise. ITI-GEN is robust in the low data regime (Section 3.3).

from different data sources (CelebA for gender and FAIR
for skin tone), demonstrating great potential for bootstrap-
ping inclusive data generation with graphics engines.
Other Domains. Besides human faces, we apply ITI-GEN
to another domain: scene images. We claim that the inclu-
sive text-to-image generation accounts for attributes from
not only humans but also scenes, objects, or even environ-
mental factors. Specifically, we use images from LHQ [69]
as guidance to learn inclusive tokens and generate images
with diverse subjective perception attributes. As illustrated
in Figure 8, ITI-GEN can enrich the generated images to
multiple levels of colorfulness10, justifying the generaliz-
ability of our method to the attributes in different domains.

4.3. Ablations and Applications

Reference Images. Figure 9 illustrates the impact of the
quantity of reference images per attribute category, telling
that ITI-GEN can produce high-quality images using very
few reference data without sacrificing inclusiveness (KL).
In addition, as indicated in Table 2, ITI-GEN consistently
generates realistic images regardless of reference sources

10Note that the subjective attributes we explore here are different from
artistic styles (e.g., painting, cartoon) in image-to-image translation (e.g.,
[26]). Understanding the attributes related to quality and look of images
may be intuitive for humans but remain non-trivial for generative models.

Table 2. Ablation on reference image sources and Lsem. ITI-
GEN produces lower FID than the baseline Stable Diffusion. Se-
mantic consistency loss Lsem plays a key role in quality control.

Method Source Lsem FID↓

Baseline [64] – – 67.40

ITI-GEN

CelebA [44]
✓ 60.38
✗ (+17.40) 77.78

FairFace [35]
✓ 55.10
✗ (+9.01) 64.11

FAIR [21]
✓ 51.83
✗ (+10.86) 62.69

%DVHOLQH ,7,�*(1
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Figure 10. Train-once-for-all generalization. Inclusive tokens of
ITI-GEN trained with a neutral prompt (“a headshot of a person”)
can be applied to out-of-domain prompts in these two examples to
alleviate stereotypes. See Appendix F.6 for more results.

(see examples in Figure 4 and Figure 7). More interestingly,
we found that using synthetic images (i.e., FAIR [21]) is
slightly better than real data [44, 35]. We hypothesize that
the background noise in real images degrades the quality.

Semantic Consistency Loss Lsem. Again in Table 2, we
compare ITI-GEN with and without Lsem. With the help of
the semantic constraint (Figure 3), we regularize the learned
embeddings not too far from the original prompt. We show
evidence to verify this insight: the averaged CLIP similarity
scores of text features between the hard prompts of 40 at-
tributes in CelebA and the original prompt is 0.8 (the λ we
used), suggesting that the hyper-parameter can be robustly
chosen based on prior linguistic knowledge.

Train-once-for-all Generalization. As shown in Figure 8,
inclusive tokens can be applied to user-specified prompts in
a plug-and-play manner (Section 3.2). In Figure 10, we pro-
vide more examples of professional prompts to demonstrate
the ability of train-once-for-all generation.

Compatibility with ControlNet [83]. ITI-GEN achieves
inclusiveness by learning attribute-specific prompts with-
out modifying the original text-to-image model, potentially
benefiting various downstream vision-language tasks. In
Figure 11, we demonstrate its compatibility with Control-
Net [83], a state-of-the-art model capable of conditioning

8



ControlNet + ITI-GEN (Skin Tone)

Type 1Pose: Type 2 Type 3

Type 4 Type 5 Type 6

photo of a 
famous 
woman

+
Prompt:

Figure 11. Compatibility with models using additional condi-
tions, e.g., human pose (left). ITI-GEN promotes inclusiveness
of ControlNet [83] by using the inclusive tokens of six skin tone
types (right). The tokens are trained with “a headshot of a person”
guided by images from FAIR dataset [21], and applied here in a
train-once-for-all manner (Section 3.3). See Appendix F.7 for ad-
ditional results on versatile conditions, e.g., depth, segmentation.

on a variety of inputs beyond text. Interestingly, we ob-
serve an intriguing feature where the newly introduced to-
kens may implicitly entangle other biases or contrasts inher-
ent in the reference image sets, such as clothing style. Nev-
ertheless, we emphasize that disentanglement of attributes
is not the primary concern of this study. ITI-GEN achieves
competitive results in distributional control for the intended
attributes (e.g., skin tone in Figure 11) — aggregating to-
kens learned from marginal distributions implicitly disen-
tangles the known attributes of interest.

Compatibility with InstructPix2Pix (IP2P) [7]. Note that,
achieving fully unsupervised disentanglement is a challeng-
ing task [45]. Previous attempts in image generation often
resort to additional supervision, either through the use of
reference data [13], classifiers learned from a joint distribu-
tion [71], or even more robust controls such as instruction-
based image editing [7]. Here, we show that ITI-GEN can
potentially disentangle the target attribute by incorporating
InstructPix2Pix [7] — to improve the inclusiveness of IP2P
on the target attribute, while ensuring minimal changes to
other features such as clothing and background. Results are
shown in Figure 12, telling that ITI-GEN can be an effec-
tive method to condition diffusion on contrastive image sets,
e.g., images taken by different cameras, art by unknown
artists, and maybe even different identities of people.

5. Conclusion and Discussion

We present a new method for inclusive text-to-image
generation. Our main contribution lies in a new direction:
leveraging readily available reference images to improve

IP2P + ITI-GEN (Skin Tone)

turn her into 
a man

Instruction:

IP2P

Type 1 Type 2 Type 3

Type 4 Type 5 Type 6

Figure 12. Compatibility with instruction-based image editing
methods. Given an image and a written instruction (top-left), In-
structPix2Pix (IP2P) [7] follows the instruction to edit the image
(bottom-left). ITI-GEN (right) enables inclusive instruction-based
image editing. Similar to Figure 11, the inclusive tokens used in
this example are trained in a train-once-for-all manner.

the inclusiveness of text-to-image generation. This problem
is timely and challenging [6, 5, 14, 23, 12]. Our key insight
is learning separate token embeddings to represent differ-
ent attributes of interest via image guidance. The proposed
ITI-GEN method is simple, compact, generalizable, and ef-
fective on various applications. Specifically, ITI-GEN has
several advantages: (1) scalable to multiple attributes and
different domains using relatively small numbers of im-
ages; (2) can be used in a plug-and-play manner to out-
of-distribution, relatively complex prompts; (3) efficient in
both training and inference; (4) compatible with the text-to-
image generative models that support additional conditions
or instructions. We conduct extensive experiments to verify
the effectiveness of the proposed method on multiple do-
mains, offering insights into various modeling choices and
mechanisms of ITI-GEN. We incorporate a broad spectrum
of attributes in both human faces and scenes. We hope that
our results and insights can encourage more future works
on exploring inclusive data generation.

Limitations. ITI-GEN can handle a wide range of gen-
eral attributes, such as perceived gender and skin tone, and
excels in cases where “Hard Prompt” struggles. However,
there remain several limitations. First, ITI-GEN does not
always provide optimal results for very subtle facial at-
tributes (Appendix F.2) or for the combinations of highly
entangled attributes (Appendix F.3). Second, ITI-GEN still
requires dozens of reference images for each category as
guidance. It is possible that the reference images may intro-
duce biases or inaccuracies. One mitigation strategy is to in-
tegrate ITI-GEN with models that offer robust controls [7],
such as the one highlighted in Figure 12.

Acknowledgments. We thank Oliver Wang, Jianjin Xu, and
Or Patashnik for their feedback on the drafts of this paper.
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A. Ethical and Social Impacts

One important consideration is the potential impact on
privacy and data protection. In order to generate inclusive
images, ITI-GEN relies on reference images that are often
sourced from publicly available datasets. However, the uti-
lization of these images raises concerns about privacy and
the potential for unintended consequences, such as the mis-
use of personal data. It is crucial to consider ways to mit-
igate these risks, such as data anonymization or obtaining
explicit consent from individuals whose images are used.

While ITI-GEN’s directional loss avoids directly mea-
suring the distance between the prompts and the reference
images, it is possible that the reference images used to rep-
resent certain attributes may themselves contain biases or
inaccuracies. To address this concern, it will be important to
carefully evaluate the quality and representativeness of the
reference images used in the model and to develop strate-
gies for identifying and correcting biases when they arise.

Inclusive image generation has the potential to promote
greater representation and diversity in various industries,
which could in turn promote greater social equality and re-
duce discrimination. However, it is also possible that the
technology could be misused or weaponized to promote

negative or harmful stereotypes. Therefore, it will be impor-
tant to consider the potential risks and benefits of ITI-GEN
carefully for mitigating negative outcomes.

B. Additional Related Work and Comparisons

In this section, we provide a more comprehensive com-
parison between ITI-GEN and related methods.

Bias Mitigation Methods in Text-to-Image Generation.
As mentioned in Section 2 of the main paper, ITI-GEN
uses images as guidance while existing approaches focus
on debiasing the prompts. Two concurrent works, Prompt
Debiasing [14] and Fair Diffusion [23] require the cate-
gory names of the target attributes for learning fair prompts.
However, we argue that, for some attributes, attribute names
might be hard to specify using language (e.g., skin tone,
different levels of brightness). ITI-GEN learns tokens with-
out gradient propagation through the original text-to-image
models, making it more efficient in both training and de-
ployment.

Personalization. Both ITI-GEN and personalized text-to-
image generation methods [40, 25] are inspired by prompt
tuning [33, 42]. However, they are fundamentally different,
as introduced in Section 2 of the main paper. We compare
with custom diffusion [40] in Table 1 of the main paper
mainly to provide a justification for whether the personal-
ization methods [40, 65, 25] can be used in inclusive text-
to-image generation. Specifically, we attempt to provide
different numbers of reference images for Custom Diffu-
sion [40] and select the best results to report. Moreover,
unlike personalization methods that use diffusion losses to
train the special tokens, the tokens learned by ITI-GEN are
generalizable between different models.

Disentanglement. It is worth mentioning that the aggre-
gation of multiple inclusive tokens learned with separate
reference datasets in marginal distributions can implicitly
disentangle attribute learning. However, we emphasize that
the primary goal of ITI-GEN is not to achieve feature (or
attribute) disentanglement [36]. Please see Section 4.3 and
Figure 11 of the main paper for a detailed discussion.

Image-to-image Translation and Editing. As mentioned
in Section 3.3 of the main paper, the goal of our work is to
promote inclusiveness or diversity but not for image edit-
ing. In image-to-image translation or editing tasks, it is re-
quired to edit the desired attribute while keeping other fea-
tures of the image intact. However, we do not have such a
requirement for ITI-GEN. For example, in Figure 4, Fig-
ure 7, Figure 10, and Figure 11 of the main paper, while
there are subtle changes to the clothing or background in
the images, ITI-GEN already achieves inclusiveness for the
intended attribute. We show examples with the same ran-
dom seeds in these figures mainly for a better comparison.
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Figure 13. Examples of reference images from LHQ [69]. We
show randomly picked images for four attributes. Images within
each category are classified into one of five groups.

C. Reference Images Preparation

In this section, we provide more details on the construc-
tion of reference image sets to complement Section 4.1 of
the main paper. We use the following datasets as resources.

CelebA [44] is a benchmarked face attributes dataset and
each image with 40 binary attribute annotations. We exper-
iment with these binary attributes and their combinations.

FAIR Benchmark (FAIR) [21] is a recently proposed syn-
thetic face dataset used for skin tone estimation. Specif-
ically, we use images from the validation set containing
234 images and 702 facial crops. The validation set is re-
leased with ground-truth UV albedo maps. In order to ob-
tain ground-truth skin tone types, we follow [21] to com-
pute the Individual Typology Angle (ITA) score [10] of an
albedo map to be the average of all pixel-wise ITA values
with a pre-computed skin region area. For each image, ITA
can be used to classify the skin tone type according to 6 cat-
egories, ranging from very light (i.e., type 1) to dark (i.e.,
type 6) [10, 17]. We randomly select 25 images per skin
tone type as the reference images.

FairFace [35] contains face images with annotations for 2
perceived gender, 9 perceived age, and 7 race categories.
As discussed in Section 4.1 of the main paper, although we

value the contribution of the FairFace database to the com-
munity, we prefer using race labels and instead advocate for
skin tone descriptions that recognize phenotypic diversity
within broad racial categories [4]. Therefore, we only use
their age annotations in our experiments.

Landscape (LHQ) [69] provides unlabeled natural scene
images, allowing us to extend ITI-GEN to a different do-
main beyond human faces. With the annotation tool from
[74], each image can be labeled with a score s ranging from
0 to 1, with a higher value indicating a closer match to the
corresponding attribute. Using this score, we classify each
image into one of the five degrees of the target attribute,
resulting in a multi-category attribute. Figure 13 shows ex-
ample reference images in the LHQ dataset. Note that, the
purpose of this experiment is not to justify LHQ as a perfect
resource for learning tokens for perception attributes, but to
investigate the capability of our ITI-GEN framework that
can leverage the data from another domain as guidance.

D. Evaluation Metrics.

Distribution Discrepancy (DKL). Following [12, 14], we
use the CLIP model to predict the attributes in the images.
For the attributes in which every category can be accu-
rately specified by natural language, we input the original
prompt combined with different names of categories into
CLIP for obtaining the attribute label. For instance, if we
want to evaluate the attribute “male” for the images gen-
erated from “a headshot of a person”, we construct the in-
put text of CLIP as [“a headshot of a man”, “a headshot of
a woman”]. For the attributes in which some of the cate-
gories can not be specified by natural languages, such as
“eyeglasses” and “without eyeglasses” (due to the issue of
negative prompt), we input the text [“a headshot of a person
with eyeglasses”, “a headshot of a person”]. For attributes
that CLIP might be erroneous, we leverage pre-trained clas-
sifiers [35] combined with human evaluations. Specifically,
for the skin tone, which is extremely difficult to obtain an
accurate scale [1, 2, 29], we adopt the most commonly used
Fitzpatrick skin type [10] combined with off-the-shelf mod-
els [21] for evaluation.

Fréchet Inception Distance (FID) [27]. We report the FID
score to measure image quality. Specifically, we use the
CleanFID library [53] to calculate the FID relates to statis-
tics in FFHQ [36].

E. Additional Ablations and Analyses
E.1. Tokens Length

In our experiments, we set the length of inclusive tokens
as 3 (q in Equation 3 of the main paper). Here, we pro-
vide further analyses on the size of q and show results in
Figure 14. We see that fewer than 3 tokens may hurt the
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Figure 14. Ablation study on tokens length. Using fewer tokens
is not sufficient enough to capture the concepts of attributes, lead-
ing to a relatively high distribution discrepancy (i.e., KL). On the
other hand, using more tokens may degrade the image quality due
to language drifts (i.e., relatively high FID scores).
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Figure 15. Concatenation vs. summation on inclusive tokens
aggregation. We show an example of the combination of “Male”
and “Eyeglasses” attributes. (a) Simply concatenating may reduce
the image quality or fail to generate the images with corresponding
attributes (e.g., “Woman with eyeglasses”) potentially because of
the language drifts [41, 65]. (b) ITI-GEN provides better results
with a conceptually simpler summation.

performance — cannot generate images with the desired at-
tributes — potentially due to less representation capacity
in capturing the concepts in the reference images. On the
other hand, more tokens may result in adversarial effects or
collapse. We hypothesize that prepending too many tokens
after the original prompts leads to language drifts [41, 65].
This cannot be alleviated even with the semantic consis-
tency loss (Equation 7 of the main paper) because simply
forcing the two prompts with very different lengths to be
close in the embedding space is ineffective.

E.2. Tokens Aggregation

As mentioned in Section 3.1 of the main paper, we use
summation operation to aggregate the inclusive tokens of
multiple attributes to achieve permutation invariance. Here,
we provide another option — concatenation. Specifically,
we ignore the positional encodings before feeding the in-
clusive tokens in the CLIP text encoder. Thus, the attention
mechanism applied to prompt tokens is permutation invari-
ant. Figure 15 shows comparison results. We notice that

0
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Figure 16. Ablation study on the ratio of different categories
in the reference set. We study on the perceived gender attribute
in CelebA by changing the ratio of images from the “male” and
“female” categories. ITI-GEN is robust (i.e., with very small dis-
tribution discrepancy, KL) to the ratio of different categories in the
reference image set.

(a) Exclusive (100 images in total) (b) Overlapped (50 images in total)

KL: 0.0046, FID: 60.38 KL: 0.0050, FID: 58.42

Figure 17. Results of ITI-GEN with (a) mutually exclusive and (b)
overlapped reference images for attributes: gender×eyeglasses.

ITI-GEN (with token summation) not only achieves bet-
ter results than concatenation but also offers a simpler and
cleaner solution for token aggregation.

E.3. Imbalanced Reference Images

As mentioned in Section 4.1 of the main paper, we select
25 reference images per category in our experiments. We
also mentioned that ITI-GEN is robust to imbalanced data
distributions in Section 3.3. Here, we provide additional
results as evidence. We change the ratio of “male” images
vs. “female” images for the Perceived Gender attribute in
CelebA and show the results in Figure 16. ITI-GEN can
always generate images with nearly a balanced distribution.

E.4. Overlapped Reference Images

As mentioned in Section 3.2 of the main paper, we need
a reference dataset for each attribute. However, this does
not pose a practical issue (which seems like an all-too-
exhaustive list to cover), because each reference dataset
does not have to be mutually exclusive. An existing dataset
(e.g., CelebA or smaller) can be divided into overlapped
sub-datasets, either manually or using a classifier. To
demonstrate this, we compare two settings: (a) Exclusive —
two datasets, each containing 50 images with equal gender
and eyeglasses distribution, respectively; (b) Overlapped —
a single dataset of 50 images with equal numbers between
man and woman labels, as well as with and without eye-
glasses. The results in Figure 17 show that using a smaller,
overlapped dataset does not affect the performance.

E.5. Corrupted Reference Images

In this subsection, we further study whether the quality
of the provided reference image strongly affects the general-
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Figure 18. ITI-GEN with corrupted reference data. The attribute
of interests is gender.

(a) Synthetic Reference Dataset (only one identity for man or woman)

a headshot of Brad Pitt a headshot of Halle Berry

Perceived man Perceived woman

(b) Images generated by ITI-GEN (KL: 0.0002)

Figure 19. ITI-GEN can leverage less diverse reference images in
(a) for inclusive generation for the gender attribute in (b).
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Figure 20. Qualitative results of ITI-GEN when Km = 1.
When only “female” images are provided as the reference images
(left in (a)), ITI-GEN can leverage the synthetic data generated by
the original prompt (“a headshot of a person”, right in (a)), to-
gether with the real data, to construct the reference image set. By
jointly using these two sources, ITI-GEN learns inclusive tokens
representing the concept of “female”, which can be used to synthe-
size images for the desired category, as shown in (b). Section E.6
illustrates details.

ization and the application of the ITI-GEN. We provide the
results with noisy or blurred reference images in Figure 18.
We also experiment with less diverse reference images (only
using the images with one identity) and show results in Fig-
ure 19. Both demonstrate the robustness of ITI-GEN to the
quality of reference data.

E.6. Single Category Attribute (Km = 1)

In the main paper, we mainly studied the attributes that
have more than one category (Km is larger than 1 in Equa-

Table 3. FID (↓) comparison. Reference images for ITI-GEN are
from FAIR benchmark [21]. ITI-GEN produces lower FID than
all the other baselines. SD: vanilla stable diffusion. EI: ethical
intervention. HPS: hard prompt searching. PD: prompt debiasing.
CD: custom diffusion.

SD [64] EI [5] HPS [19] CD [40] PD [14] ITI-GEN

67.4 81.4 69.9 62.4 63.3 51.8

SD

positive

ITI-GENCDPDEI

negative positive negative positive negative

Figure 21. Visualization of different methods. The prompt is
“a headshot of a person”. Attributes are gender × eyeglasses.
Images across each line are sampled using the same random seed.

tion 3 of the main text). What if we only have the reference
images from one category of the target attribute (Km = 1)?
In light of our pairwise direction loss (Equation 4), there
are at least two different categories needed in the reference
images. Here, we show that ITI-GEN can leverage the syn-
thetic data generated by the original prompt (e.g., “a head-
shot of a person”) as an additional category to compute the
directional loss for the case of Km = 1.

We verify this idea by using only images of the “female”
category from the perceived gender attribute. From Fig-
ure 20, we can observe that by leveraging the female real
images and another set of synthetic images generated from
“a headshot of a person”, ITI-GEN is able to synthesize
female images. Further quantitative evaluation for the im-
ages generated by ITI-GEN indicates that 100% perceived
woman is obtained.

F. Additional Results
Due to space limitations, we only reported the results

of several attributes mainly to cover the attributes relating
to social factors and facial expressions in the main paper.
In this section, we provide additional results and detailed
comparisons to strong baseline methods.

F.1. Qualitative and FID Results for Baselines

We only provide KL Divergence metric (DKL) in the
main paper for different baselines. Here, we incorporate the
comparisons of FID in Table 3 and visualizations in Fig-
ure 21 with other baselines.

F.2. Single Binary Results

We summarize the full results of single binary attributes
with CelebA [44] in Table 4. We compare with the base-
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Figure 22. Challenges of (a) linguistic ambiguity and (b) model
misrepresentation. While Hard Prompts demonstrated strong ca-
pabilities in generating images with desired attributes, they can-
not handle some situations. (a) Vanilla text-to-image models can
hardly understand negative prompts (e.g., “not”, “without”) pos-
sibly due to linguistic ambiguity. (b) For some attributes (e.g.,
mustache), directly using hand prompts results in misrepresented
results caused by the model bias.

line Stable Diffusion model [64] and Hard Prompt Search-
ing [19], which demonstrated strong performance in many
attributes (cf. Table 1 of the main paper). From Table 4, we
observe ITI-GEN achieves the best performance in nearly
all 40 attributes except some subtle facial attributes (e.g.,
“Wearing Necklace”). We use the prompt “a headshot of
a person” in Table 4 and show qualitative results of other
prompts (e.g., other occupations such as politician and mu-
sician) in Figure 33. Furthermore, we list all the hard
prompts used in our experiments in Table 5.

As mentioned in Section 1 of the main paper, we re-
iterate that ITI-GEN is designed to handle several cases
(attributes) that Hard Prompts may struggle with. First, at-
tributes with fine-grained categories may be difficult to ex-
press in language. Second, linguistic ambiguity, as shown
in Figure 22 (a). Third, model misrepresentation, as illus-
trated in Figure 22 (b). More importantly, we argue that
ITI-GEN is not to replace Hard Prompts (especially for at-
tributes that are already can be handled by language) but to
support complex prompts with multiple attributes, as illus-
trated in Figure 23.

F.3. Multiple Attributes

We now consider multi-attribute cases and show addi-
tional results in Figure 24. To fully characterize the per-
formance of ITI-GEN, we study three additional settings

Table 4. A full comparison with baseline methods with the 40
single attribute setting (DKL ↓). Reference images are from
CelebA [44]. Following [12, 14], we use CLIP [57] as the attribute
classifier. SD: vanilla stable diffusion [64]. HPS: hard prompt
searching [19]. Given the strong capability of the existing text-to-
image generative models, one can express the (most but not all)
desired attributes directly using Hard Prompts. However, it faces
challenges in certain attributes and ITI-GEN addresses most of
these drawbacks. Please see Figure 22 for a side-by-side qualita-
tive comparison between HPS and ITI-GEN. Please see Figure 23
for how ITI-GEN can be compatibly used with Hard Prompts.

Attribute SD [64] HPS [19] ITI-GEN

5’o Clock Shadow 0.02957 0.00847 0.06882
Arched Eyebrows 0.32972 0.04570 0.00892

Attractive 0.11264 0.07405 0.00000
Bags Under Eyes 0.33325 0.10498 0.01395

Bald 0.51578 0.22175 0.00892
Bangs 0.33886 0.19975 0.00000

Big Lips 0.20984 0.02908 0.00892
Big Nose 0.32423 0.01629 0.00056

Black Hair 0.35189 0.12539 0.00000
Blond Hair 0.60804 0.00501 0.00222

Blurry 0.01077 0.25348 0.09707
Brown Hair 0.41683 0.14207 0.05663

Bushy Eyebrows 0.07108 0.29737 0.02747
Chubby 0.14293 0.40233 0.00000

Double Chin 0.28637 0.48016 0.19274
Eyeglasses 0.38773 0.32622 0.00056

Goatee 0.25933 0.04266 0.00000
Gray Hair 0.65905 0.27921 0.17049

Heavy Makeup 0.39293 0.10989 0.04570
High Cheekbones 0.47875 0.00020 0.03599

Male 0.01033 0.00005 0.00000
Mouth Slightly Open 0.07030 0.14207 0.04570

Mustache 0.02013 0.12009 0.00000
Narrow Eyes 0.14968 0.00847 0.08228

No Beard 0.22442 0.49463 0.00222
Oval Face 0.39526 0.03158 0.02014
Pale Skin 0.17394 0.00045 0.00000

Pointy Nose 0.48951 0.02221 0.00000
Receding Hairline 0.31784 0.61526 0.02014

Rosy Cheeks 0.46275 0.03691 0.14987
Sideburns 0.55409 0.04570 0.02013
Smiling 0.25059 0.02075 0.00000

Straight Hair 0.08506 0.61526 0.19274
Wavy Hair 0.47663 0.36806 0.03599

Wearing Earrings 0.32029 0.15998 0.09707
Wearing Hat 0.65144 0.12539 0.01395

Wearing Lipstick 0.50658 0.12539 0.11323
Wearing Necklace 0.63600 0.05897 0.49463
Wearing Necktie 0.46687 0.69315 0.06882

Young 0.65647 0.00056 0.00000

based on the attribute correlation matrix from the CelebA
dataset [44] (see Figure 2 in [73] for the correlation matrix).
Specifically, we select three attribute combinations with dif-
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Table 5. Hard Prompts used in our experiments. Different attributes may not follow the same template and we carefully specify or
express the attribute in the input prompt. The human-written hard prompts are used to generate images. Results are shown in Table 4.

Attribute Positive Prompt Negative Prompt
5’o Clock Shadow a headshot of a person {with 5’o clock shadow}. a headshot of a person {with no/without 5’o clock shadow}.
Arched Eyebrows a headshot of a person {with arched eyebrows}. a headshot of a person {with no/without arched eyebrows}.

Attractive a headshot of {an attractive} person. a headshot of {an unattractive} person.
Bags Under Eyes a headshot of a person {with bags under eyes}. a headshot of a person {with no/without bags under eyes}.

Bald a headshot of a person {in bald}. a headshot of a person {in no bald}.
Bangs a headshot of a person {with bangs}. a headshot of a person {with no/without bangs}.

Big Lips a headshot of a person {with big lips}. a headshot of a person {with small lips}.
Big Nose a headshot of a person {with big nose}. a headshot of a person {with small nose}.

Black Hair a headshot of a person {with black hair}. a headshot of a person {with no/without black hair}.
Blond Hair a headshot of a person {with blond hair}. a headshot of a person {with no/without blond hair}.

Blurry a headshot of a person {in blurry}. a headshot of a person {in no/without blurry}.
Brown Hair a headshot of a person {with brown hair}. a headshot of a person {with no/without brown hair}.

Bushy Eyebrows a headshot of a person {with bushy eyebrows}. a headshot of a person {with no/without bushy eyebrows}.
Chubby a headshot of a {chubby} person. a headshot of a {no chubby} person.

Double Chin a headshot of a person {with double chin}. a headshot of a person {with no/without double chin}.
Eyeglasses a headshot of a person {with eyeglasses}. a headshot of a person {with no/without eyeglasses}.

Goatee a headshot of a person {with goatee}. a headshot of a person {with no/without goatee}.
Gray Hair a headshot of a person {with gray hair}. a headshot of a person {with no/without gray hair}.

Heavy Makeup a headshot of a person {with heavy makeup}. a headshot of a person {with no/without heavy makeup}.
High Cheekbones a headshot of a person {with high cheekbones}. a headshot of a person {with low cheekbones}.

Male a headshot of a {man}. a headshot of a {woman}.
Mouth Slightly Open a headshot of a person {with mouth slightly open}. a headshot of a person {with mouth closed}.

Mustache a headshot of a person {with mustache}. a headshot of a person {with no/without mustache}.
Narrow Eyes a headshot of a person {with narrow eyes}. a headshot of a person {with no/without narrow eyes}.

No Beard a headshot of a person {with no/without beard}. a headshot of a person {with beard}.
Oval Face a headshot of a person {with oval face}. a headshot of a person {with no/without oval face}.
Pale Skin a headshot of a person {with pale skin}. a headshot of a person {with dark skin}.

Pointy Nose a headshot of a person {with pointy nose}. a headshot of a person {with no/without pointy nose}.
Receding Hairline a headshot of a person {with receding hairline}. a headshot of a person {with no/without receding hairline}.

Rosy Cheeks a headshot of a person {with rosy cheeks}. a headshot of a person {with no/without rosy cheeks}.
Sideburns a headshot of a person {with sideburns}. a headshot of a person {with no/without sideburns}.
Smiling a headshot of a person {with smiling}. a headshot of a person {with no/without smiling}.

Straight Hair a headshot of a person {with straight hair}. a headshot of a person {with no/without straight hair}.
Wavy Hair a headshot of a person {with wavy hair}. a headshot of a person {with no/without wavy hair}.

Wearing Earrings a headshot of a person {wearing earrings}. a headshot of a person {without wearing earrings}.
Wearing Hat a headshot of a person {wearing hat}. a headshot of a person {without wearing hat}.

Wearing Lipstick a headshot of a person {wearing lipstick}. a headshot of a person {without wearing lipstick}.
Wearing Necklace a headshot of a person {wearing necklace}. a headshot of a person {without wearing necklace}.
Wearing Necktie a headshot of a person {wearing necktie}. a headshot of a person {without wearing necktie}.

Young a headshot of a {young} person. a headshot of {an old} person.

ferent levels of attribute entanglement (i.e., co-occurrence
frequency) — a higher co-occurrence value means the at-
tribute combination is more common in daily life while a
lower co-occurrence value indicates a rare case in the orig-
inal CelebA dataset. Admittedly, there are several cases
ITI-GEN does not always generate images with a balanced
distribution or faithfully generates images with specific at-
tributes. Please see Figure 24 for details.

F.4. Multi-Category Attributes

In Figure 6 and Figure 7 of the main paper, we investi-
gated the combinations of multi-category attributes. Here,
we further study another challenging setup: Perceived Gen-
der (CelebA) × Skin Tone (FAIR) × Age (FairFace) (108
different combinations of categories in total). Qualita-
tive results are shown in Figure 25 and in Figure 26. As
expected, ITI-GEN is capable of handling multiple fine-
grained attribute categories to achieve inclusiveness.

F.5. Other Domains

As shown in Figure 8 of the main paper, ITI-GEN can
generalize to a different domain for perception attributes on
scene images. In this subsection, we demonstrate more re-
sults of other attributes in Figure 27 for “colorfulness”, Fig-
ure 28 for “sharpness”, Figure 29 for “scary”, Figure 30
for “contrast”, Figure 31 for “brightness”, and Figure 32
for “’brightness”. As we observe, ITI-GEN generates more
diverse results than the baseline model even with very com-
plex input prompts.

F.6. Train-once-for-all Generalization

We provide additional qualitative results with different
occupation prompts in Figure 33, Figure 34, Figure 35, Fig-
ure 36, and Figure 37.

F.7. Compatibility with ControlNet

We provide additional examples of compatibility with
ControlNet in Figure 38.
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Figure 23. Compatibility of ITI-GEN to hard prompts. As
mentioned in Section F.2 and Figure 22, Hard Prompts show ac-
curate results with some attributes (e.g., “young” and “perceived
man” in the top row) but may result in misrepresented results for
other attributes (e.g., “mustache” in the middle row). ITI-GEN

demonstrates strong compatibility with Hard Prompts to benefit a
broad spectrum of attributes (bottom row).

G. Future Work
To establish the new direction and demonstrate its feasi-

bility so that future works can easily build upon, we inten-
tionally avoid sophisticated techniques to improve ITI-GEN
in favor of simplicity and believe that additional modifica-
tions can further enhance the inclusive generative models.
Lifelong ITI-GEN. In this study, we assume all the at-
tributes are accessible at the same time. In practice, we hope
to show that ITI-GEN is capable of the continue learning
setup. That is, adding new attributes while without forget-
ting or re-training the previous inclusive tokens.
Other Attributes. There are other attributes ITI-GEN
might be able to control via appropriately prepared refer-
ence images. For example, the 3D geometry attributes such
as head poses and materials such as normal and lighting.
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Figure 24. Additional results on multiple attributes. We consider three settings based on the attribute co-occurrence matrix in the CelebA
dataset (see Section F.3). The attribute combinations in (a) and (b) are relatively less entangled between the sub-categories whereas in (c) —
a failure case of ITI-GEN— the category “with heavy makeup” is heavily entangled with the category “female” in CelebA, which indicates
that other category combinations (e.g., “man with heavy makeup”) can rarely happen in our daily life. Therefore, the text-to-image model
can hardly synthesize images with this underrepresented attribute combination.
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Figure 25. Results of ITI-GEN on multi-category attributes for Perceived Gender (2) × Skin Tone (6) × Age (9). Examples are
randomly picked with “a headshot of a person” for Perceived Man × Skin Tone (6) × Age (9). Please see Figure 26 for more results on
Perceived Woman × Skin Tone (6) × Age (9).
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Figure 26. Results of ITI-GEN on multi-category attributes for Perceived Gender (2) × Skin Tone (6) × Age (9). Examples are
randomly picked with “a headshot of a person” for Perceived Woman × Skin Tone (6) × Age (9). Please see Figure 25 for more results
on Perceived Man × Skin Tone (6) × Age (9).
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̵ͅͅξΞήΒ˅ή̵ͧ͛ Ɏ˰̵̯̣̯ͅϋɎ˴̃ή˅̵̃ͅ˴Ɏ˅ΒήωͧΒ̓Ɏˤ̵͓͛̃˅ή̵ˤ

Figure 27. ITI-GEN with perception attributes (“Colorfulness”) on scene images. ITI-GEN (bottom) enables the baseline Stable
Diffusion (top) to generate images with different levels of colorfulness. See Section C for details and Figure 13 for reference image
examples from LHQ [69]. Better viewed in color.

23



,7,�*(1

6
P
RRWK

6
KDUS

%DVHOLQH

˅Ɏ͛˅ήξΒ˅ͅɎΞˤ̃͛̃

Figure 28. ITI-GEN with perception attributes (“Sharpness”) on scene images. ITI-GEN (bottom) enables the baseline Stable Diffu-
sion (top) to generate images with different levels of sharpness. See Section C for details and Figure 13 for reference image examples from
LHQ [69]. Better viewed in color.
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Figure 29. ITI-GEN with perception attributes (“Scary”) on scene images. ITI-GEN (bottom) enables the baseline Stable Diffusion
(top) to generate images with different levels of scary. See Section C for details and Figure 13 for reference image examples from LHQ [69].
Better viewed in color.
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Figure 30. ITI-GEN with perception attributes (“Contrast”) on scene images. ITI-GEN (bottom) enables the baseline Stable Diffusion
(top) to generate images with different levels of contrast. See Section C for details and Figure 13 for reference image examples from
LHQ [69]. Better viewed in color.
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˅Ɏͅ˅͛˴Ξˤ˅ͺ̃Ɏ̵͓ΞήϋɎ̗ͧΒ̃ΞήɎΞˤ̃͛̃ Ɏ˰ή̯̃ɎΞξ͛Ɏ̵̣ͅΞή̵̣̃͛͛Ɏή̯Βͧξ̣̯Ɏή̯̃Ɏ
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Figure 31. ITI-GEN with perception attributes (“Brightness”) on scene images. ITI-GEN (bottom) enables the baseline Stable Diffu-
sion (top) to generate images with different levels of brightness. In this example, we intentionally pick images using the same random seed
in each column for ITI-GEN. Please compare the first and last examples in each column for a clear change in brightness. See Section C
for details and Figure 13 for reference image examples from LHQ [69]. Better viewed in color.
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Figure 32. ITI-GEN with perception attributes (“Brightness”) on scene images. ITI-GEN (bottom) enables the baseline Stable Dif-
fusion (top) to generate images with different levels of brightness. See Section C for details and Figure 13 for reference image examples
from LHQ [69]. Better viewed in color.
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Figure 33. Additional results on train-once-for-all generalization. Inclusive tokens of ITI-GEN trained with a neutral prompt (“a
headshot of a person”) can be applied to out-of-domain prompts in these three examples to alleviate stereotypes.
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Figure 34. Additional results on train-once-for-all generalization. Inclusive tokens of ITI-GEN trained with a neutral prompt (“a
headshot of a person”) can be applied to out-of-domain prompts in these three examples to alleviate stereotypes.
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Figure 35. Additional results on train-once-for-all generalization. Inclusive tokens of ITI-GEN trained with a neutral prompt (“a
headshot of a person”) can be applied to out-of-domain prompts in these three examples to alleviate stereotypes.
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Figure 36. Additional results on train-once-for-all generalization. Inclusive tokens of ITI-GEN trained with a neutral prompt (“a
headshot of a person”) can be applied to out-of-domain prompts in these three examples to alleviate stereotypes.
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Figure 37. Additional results on train-once-for-all generalization. Inclusive tokens of ITI-GEN trained with a neutral prompt (“a
headshot of a person”) can be applied to out-of-domain prompts in these three examples to alleviate stereotypes.
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photograph of mount katahdin

Segmentation

(a) Condition: segmentation map. Attribute: colorfulness.

ColorfulDull

ColorfulDullDepth

photograph of mount katahdin
(b) Condition: depth map. Attribute: colorfulness.

a headshot of a female
(d) Condition: depth map. Attribute: age.

Depth >700

Canny edge More brightLess bright

a high-quality, detailed, and professional image
(c) Condition: canny edge map. Attribute: brightness.

Figure 38. Additional results on the compatibility with ControlNet [83]. All examples are based on train-once-for-all generation
(Section 3.3 of the main paper). For scene images in (a), (b), and (c), the inclusive tokens are trained with “a natural scene” using LHQ
images [69]. For human faces in (d), the tokens for age attribute are trained with “a headshot of a person” using FairFace images [35]. As
discussed in Section B, our method is designed for improving inclusiveness but not for image editing.
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