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Figure 1. Consistent Multi-view via Material-Guided Relighting Diffusion. We present LightSwitch, a framework for multi-view
relighting. Given any number of input images under an unknown illumination, LightSwitch leverages multi-view attention and inferred
material properties to predict consistent relighting, enabling applications for 2D and 3D relighting.

Abstract

Recent approaches for 3D relighting have shown promise
in integrating 2D image relighting generative priors to alter
the appearance of a 3D representation while preserving the
underlying structure. Nevertheless, generative priors used
for 2D relighting that directly relight from an input image
do not take advantage of intrinsic properties of the subject
that can be inferred or cannot consider multi-view data at
scale, leading to subpar relighting. In this paper, we pro-
pose Lightswitch, a novel finetuned material-relighting dif-
fusion framework that efficiently relights an arbitrary num-
ber of input images to a target lighting condition while in-
corporating cues from inferred intrinsic properties. By us-
ing multi-view and material information cues together with
a scalable denoising scheme, our method consistently and
efficiently relights dense multi-view data of objects with di-
verse material compositions. We show that our 2D relight-
ing prediction quality exceeds previous state-of-the-art re-
lighting priors that directly relight from images. We further

demonstrate that LightSwitch matches or outperforms state-
of-the-art diffusion inverse rendering methods in relighting
synthetic and real objects in as little as 2 minutes.

1. Introduction

We have witnessed impressive advances in the task of re-
covering 3D representations from multi-view captures, with
methods like NeRF [27] and Gaussian Splatting [18] al-
lowing one to reconstruct generic objects or scenes easily.
While these representations excel at modeling detailed ge-
ometry and appearance, they only seek to model the appear-
ance within the capture environment, thus baking in light-
ing effects into the obtained representation. This prevents
reconstructions from being imported and relit in novel en-
vironments for applications such as virtual reality or syn-
thesizing visual effects. In this work, we aim to enable such
relightable rendering of 3D representations under generic il-
lumination and present an approach that given posed multi-
view images, enables synthesizing novel relit views.
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Current methods that tackle this relighting task can
be categorized as either leveraging inverse rendering or
learned relighting. In particular, the former class of meth-
ods [10, 12, 16, 22, 23, 46, 48] seek to infer a 3D repre-
sentation disentangling geometry, appearance, and material
properties, allowing relighting via physics-based rendering.
However, these optimization-based approaches tend to be
slow and their usage of (simple) differentiable renderers
can limit their ability to model complex lighting effects. In
contrast, ‘direct relighting’ methods learn to directly gener-
ate a relit image a given (captured/rendered) source image
and a target illumination. By adapting image diffusion pri-
ors, these methods can efficiently synthesize photo-realistic
quality output in a feed-forward manner. However, these
approaches operate on a single view, leading to inconsisten-
cies in relighting across viewpoints.

Our work also adopts a learning-based approach for di-
rect relighting, with the key insight that instead of formulat-
ing this as a single-view relighting task, we should formu-
late it as one of consistently relighting multiple input views.
This can make the predictions consistent across views (mak-
ing such a system better suited for 3D relighting), while also
improving relighting performance as the cues observed in
one view (e.g. sharpness of a specularity) can inform the re-
lighting in another. In addition to incorporating multi-view
cues, we also draw inspiration from inverse rendering meth-
ods that benefit from understanding material properties and
seek to leverage (predicted) material properties (intrinsics
and albedo) as additional input.

We build on these insights and propose ‘LightSwitch’,
a relighting diffusion framework that produces multi-view
consistent relighting informed by inferred intrinsic proper-
ties. We validate LightSwitch on both synthetic and real-
world data and find that leveraging multi-view and predict
material cues yield significantly improved relighting com-
pared to prior learning-based relighting methods. We also
tackle the ‘3D relighting’ task requiring synthesizing and
consistently relighting a large set of query views, and de-
sign a distributed inference scheme for efficient inference.
We show that when compared to state-of-the-art inverse ren-
dering methods, LightSwitch allows improved/comparable
relighting, while being significantly faster.

2. Related Work

Image-based 3D Reconstruction. We have witnessed
impressive recent progress in the task of recovering 3D from
images. In particular representations like NeRF [27], Gaus-
sian Splatting [18], and their variants [2, 3, 13, 26, 28, 35,
41] allow representing detailed geometry and appearance,
and can be inferred from multi-view images of generic ob-
jects and scenes. More recent approaches, often leveraging
generative priors, even allow inferring such detailed outputs
from sparse or single-view input [7, 24, 25, 36, 39, 49], al-

lowing end users to easily capture 3D. While these obtained
reconstructs can capture the rich details of underlying 3D
scenes, they are only capable of modeling the static envi-
ronment observed in the images and cannot be imported to
novel environments where their appearance would change
under a different environmental illumination.

Relighting via Inverse Rendering. To enable relighting
under novel environments, some works utilize inverse ren-
dering to recover a 3D relightable asset. These approaches
model intrinsic properties [10, 12, 16, 22, 23, 29, 45, 46] or
light transport effects [5, 33, 48] to infer a factorized 3D
representation that explains the observed images, allowing
for relighting under novel illuminations. However, recover-
ing intrinsics from a set of multi-view images is a non-trivial
task, given that many different combinations of the intrinsic
properties can be composed together to get the appearance
in the source images. Some approaches use data-driven pre-
diction of intrinsics [19, 40] to aid this, for example Mate-
rialFusion [23], whose material model we adapt that uses
a material prior model to aid with relighting. Neverthe-
less, inverse rendering pipelines are forced to rely on sim-
ple material models together with simpler lightweight dif-
ferentiable renderers due to the computational constraints
of physically-based renderers. Even so, optimization is still
slow as real-time rendering requires considerable computa-
tion, making inverse rendering approaches time-consuming.

Learning Direct Relighting. An alternate relighting ap-
proach that allows for high fidelity relighting is to learn a
model that directly predicts relit images, in particular by
adapting generative diffusion priors for high quality gener-
ation. These direct feed-forward approaches allow for pre-
dicting accurate relighting in little time for high resolution
images while generalizing to unseen instances [17, 42, 47].
However, not incorporating cues about the underlying ma-
terial composition means the model is not using informa-
tion that can help accurately relight assets with complex
appearance effects. Even so, direct relighting models only
take single-view images, limiting their practicality for 3D
relighting where multi-view data provides important cues
on the asset’s inherent properties.

In contrast to aforementioned works, our proposed re-
lighting diffusion framework incorporates intrinsic and
multi-view cues to efficiently produce a high quality relight-
ing directly from input images. The addition of these com-
ponents to the relighting diffusion model significantly im-
proves relighting for 2D and 3D scenarios. While some con-
current works have examined the task of recovering multi-
view consistent relighting, they either do not leverage the
prior knowledge of diffusion models [44], rely on multi-
illuminated data [1], or incorporate material information
cues for video relighting only [9, 21].



5
— N
StableMaterial MV . .
Id’Iorm
Tl . .
TZaist LY [} 15}
<3| Q
il 72N % 1
@ 4
& I ‘
N MYV Relighting UNet
Xsre t

Figure 2. LightSwitch Material-Relighting Diffusion Framework. LightSwitch relights multi-view posed input images to a given
target illumination. It infers and encodes multi-view consistent material image maps (Ls, Iorm) using a material diffusion model (Stable-
MaterialMV [23]) and concatenates them to the Pliicker ray maps (P), encoded input images (X ), and noisy latents (z.) in the channel
dimension. The multi-view relighting UNet denoises the noisy latents and cross-attends to the lighting latents concatenated with the latent
lighting directions (Eg;r). The lighting latents are encoded from the processed target environment map images (Elgl, Engl) The Stable

Diffusion encoders and decoder are kept frozen.

3. Methodology

In this section we introduce our diffusion framework, shown
in Fig. 2, that takes in multi-view posed input images cap-
tured under fixed unknown illumination and relights them to
a given target illumination. We adapt a text-conditioned dif-
fusion model and finetune it for multi-view material-guided
relighting and describe this in Sec. 3.1. We then introduce
an efficient relighting denoising scheme at inference for 3D
relighting in Sec. 3.2, shown in Fig. 3.

3.1. Relighting Architecture

Our goal is to design an architecture that can consistently
relight a set of input images given a target environment
map. Towards this, we seek to adapt the deep image pri-
ors contained in large scale diffusion models like Stable
Diffusion 2.1 [30]. Unlike previous approaches which fo-
cus on single-view relighting, we propose a model that al-
lows multi-view consistent relighting. Moreover, in addi-
tion to conditioning on target illumination information, we
also rely on material information cues for better relighting
performance. We train this material-guided relighting dif-
fusion model in stages beginning from single-view to yield
a relighting model that synthesizes high quality multi-view
consistent relightings.

Material Aware Single-view Relighting. The relight-
ing diffusion UNet, initialized from Stable Diffusion 2.1’s
UNet, is first finetuned to relight single RGB input views
captured under unknown lighting xg. to target images Xg
illuminated by a given target lighting E;. We modify the
UNet’s input layer to condition it on input images, ma-
terial intrinsics, and camera pose information encoded as

Pliicker coordinate ray maps P. To incorporate intrin-
sic material cues, the model utilizes per-pixel image ma-
terial maps Iy, I,m corresponding to the albedo, occlu-
sion, roughness, and metallicness (ORM)' components of
the rendered image. The material representation used by
the relighting model follows a simplified Disney principled
BRDF model [6], where each pixel in 14, I, contain an
albedo a € RH*Wx3 roughness r € R¥*W 1 and metal-
licness m € RH*Wx1  The underlying material informa-
tion is constant across illuminations and using it as condi-
tioning lets the relighting model understand how to relight
views with diverse appearance effects such as specularities
and absorption.

Incorporating Lighting. To incorporate lighting infor-
mation into the denoising UNet, we add a lighting cross-
attention module that attends to illumination information
and finetune it together with the rest of the UNet. The tar-
get illumination information Ei is given initially as a high
dynamic range image and transformed to two environment
maps following [17]: Elgt, which is the normalized environ-
ment map, and EtLgl which is tonemapped. The combination
of these two maps helps inform the network about strong
(e.g. lights, sun, etc.) and softer lighting (e.g. reflections,
ambient lighting, etc.). These images are encoded using
the Stable Diffusion encoder £ and a directional embedding
map Eg, is also produced corresponding to the per latent
lighting direction. The lighting module attends to the con-
catenation (& (Egt) & (Eét) Eqir).

At each training iteration we sample
(Xore> Xigt, Id, Iorm, P, Eqg) and finetune the diffusion

I'The occlusion map is not used and set to zero.
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Figure 3. Denoising Relighting for Any Number of Views. Given the quadratic complexity of all-pair multi-view attention, we divide

the input latents z; into mini-batches z!", . .., z'”

and make latents attend to each other only within a subset per denoising iteration. When

the batches are shuffled after the denoising step, they can attend to another subset in the next iteration. By continuously shuffling the
subsets across DDPM iterations we approximate the full relighting diffusion. To relight a novel view, we optimize a 3D gaussian splat
on the training images and render the novel view using the rasterizer. The novel view is then inserted into the set source views, enabling

consistent novel view relighting.

model to denoise the noisy target view latent code z;.
z; is obtained by sampling a diffusion timestep ¢ and a
4-channel random noise € and adding the noise to &(X).
We concatenate (€(Xgc),E(La), £ (Tom), P), denoted as
C, along the channel dimension of z; as conditioning and
process Eiy, for cross attention. The diffusion loss for the
single-view training stage is

Laitr = ||€g (z¢,t; C) — v¢|3, (1)

where v; corresponds to v-prediction loss [31].

Denoising Multi-view Relighting. After finetuning our
relighting diffusion model to relight single-view posed im-
ages to a target illumination given groundtruth material in-
formation, we continue finetuning it for multi-view predic-
tion. We modify the denoising UNet with multi-view self-
attention modules and continue training. By first training
the model for single-view relighting, it forms an initial un-
derstanding of lighting interaction between the environment
and object that is considerably harder to model in multi-
view. Previous work [32, 37] has shown that multi-view at-
tention can be easily implemented in the self-attention mod-
ule to enable consistent prediction across multiple views.
Given a batch containing k image latents, the self-attention
layer consolidates the batch together such that every latent

pixel across the batch is in the same space and can attend
to all other latent pixels. When integrating this into the re-
lighting diffusion model, it predicts a consistent most prob-
able relighting for a given illumination across all input ap-
pearance information. This is replicated for the material
diffusion model for predicting the most probable material
maps across given input views. We show that including the
multi-view attention module significantly boosts relighting
quality.
We sample k source views per object and use the follow-
ing diffusion loss
L = lleo (2, £ CH*) — va 3, 0
We enable classifier-free  guidance by  setting
E(EH),E(EL) to all zeros with a 10% probability
and set the guidance scale to 3. k is set to 4 during training.
Once the base multi-view model is trained, we continue

training an upscaled model at a resolution of 512x512 to
produce higher fidelity relighting.

3.2. Lightswitch — Scalable Efficient 3D Relighting

With the trained upscaled multi-view LightSwitch diffusion
model, we wish to apply it to 3D novel view relighting given
sparse or dense multi-view data. In novel view relighting,
training views of an asset are given as input and we wish to



render an unseen view under a desired novel illumination.
This can be practically challenging if the number of input
views is too high as the compute requirement of transform-
ers scales quadratically, and batch-wise processing can lead
to inconsistencies. To address this, we introduce an efficient
denoising mechanism that scales to an arbitrary number of
input views as shown in Fig. 3. To enable novel relighting,
we first render novel views under source illumination using
novel view synthesis. We then input both the source views
and synthesized novel views to our relighting network, al-
lowing it to relight query views while using cues from the
observed source views.

Distributed Multi-view Relighting. At inference time,
we can effectively denoise more images by shuffling the
data and sampling new batches per denoising iteration.
Over enough iterations, each latent attends to all other la-
tents across the entire dataset, making the final prediction
consistent throughout. Additionally, we can distribute the
denoising step in parallel across compute to proportionally
accelerate the diffusion process. This keeps the consistency
of the final prediction and allows for fast scalable relight-
ing on high resolution images, enabling highly accurate re-
lighting as seen in the example output in Fig. 1. The shuf-
fling and denoising procedure is applied to both the material
and relighting diffusion models for efficient material and re-
lighting inference.

Rendering Test Views. Our approach distributes multi-
view relighting effectively but can only relight given views.
Thus, to relight novel views not included in the data, we
optimize a 3D gaussian splat [ 18] on the training data, ren-
der and encode the test view, and include it in the training
data being denoised. Given the strong performance of novel
view synthesis approaches we can sample a high quality test
view and easily relight it with LightSwitch, enabling low la-
tency novel view relighting.

4. Experiments

We evaluate LightSwitch on image sets of diverse assets
captured under varied illumination to showcase our ap-
proach’s performance in 2D and 3D scenarios. To show
LightSwitch’s relighting performance and effective denois-
ing scheme in 2D, we conduct a comparison against other
diffusion-based relighting priors on a held out synthetic ob-
ject test dataset relit with unseen target illuminations. We
then evaluate our 3D novel view relighting method on both
synthetic and real objects to highlight its generalization,
efficiency, and relighting capabilities. This is compared
against inverse rendering methods that also enable novel
view relighting. Lastly, we ablate our LightSwitch to show-
case how the choice of integrating material and multi-view

information aids relighting.

4.1. Experimental Setup

Dataset. We curate a dataset of ~100K objects from a
mixture of the BlenderVault [23] and Objaverse [8, 14] data
that was filtered to include high quality objects containing
PBR maps. We sample 8 camera poses on a hemisphere
around an object and render those views under 8 different
environment maps. The environment maps are randomly
selected from a dataset acquired from online sources such as
Polyhaven and Laval [11], giving ~4K environment maps
that are also flipped and rotated randomly during training.
At test time, we employ StableMaterialMV [23], taken off
the shelf, to infer materials from the input images to con-
dition the relighting diffusion model. Given that StableMa-
terialMV was trained on 256x256 images, we separately
finetune it further to 512x512 to estimate high quality ma-
terial maps.

Metrics. For both the 2D and 3D relighting evaluations,
we account for the underlying albedo scale ambiguity by a
scale against the groundtruth image before computing the
PSNR, SSIM, and LPIPS metrics. We also report the ap-
proximate time from start to finish LightSwitch and other
methods need to predict relightings. Similarly to previ-
ous work, the final results are computed as the mean across
views for all objects.

4.2. Image to Image Relighting

To validate LightSwitch’s relighting and denoising scheme,
we evaluate with source RGB images of synthetic test ob-
jects captured under an unknown illumination and relight
them with a target lighting condition not included in the
training environment map dataset. We render the objects
under the corresponding target illuminations and compare
the relit predictions to the groundtruth appearance. We uti-
lize 6 diverse test objects from the BlenderVault dataset ex-
cluded from training and render 8 randomly sampled views
on a hemisphere with the object at its center. The object ap-
pearances are rendered given 3 fixed illuminations for those
8 views, giving a total of 144 test images.

Baselines. We test LightSwitch against other diffusion-
based relighting methods [17, 42] trained to predict relight-
ing for object data from a single image and report the re-
lighting comparison after rescaling. To highlight the relight-
ing consistency across multiple views, in addition to the
typical image level rescaling (ILR) metric that searches for
optimal rescaling for each image, we also report a stricter
scene level rescaling (SLR) metric that computes a single
scale across all views in the scene, penalizing inconsistent
predictions across views.
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Figure 4. Direct Relighting Comparison on Synthetic Objects. Given 8 images of an object, LightSwitch predicts a multi-view consistent
relighting under a target illumination. With its usage of inferred material information, our model accurately relights objects with complex
appearance effects such as specularities. On the other hand, the baselines bake in details from the source view into the target relighting and

relight inconsistently across views.

Image Relighting (ILR) Image Relighting (SLR) Quality Drop
Method PSNRT SSIMt LPIPS| | PSNRT SSIMT LPIPS| | PSNR]
DiLightNet [42] 23.84  0.861 0.238 23.35 0.859 0.238 0.49
Neural Gaffer [17] 2434 0.883 0.271 24.08  0.882 0.272 0.26
Ours 26.01 0.888 0.216 25.86  0.885 0.215 0.15
Ours (GT Materials) 2829 0901 0203 | 2820 0901 0203 | 0.09

Table 1. Direct Relighting Accuracy Comparison. We report the performance of our approach for 2D relighing on synthetic object data
against other diffusion-based relighting methods. ILR corresponds to image level rescaling where the images are individually rescaled
against the groundtruth image. SLR corresponds to scene level rescaling where we rescale using the average scale for all views per object.

In each column, the best, second best , and third best results are marked.

Results. We report quantitative results in Tab. 1, compar-
ing LightSwitch with previous image relighting methods.
Overall, the gains over baselines highlight the benefits of
our design choices of leveraging multi-view attention and
material priors for relighting objects with complex and di-
verse materials. In particular, our method achieves the most
consistency when using groundtruth materials, indicating
its ability to exploit material information for a more con-
sistent and accurate relighting. Fig. 4 shows a qualitative
comparison of our model’s relightings against baselines.

4.3. Relighting for 3D

We evaluate the novel view relighting quality and efficiency
of LightSwitch against prior inverse rendering methods on
a number of publicly available diverse synthetic and real
object datasets. For synthetic objects, we directly render
and compare the groundtruth relightings under novel envi-
ronment maps, while real objects were captured in novel
environments for which the illuminations are estimated.

Datasets. We use the NeRF synthetic dataset (5 objects)
[27] and real object dataset Objects with Lighting (8 ob-
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Figure 5. 3D Relighting Comparison on Objects With Lighting. Our method successfully relights a novel view to a target illumination
while the baselines exhibit errors in the relit appearance. LightSwitch’s efficiency means it can relight a given novel view in 5 minutes at a
high accuracy while operating on images at the original resolution (1728 x 1120).

Relighting
Method PSNR1 SSIM*T LPIPS |
LightSwitch 25.43 0.84 0.297
Mitsuba+NeusS [15, 38] 26.24 0.84 0.227
InvRender [46] 23.45 0.77 0.374
NeRD [4] 21.71 0.65 0.540
NeRFactor [45] 20.62 0.72 0.486
NeROIC [20] 21.59 0.78 0.323
Neural-PIL [5] 19.56 0.51 0.604
NVDiffrec [29] 22.60 0.72 0.406
NVDiffrecMC [12] 20.24 0.73 0.393
PhySG [43] 22.77 0.82 0.375
TensolR [16] 24.15 0.77 0.378
MaterialFusion [23] 20.75 0.73 0.388

Table 2. Relighting on the Objects With Lighting Dataset. Our
method matches and outperforms a multitude of inverse rendering
baselines on novel view relighting across the Objects With Light-
ing dataset.

jects) [34]. NeRF synthetic objects are relit by four high
resolution environment maps, and the relighting compari-
son is computed on a test set of eight unseen poses per en-
vironment map. For Objects with Lighting, objects are relit
with two novel environment maps for six test views, three
per environment map. We show our method’s relighting
quantitatively and qualitatively on both of these datasets to
highlight its strong performance on synthetic and real data.

Results. We benchmark LightSwitch against a suite of in-
verse rendering baselines on both datasets. As shown in
Tab. 2 and Tab. 3, our trained model matches or outper-
forms state-of-the-art methods in relighting across multiple
synthetic and real objects. Our model can successfully re-
light objects exhibiting complex appearance properties. By
distributing denoising across compute with our denoising
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Figure 6. 2D Relighting Ablation Comparison.

Target

Ours

Single View  No Materials

scheme, we relight in much less time than the next best per-
forming baseline, which takes orders of magnitude longer
than ours to do relighting. Fig. 7 and Fig. 5 show a qualita-
tive comparison of our model against previous approaches
on both datasets. We compare the runtime for our method
using 8 RTX A6000 and the other methods that can only
utilize 1 RTX A6000 and find that our method is propor-
tionally faster while outperforming or matching baselines.
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Figure 7. 3D Relighting Comparison on NeRF-Synthetic. While other methods exhibit issues in the relit appearance such as baked-in
albedo, reconstruction artifacts, and incorrect geometry, our method successfully relights with high fidelity.

Chair Hotdog Lego Materials Mic Runtime
Method PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS\ Minutes
LightSwitch 26.65 0.062 25.75 0.091 23.60 0.081 22.08 0.080 30.24 0.025 \ ~2

MaterialFusion [23] 26.58 0.063 25.31 0.123 23.26 0.119 25.29 0.084 30.94 0.036| ~240
NVDiffrecMC [12] 26.44 0.064 24.87 0.133 23.36 0.115 25.37 0.081 30.15 0.041| ~120

TensolR [16]
R3DGS [10]

25.29 0.070 21.16 0.174 21.86 0.080 22.02 0.104 31.21 0.022| ~480
23.50 0.072 21.02 0.168 20.86 0.106 20.56 0.095 29.47 0.029| ~15

Table 3. Relighting on the NeRF-Synthetic Dataset. Our method matches or outperforms the baselines on novel view relighting across

all views per NeRF-Synthetic object at a much lower runtime.

Ablations PSNR1+ SSIM1 LPIPS |

Ours 26.01 0.888 0.216
No Materials 25.27 0.879 0.219
Single View 24.59 0.865 0.228

Table 4. Effects of Ablating Multi-view or Materials. Ablat-
ing different information from the relighting diffusion framework
harms relighting accuracy.

Using 1 GPU increases runtime to 14 minutes without a loss
in quality, which is comparable to R3DGS [10] in runtime
but produces much more accurate relighting. The strong
performance in both 2D and 3D relighting exhibited by our
method showcases its utilization of multi-view appearance
and material cues for effective relighting.

4.4. Ablation Studies

We finetune additional diffusion models that ablate multi-
view or material information incorporation into the archi-
tecture and evaluate on the BlenderVault 2D test dataset.
The quantitative and qualitative comparisons are shown in
Tab. 4 and Fig. 6. Not giving material information during

training leads to a considerable drop in quality, as the model
struggles with relighting more complex appearances such
as specularities, and begins incorporating details from the
input views to the predicted relightings. Training with ma-
terials but not with multi-view leads to an even bigger drop,
as the model struggles to produce consistent relightings.

5. Conclusion

In this paper, we introduced LightSwitch, a generative re-
lighting framework capable of leveraging inferred mate-
rial cues for accurate and consistent multi-view relighting.
While this improved over prior works in 2D and 3D re-
lighting, we believe there are some remaining limitations.
First, as shown in the appendix, the reliance on the (fixed)
latent space of a pre-trained diffusion limits the ability to
encode/decode sharp fine details e.g. reflections. Moreover,
while our architecture encourages multi-view consistency
and material-aware inference, the predictions are not guar-
anteed to be physically plausible. We believe that explor-
ing alternate architectures and mechanisms to more closely
connect learned relighting with physics-based rendering are
promising avenues for future exploration.
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LightSwitch: Multi-view Relighting with Material-guided Diffusion

Supplementary Material

Relighting
Method PSNR-L 1 PSNR-H 1 SSIM 1 LPIPS |
LightSwitch  32.02 25.03 0976 0.027

Neural-PBIR =~ 33.26 26.01 0.979 0.023
IllumiNeRF  32.74 25,56 0.976 0.027
NVDiffrecMC 31.60 24.43 0972 0.036
RelitLRM 31.52 24.67  0.969 0.032
InvRender 30.83 23.76 0.970 0.046
NeRFactor 30.38 23.54  0.969 0.048
NVDiffrec 29.72 2291 0.963 0.039

Table 5. 3D Relighting Comparison on Stanford-ORB.

7. Additional Visualizations

We show additional visualizations of LightSwitch’s 2D and
3D relighting on BlenderVault 2D data as well as NeRF-
Synthetic in Figs. 8-11.

8. Additional Details

Training. LightSwitch was trained in three stages using 8
RTX A6000 GPUs, first by finetuning for single view for
20K iterations on 256256 data with a batch size of 512.
An AdamW 8-bit optimizer was used with a learning rate
of 5e — 5. For the second multi-view stage, we train with a
batch size of 120, with each batch containing four 256 x256
images randomly sampled for the object. This was done for
15K iterations with a learning rate of 2.5e — 5. For the
last upsampling stage, a batch size of 28 was used, where
each batch contained four 512x512 images. This was done
with a learning for 15K iterations with a learning rate of
le — 5. We repeat the upsampling stage training for Stable-
MaterialMV in order to create higher quality material maps.

Stanford-ORB Relighting Evaluation. We report results
on Stanford-ORB in Tab. 5, showing LightSwitch is com-
petitive with SOTA while performing significantly faster —
relighting a scene in 8§ minutes vs. several hours for base-
lines. Due to lighting changes when moving the capture
device, Stanford-ORB has separate environment maps for
each test view. As our multi-view method relights query
views under a common illumination, we disregard the vari-
ation and assume the lighting for the first image but this may
be suboptimal.



Mic Hotdog Chair Lego Materials
Method PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS
LightSwitch 30.24 0.025 2591 0.090 26.65 0.062 23.60 0.081 22.08 0.080

MaterialFusion [23] 30.46 0.045 23.09 0.153 25.40 0.084 21.87 0.145 20.47 0.158
NVDiffrecMC [12] 29.81 0.052 22.88 0.159 25.39 0.083 22.04 0.141 20.50 0.157
TensolIR [16] 30.92 0.024 21.12 0.179 24.82 0.082 21.37 0.100 22.01 0.107
R3DGS [10] 28.87 0.033 20.89 0.179 23.08 0.084 20.38 0.129 20.48 0.101

Table 6. Relighting on the NeRF-Synthetic Dataset. We report the performance of all other baselines when their images are en-
coded/decoded using the Stable Diffusion encoder and decoder before comparison. The VAE causes significant drops in relighting quality
for all objects, especially those with reflections sharp fine reflections such as materials, which explains our method’s struggle on the
object.

Ours Neural Gaffer DiLightNet

Figure 8. Additional Visualizations of LightSwitch Relighting on Synthetic Objects.
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Figure 9. Additional Visualizations of LightSwitch Relighting on Synthetic Objects.




Input Target Ours Neural Gaffer DiLightNet

oS T T
- o3 =,

2 A - a5

o

Figure 10. Additional Visualizations of LightSwitch Relighting on Synthetic Objects.
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Figure 11. Additional Visualizations of LightSwitch 3D Relightings on NeRF-Synthetic.
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