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Figure 1. In-the-wild avatar synthesis across views and poses. Starting from a reference image, we generate its novel views and animate
the avatar given a pose sequence.

Abstract

We present a unified and generalizable framework for syn-
thesizing view-consistent and temporally coherent avatars
from a single image, addressing the challenging task of
single-image avatar generation. Existing diffusion-based
methods often condition on sparse human templates (e.g.,
depth or normal maps), which leads to multi-view and tem-
poral inconsistencies due to the mismatch between these
signals and the true appearance of the subject. Our ap-
proach bridges this gap by combining the reconstruction
power of regression-based 3D human reconstruction with
the generative capabilities of a diffusion model. In a first
step, an initial 3D reconstructed human through a gener-
alized NeRF provides comprehensive conditioning, ensur-
ing high-quality synthesis faithful to the reference appear-
ance and structure. Subsequently, the derived geometry and
appearance from the generalized NeRF serve as input to
a video-based diffusion model. This strategic integration
is pivotal for enforcing both multi-view and temporal con-
sistency throughout the avatar’s generation. Empirical re-
sults underscore the superior generalization ability of our
proposed method, demonstrating its effectiveness across di-
verse in-domain and out-of-domain in-the-wild datasets.

1. Introduction

Human avatar generation has been a longstanding focus
in computer vision and graphics, with wide-ranging ap-
plications in gaming, film, sports, fashion, and telepres-
ence. However, despite its transformative potential, exist-
ing technologies often rely on expensive capture systems
and complex workflows, making them inaccessible to the
broader public. Recent advancements have aimed to make
avatar generation more accessible by leveraging neural ren-
dering techniques. In particular, studies such as [17, 22–
24] explore generalizable 3D human reconstruction, en-
abling novel view and arbitrary pose synthesis of subjects
from highly sparse—sometimes even single—input images.
These approaches incorporate 3D human priors to support
accurate synthesis of complex body geometry and smooth
interpolation between input observations. However, their
regression-based nature limits their extrapolation capabili-
ties, often resulting in blurry outputs and restricting them to
mostly rigid deformations.

Generative models, such as GANs and diffusion mod-
els, have recently demonstrated impressive capabilities in
synthesizing photorealistic images and videos with real-
istic motion. Leveraging these advancements, recent ap-

† Corresponding author

https://humansensinglab.github.io/GAS/


proaches employ diffusion models conditioned on human
priors—such as 2D keypoints, depth, or normal maps—to
generate high-quality avatars from a single image [6, 16,
43, 64]. However, the sparsity of these conditioning cues
often leads to inconsistencies in the generated results, in-
cluding flickering across views and temporal instability.

To address these challenges, we introduce a method for
single-image avatar synthesis that ensures both view and
temporal consistency. Rather than depending solely on
sparse conditioning signals (e.g., SMPL normal maps), we
first generate intermediate novel views and/or poses using
a regression-based 3D human reconstruction model. The
shape and apperance of these new views/poses are then
used as inputs to a video diffusion model. By leveraging
the dense structural information from the 3D reconstruc-
tion, our approach maintains geometric fidelity and visual
richness, delivering high-quality, consistent results across
viewpoints and human poses (i.e., time).

Another major challenge lies in improving generaliza-
tion to real-world data, as the ultimate goal is to develop
a system that performs well beyond controlled environ-
ments—specifically on casually captured, in-the-wild hu-
man imagery. Most existing human digitization models
are trained on multi-view datasets collected in studio set-
tings [17, 22, 23], which lack the diversity found in real-
world scenes, including variations in lighting, clothing, and
movement. To overcome this limitation, we propose lever-
aging in-the-wild internet videos, which offer a rich and
diverse distribution of real-world appearances. However,
training with such data introduces new challenges, partic-
ularly for novel view synthesis, which traditionally relies
on multi-view supervision—an element typically absent in
internet-sourced footage.

Our method, Generative Avatar Synthesis (GAS) is a
unified framework that jointly learns both novel view and
pose synthesis by sharing parameters across tasks. While
studio-captured multi-view datasets are used for view syn-
thesis, we augment training with both multi-view and in-
the-wild videos for pose synthesis. This parameter sharing
allows improvements from pose generalization to transfer
naturally to view synthesis, significantly enhancing perfor-
mance on real-world data (see Figure 1). To enable this joint
learning effectively, we incorporate a mode switcher that
distinguishes between the two tasks. This design allows the
network to prioritize view consistency for novel view syn-
thesis and realistic deformation for novel pose generation.

In summary, our main contributions are:
• A unified framework for novel view and pose synthesis

of avatars, which enables shared model parameters across
both tasks with real human data (e.g., internet videos) at
scale for training, leading to broad generalizability.

• A dense appearance cue derived from generalizable NeRF
renderings as diffusion guidance, ensuring consistent ap-

pearance preservation over novel views and poses.

2. Related Work

2.1. Generalizable Human Radiance Fields
Radiance field methods like NeRF [34] have demonstrated
impressive performance in generating high-fidelity novel
views. To extend these models to generalize across scenes
and work with sparse-view inputs, several approaches [42,
47, 56] incorporate pixel-aligned features. However, apply-
ing them directly to human modeling remains challenging
due to complex body geometry and self-occlusions, often
resulting in over-smoothed outputs. To address this, recent
works [8, 9, 22, 23, 36, 37, 60] leverage 3D human priors
such as the SMPL model [33] to better anchor features on
the human form, enabling robust synthesis from sparse or
even single-view inputs [17]. However, these methods typ-
ically suffer from slow rendering speeds.

To overcome this, 3D Gaussian Splatting [21], accel-
erated by GPU rasterization, has emerged as an efficient
radiance field representation. Recent works [24, 63, 65]
leverage this framework for photorealistic human render-
ing from sparse inputs. Yet, they still face difficulties
in generating fine details in unseen regions due to the
mean-seeking nature of one-to-many mappings [25, 31].
Moreover, animating avatars typically requires costly post-
processing—e.g., using linear blend skinning [26]—which
often fails to capture non-rigid effects such as garment dy-
namics [17, 18, 22, 38, 65].

In this work, we propose a novel framework that learns a
distribution shift over generalizable human radiance fields,
enabling consistent and artifact-free synthesis of novel
views and poses. By incorporating a strong generative prior,
our method naturally produces realistic non-rigid deforma-
tions from pose sequences without relying on complex post-
processing pipelines.

2.2. Generative Human Animation
Generative human animation aims to employ generative
models to produce coherent videos from static human im-
ages, utilizing guidance such as text and motion sequences.
This body of work focuses on leveraging generative pri-
ors to sample complex dynamic motions, including pose-
dependent clothing deformations. Early approaches har-
nessed the generative capabilities of Generative Adversarial
Networks (GANs) [11] for synthesizing novel human poses
[5, 30, 49]. In recent years, latent diffusion models [41]
have gained traction in the realm of human animation due
to their robust controllability and superior generation qual-
ity. Various methods [6, 7, 16, 27, 28, 44, 48, 64] implement
distinct motion guidance and conditioning techniques. No-
tably, Animate Anyone [16] introduces a UNet-based Refer-
enceNet to extract features from reference images, utilizing



DWPose [54] for pose guidance. Subsequent works [64]
also incorporate guidance from 3D human parametric mod-
els, such as SMPL [33, 61, 62], leveraging the advantages
of multiple forms of guidance. Following this trajectory,
recent studies [14, 20, 29, 32, 38, 43, 53] explore human
view controllability within the diffusion frameworks. Hu-
man4DiT [43] develops a hierarchical 4D diffusion trans-
former that disentangles the learning of 2D images, view-
points, and time. However, these methods struggle to syn-
thesize view-consistent and temporally coherent results due
to the gap between the sparse driving signal and the ac-
tual subject. In this paper, we address this challenge by
densely conditioning on generalizable geometry and ap-
pearance cues, leading to improved appearance preservation
and consistency.

2.3. Diffusion Models for Video Generation

Diffusion models have shown impressive results in image
synthesis and are now being adapted to the more complex
domain of video generation [58]. A common strategy in-
volves extending UNet-based image diffusion models by
adding temporal modules. Some approaches [3, 12] freeze
the pre-trained image backbone and train only the tem-
poral components on video data. Stable Video Diffusion
(SVD) [2], for instance, enhances the UNet architecture by
inserting temporal layers after each spatial convolution and
attention block, and fine-tunes the full model on large-scale
curated video datasets. This approach has proven to be
a powerful foundation, enabling downstream applications
such as video generation and 3D/4D synthesis [46, 51]. In
parallel, diffusion transformers [4, 35, 55] have emerged as
an alternative architecture, applying full spatio-temporal at-
tention over latent codes for both images and videos. In
this work, we build on the strong capabilities of SVD to
model multi-view consistency and temporally coherent, re-
alistic deformations of human subjects.

3. Method

Figure 2 illustrates the main idea of our method. GAS syn-
thesizes view- and pose-consistent avatar renderings from a
single image by combining the rich appearance information
from a generalizable 3D human reconstruction model with
the generative power of a video diffusion model.

3.1. Notation

Functions (e.g., neural network mapping) are denoted with
uppercase calligraphic letters (e.g., U). Vectors are denoted
with bold lowercase letters (e.g., x). Matrices are denoted
with uppercase letters (e.g., C). Sets are denoted with bold
uppercase letters (e.g., Inerf ).

3.2. Single-view Generalizable Human Synthesis
Given a single reference image Iref, the camera parame-
ter Pref, and the parameters of a human template, i.e., the
SMPL [33] model, we adopt single-view generalizable hu-
man NeRF [17] to synthesize an image corresponding to the
target camera parameters Ptar and target template parame-
ters consists of pose θtar and shape βtar.

To render the target image, a point x is sampled along the
cast rays in the target space. Then it is transformed to point
xc in the the SMPL canonical space via inverse LBS, where
the features associated with xc are queried from the obser-
vation space. Specifically, pixel-aligned features and hu-
man template-conditioned features are obtained and fused
together, denoted as p. The density σ and color c are ob-
tained by a multi-layer perception (MLP) network F :

σ(x), c(x) = F(x,p, γd(d)), (1)

where γd is the positional encoding of viewing direction d.
The target image Itar , corresponding to the desired view

and pose, is generated using volume rendering as described
in [34]. We emphasize that this human NeRF model is de-
signed to generalize, enabling the synthesis of human ap-
pearances across a range of novel views and poses. How-
ever, due to its mean-seeking property, producing sharp
renderings, particularly in occluded or unseen regions, re-
mains challenging. This limitation motivates our introduc-
tion of generative priors to learn a distribution over the hu-
man views and poses, as discussed in the next section.

3.3. Synthesis as Video Generation Condition
This section describes how we leverage a video diffusion
prior to reformulate novel view and pose synthesis as a uni-
fied video generation task, conditioned on human radiance
fields and geometric templates. While previous methods
typically treat view and pose synthesis as separate prob-
lems, our approach bridges them by conditioning the dif-
fusion model on NeRF-rendered images. This dense and
appearance-rich signal leads to more consistent outputs. In
contrast, conditioning solely on sparse human templates, as
in prior work [64], often results in inconsistent appearance
across views.
Novel View Synthesis. Given a reference image Iref and
a camera trajectory {P1, P2, · · · , PT }, we render the corre-
sponding images Inerf = {I1, I2, · · · , IT } from the NeRF,
which servers as an input to our video diffusion model, Sta-
ble Video Diffusion (SVD) [2]. SVD has a spatio-temporal
attention module and 3D residual convolution in the diffu-
sion UNet. For the single input image Iref, we extract its
feature with CLIP [39] and repeat it for T times, denoted
as hclip, which is then added to the video diffusion model
through the cross attention. Meanwhile, we use the VAE
encoder to encode our input image Iref and obtain its latent
feature Cvae.
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Figure 2. Overview of GAS. Starting from a single input image, GAS uses a generalizable human NeRF to map the subject into a canonical
space, then reposes and renders the 3D NeRF model to extract detailed appearance cues (i.e., NeRF renderings). These are paired with
geometry cues (i.e., SMPL normal maps) and fed into a video diffusion model. A switcher module disentangles the tasks, enabling the
model to generate either multi-view consistent novel views or temporally coherent pose animations.

To introduce NeRF renderings Inerf to our video diffu-
sion model, we feed Inerf to the VAE encoder, after which
it is further encoded by a small convolutional neural net-
work. We denote the output latent feature as Cnerf.

In practice, we observe that solely relying on NeRF ren-
derings in our video diffusion model is insufficient, as these
renderings may sometimes exhibit artifacts, particularly due
to inaccurate SMPL fittings or occlusions. Such artifacts
can corrupt the guidance and hinder the diffusion model
from learning meaningful conditional distributions. To ad-
dress this limitation, we further integrate a geometric cue,
i.e., the SMPL model, to provide additional structural guid-
ance. The SMPL model captures essential geometry infor-
mation, which leads to the enhanced spatial consistency as
well as the robust human shape recovery.

In order to integrate this information with the NeRF
rendered features in the 2D pixel space, similar to [64],
we render the human template mesh into 2D normal
maps. Specifically, we render the SMPL normal maps
M = {M1,M2, · · · ,MT } under the camera trajectory
{P1, P2, · · · , PT }. Then a set of 2D convolution layers are
utilized to extract the features, denoted by Csmpl.

To effectively fuse Cnerf and Csmpl, we combine them
through element-wise addition. The resulting fused feature
is then added to the output of the first convolutional layer of
the UNet in the video diffusion model.
Novel Pose Synthesis. Given a sequence of SMPL poses
{θ1,θ2, · · · ,θT } and a fixed camera parameter, we render
corresponding images from the NeRF and SMPL normal
maps. They can be used as conditions to the video diffusion
model in the same manner as illustrated above.

Now we can formulate the learning objective of our dif-
fusion model. The diffusion UNet UΘ predicts the noise ϵ
for each diffusion step t, and our training objective is

LUθ
= E [∥ϵ− Uθ(Zt, t,hclip, Cvae, Cnerf, Csmpl)∥] (2)

where Zt = αtZ + σtϵ. Here, Z is the ground-truth la-
tent, ϵ ∼ N (0, I), and αt and σt define the noise at timestep
t. Θ is the learnable parameters of the UNet U .

3.4. Switcher for Disentangled Synthesis
Joint learning of human view synthesis and pose synthe-
sis presents inherent challenges for feed-forward methods.
Our proposed framework addresses these challenges by uni-
fying both tasks into a single video generation task, lever-
aging the capability of video diffusion model to effectively
model each task under the same representation. Under this
framework, a straightforward approach would be to train
the video diffusion model on both multi-view and dynamic
video data simultaneously. However, our empirical findings
reveal that dynamic motions embedded within view synthe-
sis videos can disrupt view consistency (see Figure 9). This
issue arises due to the inherent modality differences be-
tween static view synthesis videos and dynamic animation
videos. To mitigate this problem, we introduce a switcher
mechanism within our video diffusion model that explicitly
controls and disentangles these two modes, ensuring task-
specific consistency and performance.

In particular, we introduce the switcher s, which is a one-
hot vector that labels each of the two modalities, as the ad-
ditional condition to the video diffusion model. This allows
us to extend the formulation in Equation 2 as follows:

LUθ
= E [∥ϵ− Uθ(Zt, t,hclip, Cvae, Cnerf, Csmpl, s)∥] (3)

To incorporate the domain switcher s, we first apply po-
sitional encoding and then concatenate it with the time em-
bedding. This combined encoding is subsequently fed into
the UNet within the video diffusion model.

3.5. Training and Inference
Training. The entire training process of our pipeline con-
sists of two stages. During the first stage, we train the gener-
alizable human NeRF F model on the multi-view datasets.
Following [17], we randomly sample observation and tar-
get image pairs from each subject. The prediction of the
target view is supervised by minimizing the loss objective
L = L2 + λssim · Lssim + λlpips · Llpips + λmask · Lmask where
L2,Lssim,Llpips are photometric L2 loss, SSIM loss [50]



and LPIPS [59] loss between the predicted image and the
ground truth. Lmask is the L2 difference between the accu-
mulated volume density and the ground truth human binary
mask. λssim, λlpips, λmask are weights of each loss to balance
their contributions to the final loss function.

In the second stage, we freeze the generalizable NeRF
model and train our video diffusion model. We train the full
spatio-temporal UNet and feature encoders for NeRF and
SMPL normal renderings following our training objective
in Equation 3. The second stage is trained on our complete
dataset to ensure the generalization.
Inference. We apply classifier-free guidance (CFG) [15]
to inference from the video diffusion model. The two tasks
are done with different CFG schedules according to the task
properties. For the novel view synthesis task, we utilize
a triangular CFG scaling [46], where we linearly increase
CFG from 1 at the front view to 2 at the back view, then
linearly decrease it back to 1 at the front view. For the novel
pose synthesis task, we fix the CFG scale to be 2.

4. Experiments

4.1. Experimental Setup

4.1.1. Datasets

3D Scans. We use THuman2.1 [57] and 2K2K dataset [13]
with around 4500 3D scans in total. THuman2.1 comprises
2445 high-quality 3D scans and texture maps. We randomly
sample 2345 subjects for training and the remaining 100
subjects for testing. 2K2K dataset consists of 2000 train
and 50 test subjects, totally 2050 scans. For both datasets,
RGB images are rendered from 20 uniformly distributed
views around the scan, at the resolution of 1024 × 1024.
SMPL parameters are estimated using off-the-shelf method
for multi-view SMPL fitting [1].
Multi-view Videos. MVHumanNet [52] is a multi-view
video dataset featuring a large number of diverse identities
and everyday clothing. We use a subset of 944 human cap-
tures, each consisting of synchronized 16-view videos per
subject. We reserve 48 subjects for evaluation and use the
remaining subjects for training. The dataset also includes
SMPL parameters, optimized from multi-view images.
Monocular Videos. For in-the-wild datasets, we use the
TikTok dataset [19] and an additional collection of internet
videos. The TikTok dataset includes 350 dance videos, from
which we processed and filtered 289 valid video sequences
for training. Following the protocol in [6, 48], we use sub-
jects from 335 to 340 for testing. To further diversify the
data, we selected 122 video sequences from Champ [64]
training dataset, originally sourced from reputable online
platforms such as TikTok and YouTube. For both datasets,
we obtain the foreground human masks using Grounded-
SAM [40] and the SMPL parameters using 4DHumans [10].

4.1.2. Implementation Details
We trained the generalizable human NeRF model [17] on
MVHumanNet dataset. To accelerate the video diffusion
training, instead of creating and rendering the human NeRF
on-the-fly, we choose to store the NeRF renderings for all
datasets offline. For the video diffusion model, we initialize
it with the pre-trained Stable Video Diffusion 1.1 image-to-
video model 1 [2]. We resize all images to a resolution of
512×512. Each batch consists of 20 frames. We train the
model for 150k iterations with an effective batch size of 8
and a learning rate of 10−5. We utilize 8 A100 GPUs and
the total training time is 3 days.

4.1.3. Baselines and Metrics
Baselines. We benchmark our method against state-of-the-
art generative human rendering methods including Champ
[64] and Animate Anyone [16]. As for Animate Anyone
[16], we use the implementations from Moore Threads 2.
Metrics. We evaluate the fidelity and consistency of our re-
sults using both image-level and video-level metrics. For
image-level comparisons, we report peak signal-to-noise
ratio (PSNR), structural similarity index measure (SSIM)
[50], and learned perceptual image patch similarity (LPIPS)
[59]. For video-level evaluation, we use the Fréchet Video
Distance (FVD) [45] metric.

4.2. Comparisons on Novel View Synthesis

We compare our approach with two leading generative
human synthesis methods—Animate Anyone [16] and
Champ [64]. For a fair evaluation, we fine-tuned both mod-
els on our complete 3D scan dataset for 10,000 iterations.
Quantitative results. We employ a rigorous evaluation
protocol for single-image human novel view synthesis. For
each subject, we sample four orthogonal input views and
report the average performance across all corresponding
novel views. Notably, Animate Anyone [16] tends to gen-
erate noisy backgrounds. To ensure a fair comparison that
emphasizes the synthesized human subject, we apply the
ground truth masks to remove backgrounds in the THuman
dataset. In contrast, for the 2K2K dataset, we evaluate the
generated outputs without background removal.

Quantitative results are presented in Table 1. Results
show that our method achieves state-of-the-art performance
across all evaluation metrics, highlighting the advantages of
our generalizable human radiance field in preserving intri-
cate details across viewpoint changes.
Qualitative results. Figure 3 presents our qualitative com-
parisons with baseline methods, focusing on challenging
reference views and novel views with less overlap.

1https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt-
1-1

2https://github.com/MooreThreads/Moore-AnimateAnyone



Method PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
THuman 2K2K THuman 2K2K THuman 2K2K THuman 2K2K

Animate Anyone 22.48 18.48 0.927 0.557 0.061 0.263 460.3 1422.1
Champ 20.96 22.14 0.909 0.910 0.074 0.075 470.3 480.3

Animate Anyone* 25.20 26.22 0.938 0.936 0.046 0.050 302.7 286.4
Champ* 23.89 25.66 0.928 0.935 0.054 0.052 296.1 279.3

Ours 26.77 28.82 0.943 0.954 0.041 0.039 194.8 191.3

Table 1. Quantitative comparison for novel view synthesis on THuman and 2K2K dataset. For all the methods, we report the average
score on 20 views using four orthogonal input views (front, back, and side views). * indicates methods fine-tuned on our 3D scan dataset.

Reference

Animate Anyone Champ Animate Anyone* Champ* Ours GT

Figure 3. Qualitative comparisons for novel view synthesis on the THuman dataset. For the first subject, our method generates cleaner
garment textures and sharper facial details, achieving better realism and consistency across views (e.g., the hair style in our generated front
view is faithful to the reference image). For the second subject, baseline methods exhibit inconsistencies across views, marked with circles
(e.g., hair misalignment between generated front and back views). * denotes fine-tuning on our full 3D scan dataset.

4.3. Comparisons on Novel Pose Synthesis
We compare GAS on novel pose synthesis task with Ani-
mate Anyone [16] and Champ [64]. For a fair comparison,
we also further fine-tuned the baseline methods on our com-
plete video dataset for 10k iterations.

Quantitative results. To evaluate on the TikTok dataset, we
randomly sample a frame as the reference and generate the
subsequent 100 frames. Quantitative results are presented in
Table 2. Our method consistently outperforms the baseline
methods, even after additional fine-tuning.
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Figure 4. Qualitative comparisons for novel pose synthesis on MVHumanNet dataset. In the first row of Champ [64] results, blue
rectangles mark disappearing arms, green rectangles show varying sleeve lengths, and red rectangles indicate inconsistencies in hair
appearance. * denotes a method further fine-tuned using our complete animation video dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
Animate Anyone 17.21 0.762 0.225 1274.1
Champ 18.48 0.806 0.182 585.0

Animate Anyone* 17.83 0.791 0.204 840.5
Champ* 18.57 0.797 0.187 893.7

Ours 19.11 0.833 0.176 362.0

Table 2. Quantitative comparisons for novel pose synthesis on
TikTok dataset. * Indicates methods fine-tuned on our multi-view
video and monocular video dataset.

Qualitative results. Qualitative results are shown in Figure
4, where we compare our method with Champ [64] on the
novel view animation task for the MVHumanNet dataset.
Our method synthesizes temporally consistent animations,
even from novel views. It highlights the advantage of lever-
aging human NeRF’s dense and 3D consistent appearance
cue for guidance.

4.4. Ablation Studies and Analyses

We perform ablation studies to assess different variants of
our proposed method. Additional quantitative and qualita-
tive results can be found in the supplementary material.
Generalizable geometry and appearance cues. To study
the effect of both geometry (i.e., SMPL normal map) and
appearance cues (i.e., human radiance field), we train a
variant with the geometry cue completely removed and a
variant with appearance cue removed. We present quan-
titative comparisons for novel view synthesis on the THu-
man dataset and novel pose animation on the MVHumanNet
dataset. As shown in Table 3, our approach consistently im-
proved performance across both tasks and datasets.

Our hypothesis for the generalizable human NeRF is that

Method PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
NVS NPS NVS NPS NVS NPS NVS NPS

w.o. geo. cue 26.07 28.33 0.938 0.943 0.045 0.044 227.1 210.6
w.o. appear. cue 26.38 27.66 0.938 0.941 0.041 0.043 207.5 234.6

Ours 26.77 28.74 0.943 0.945 0.041 0.040 194.8 188.5

Table 3. Quantitative ablation study on the geometry and ap-
pearance cues. NVS denotes novel view synthesis and NPS de-
notes novel pose synthesis. The same notation applies to Table 4.

it provides rich and consistent appearance cues across dif-
ferent views and times. To validate this, we present an ad-
ditional qualitative study, as suggested in Figure 5.

Ref. image Geo. cue Appear. cue w.o appear. cue w. appear. cue GT

Figure 5. Ablation study on the appearance cue. Without the
appearance cue, artifacts include incorrect arm raises (red rectan-
gles) and distorted hand placement on the waist (blue circles), both
resolved with the appearance cue.

Occlusions, which are frequent in in-the-wild videos, of-
ten introduce artifacts in generalizable human NeRF due to



a. Ref. image b. NeRF rendering c. Ours w.o. geo. cue d. Ours w. geo. cue

Figure 6. Ablation study on the geometry cue. Without the ge-
ometry cue, occlusion leads human NeRF to misinterpret the arm
as clothing texture, which further misleads diffusion generation
(red rectangles).

References

Novel views 1

Novel views 2

Figure 7. Novel view synthesis on real-world human subjects.

pixel-aligned feature extraction and warping. As illustrated
in Figure 6, the absence of clean geometric guidance can
mislead the diffusion model, resulting in noticeable distor-
tions.
Video diffusion model. The video diffusion model is sug-
gested to refine the generalizable human NeRF renderings
and produce shaper results with fewer artifacts. We ablate
the effect of video diffusion model in Table 4 by compar-
ing the generalizable human NeRF renderings and the diffu-
sion refined results. Results show significant improvement
across all metrics on both tasks.

PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
NVS NPS NVS NPS NVS NPS NVS NPS

Before diffusion 24.25 18.37 0.925 0.809 0.073 0.233 517.7 1255.8
After diffusion 28.82 19.11 0.954 0.833 0.039 0.176 191.3 362.0

Table 4. Quantitative ablation on the video diffusion model.

Mixed training with 3D/multi-view captures and inter-
net videos. We evaluate the effectiveness of our training
strategy that incorporates diverse data sources to enhance

generalization. As illustrated in Figure 7, our model ex-
hibits robust performance in novel view synthesis across
real-world scenarios. Additionally, Figure 8 shows an ab-
lation study highlighting the contribution of internet video
data to improved generalization.

Reference Train on 3D scans only Train on full data

Figure 8. Ablation on involving internet videos for training.

w.o. switcher w. switcher 

Figure 9. Ablation on the switcher for disentangling static view
and dynamic motion synthesis. Without the switcher, undesired
clothing deformations, such as dress swinging, are involved in the
novel view generation, corrupting the view consistency.

Effect of switcher for disentangled synthesis. In our uni-
fied framework for static view synthesis and dynamic mo-
tion modeling, we incorporate a switcher module to explic-
itly separate the two tasks. To assess its impact, we train a
variant without the switcher. As shown in Figure 9, omit-
ting the switcher leads to unintended motion artifacts in se-
quences of novel views, highlighting its importance for task
disentanglement.

5. Conclusion

We propose a unified framework for avatar synthesis from a
single image that tackles two major challenges: maintaining
appearance consistency and generalizing to in-the-wild sce-
narios. Our method combines a regression-based human ra-
diance field with a video diffusion model, leveraging dense
conditioning to reduce the mismatch between driving sig-
nals and target outputs. The framework supports large-scale
training on diverse, real-world human data, while cleanly
separating the modeling of static novel views and dynamic
motion. This combination enables high-fidelity avatar gen-
eration with realistic deformations and strong generaliza-
tion across varied environments.
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