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Abstract— Existing methods for creating human interactions
within scenes show promise for common interactions but often
fail with less frequent ones. To overcome this, we introduce
a new approach that creates tailored conditions for generat-
ing these interactions without previously seen examples. This
method leverages the strengths of both large language models
(LLMs) and vision-language models (VLMs). Unlike the GenZI,
the current state-of-the-art approach, which struggles with rare
interactions due to its reliance on VLM inpainting, our method
follows a three-step process: first, we generate a preliminary
human posture using VLMs and then estimate this posture in
three dimensions. Next, we refine the conditions to fit the specific
scene and interaction by analyzing the inputs with both LLMs
and VLMs. Finally, we fine-tune the placement, orientation,
and posture of the human figure using specific optimization
techniques. Our experimental results show that this method
performs well across a wide range of interactions, including
those that are less common.

I. INTRODUCTION

In everyday human activities, interactions with surround-

ing objects range from common actions like sitting on a

chair to less typical behaviors such as kicking a chair. The

ability to accurately simulate and manage this variety of

human-scene interactions is essential for the development

of applications in augmented reality (AR), virtual reality

(VR), digital twin technologies, computer games, and data

augmentation [44].

A key challenge in generating human-scene interactions

is ensuring a wide variety of interactions, including both

frequent and infrequent ones. For example, interactions

with a chair are not limited to “sitting”; “kicking a chair”

and “handstanding on a chair” are also possible. Existing

works [41], [13], [40], [35] mainly focus on learning-based

methods, which face challenges in generating diverse inter-

actions. These methods rely on ground-truth data, such as 3D

scenes and 3D motion data of human interactions [12], [41],

[39], [15], [21], [4]. However, the high cost of gathering this

data limits its availability and restricts the variety of actions

and scenes that can be effectively modeled and reproduced.

GenZI [18] addresses the challenge of generating di-

verse human-scene interactions with a zero-shot synthesis

method. It uses natural language descriptions and coarse

point locations to guide the inpainting process of Stable

Diffusion [26]. This process creates human figures in scene

images, which are then lifted to 3D human models. GenZI

shows promise in generating standard interactions without

relying on datasets. However, it struggles with uncommon

“opening a mailbox, 
standing on the street”

“kicking a door handle”

GenZI Ours

Fig. 1. GenZI [18] struggles to generate uncommon interactions such
as “kicking a door handle”. Our proposed method successfully synthesizes
interactions, including those that are rare and uncommon.

interactions like “kicking a chair.” This limitation arises from

the significant influence of input images and their contained

objects on the inpainting process, as discussed in [36].

To address this limitation, we propose a new approach that

consists of three steps: first, we generate an initial posture;

second, we customize conditions to determine the plausible

position and orientation for natural interactions; and third, we

optimize the human location, orientation, and posture using

loss functions derived from these conditions. This method

faces two challenges: generating an initial posture that aligns

with each text, and correctly locating the human model in

positions and orientations that vary with each interaction

described in the text. For example, in “sitting on a chair,”

the hips should contact the chair, while in “kicking a chair,”

the foot should touch the chair. First, we generate interaction

images from scratch, separate from the scene to get an initial

posture, using Text2Image models (T2I) [25], [27], [8], [26]

based on the text. This avoids training data bias and allows

diverse postures. However, natural positions and orientations

within the 3D scene vary with each prompt. Second, we

generate custom conditions to achieve plausible positions and

orientations for each interaction using both Visual Language

Models (VLMs) and Large Language Models (LLMs) [17],

[19], [43], [2], [29], [30], [6], [16], [3], [1]. Both VLMs and

LLMs are employed to identify body parts involved in each

interaction, utilizing VLMs’ image analysis capabilities [32]

and LLMs’ knowledge [42]. We define loss functions based

on specific conditions and optimize these customized loss



functions. Our approach synthesizes diverse and realistic

human-scene interactions across various scenarios, as illus-

trated in Fig. 1.

Our contributions are threefold:

• We introduce a novel method that generates common

and even uncommon interactions in a zero-shot manner.

This method enables the generation of human-scene

interactions that current methods cannot achieve.

• We propose customizing loss functions for each inter-

action using VLMs and LLMs. Our method generates

specific conditions for each interaction, defining cus-

tomized loss functions that refine the generated interac-

tions in terms of posture, location, and orientation.

• We validate the efficacy of our approach on a new

dataset that includes both common and uncommon

interactions.

II. RELATED WORKS

A. 3D Human-Scene interactions generation

To synthesize realistic human-scene interactions, various

methods have been developed, each with unique approaches

to modeling contact and semantics.

Learning-Based Methods: PiGraphs [28] learns a proba-

bilistic model connecting human poses and object geometries

from real-world interactions collected with RGB-D sensors.

These interactions are encoded as prototypical interaction

graphs that capture physical contact and visual attention

linkages.

Conditional Variational Autoencoders (cVAEs) are es-

sential in Human-Scene Interaction Synthesis. POSA [13]

enhances the SMPL-X [22] model by encoding contact

probability and semantic scene labels for each mesh vertex,

using a cVAE to learn from body pose and shape. Similarly,

PSI [40] uses a cVAE to predict plausible 3D human poses

conditioned on latent scene representations, refining them

with scene constraints for feasible interactions. PLACE [38],

inspired by the Basis Point Set (BPS) [23] method, models

proximity between the human body and the 3D scene by

synthesizing minimum distances from scene mesh points to

the human body surface, using a two-stage BPS encoding

scheme and a cVAE to generate natural interactions.

A transformer-based cVAE network is employed in both

COINS [41] and Narrator [35]. COINS uses a cVAE to

encode 3D human body points and objects in a unified

latent space, defining interaction semantics as action-object

pairs. This enables compositional human-scene interactions

without composite data. Narrator uses a cVAE for generating

interactions based on scene graphs, pairing actions with body

parts. It includes a mechanism for multi-human interaction

generation and a Joint Global and Local Scene Graph

(JGLSG) for guiding interactions by spatial relationships.

Wang et al. [33] and Huang et al. [14] employ a learning-

based approach to generate human motion that aligns with

the scene.

Learning-based methods are powerful strategies for inter-

action synthesis. However, their capability of human-scene

interaction generation is limited by the scarcity of ground

truth datasets and their need for supervision.

Zero-Shot Methods: GenZI [18] is the first zero-shot

approach for generating 3D human-scene interactions. Given

a 3D scene, a text prompt, and a coarse point location, GenZI

optimizes the pose and shape of a 3D human using Stable

Diffusion (SD) [26] for inpainting. Initially, SD generates

possible 2D humans by inpainting images from multiple ren-

dered views, using a dynamic masking scheme to automate

updates. These 2D interaction hypotheses are then converted

to 3D, optimizing a parametric 3D human body model to

match the 2D pose guidance. The model is further refined

through iterative SD-based 2D inpainting and 3D lifting

stages. GenZI demonstrates flexibility across various 3D

environments, bypassing the need for captured 3D interaction

data and allowing flexible control of interaction synthesis

using text prompts. However, SD tends to generate actions

closely associated with specific objects, like “sitting” with

a “chair,” regardless of the actions specified in the prompt.

This limits its range of interactions and applications.

Overall, while learning-based methods offer robust interac-

tion synthesis, their reliance on ground truth data poses limi-

tations. Zero-shot approaches like GenZI provide a promising

alternative by enabling interaction generation without exten-

sive training data, though they face challenges in depicting

a wide variety of interactions.

B. LLM for 3D human model

Various methods have leveraged Large Language Models

(LLMs) to address tasks related to the analysis and gener-

ation of 3D human models. Wang et al. [31] infer action-

conditioned contact information using LLMs like GPT-3.

Their method distinguishes actions like sitting and standing

from human poses based on a database and obtains part-

wise contact information and object scale using GPT-3. They

propose a two-stage approach to estimate the shapes and

poses of humans and objects before jointly reasoning about

their 3D spatial arrangements.

Similarly, SINC [5] uses language models to map actions

to body parts. By prompting GPT-3 [6] with action-related

queries and examples, SINC combines body parts from

two motions to spatially compose actions, addressing data

scarcity with a GPT-guided synthetic data generation scheme.

Cen et al. [7] focus on generating human motion in 3D scenes

from text descriptions by constructing scene graphs and using

ChatGPT to analyze relationships between scene descriptions

and instructions. Their approach localizes the target object

with the assistance of ChatGPT and subsequently generates

human motion.

Xiao et al. [34] introduce UniHSI, which supports diverse

3D human-scene interactions through language commands.

Defining interactions as a Chain of Contacts (CoC), UniHSI

uses an LLM Planner to translate language prompts into

task plans and a Unified Controller to execute these tasks

to produce interaction movements.

Previous studies have used LLMs to address tasks related

to 3D human models in various ways, achieving notable



results. Unlike these studies, our method introduces a novel

approach that customizes the loss function for each interac-

tion.

III. METHOD

A. Overview

Our objective is to synthesize a 3D human model that

interacts with a scene based on specific instructions. Fig. 2

shows the outline of our method. The inputs to our frame-

work include the scene S, a coarse point location of the

desired interaction in a 3D scene L ∈ R
3 which is manually

specified, and instruction text prompt T . The output is a

synthesized 3D human B that interacts naturally with the

scene. We employ SMPL-X [22] to model the 3D human

B, parameterizing posture and position. This model provides

differential parameters (R, t, θ), where R ∈ R
6 represents

orientation, t ∈ R
3 represents position, θ ∈ R

21×3 represents

posture. The vertices of the human body, modeled by SMPL-

X, are represented as V̂ , and the vertices of the scene mesh

are represented as V .

Our approach can be divided into two steps: initial pos-

ture generation and interaction conditions generation. The

first step begins with generating an image using DALLE-

2 [24] with the input text T , which illustrates the described

interaction. We then estimate the 3D posture of the human

in the image. This estimated posture is used as our initial

posture. In the second step, we specify the contact parts of

the human by analyzing the text T and the scene S with GPT-

4 [1]. Based on the specified contact parts, we establish loss

functions. Subsequently, the SMPL-X parameters (R, t, θ)

are optimized using these loss functions to synthesize a 3D

human B that interacts authentically with the object in the

designated scene.

B. Initial Posture Generation

Our approach begins with generating an initial posture

for the human model. This step is crucial and distinguishes

our method from GenZI, which is limited by the inpainting

process’s capabilities. Our method leverages DALLE-2 to

generate 2D images from the input text T that illustrate

specified actions. To better constrain the generation process

by DALLE-2, each input text T (e.g., “kicking a car”) is

prefixed with “a person” and suffixed with “, full body”.

Although the objects in the generated images may differ

from objects in the scene S, the posture of the human in

the 2D image aligns approximately with our target posture in

scene S and its associated semantics. From these images, we

estimate the SMPL-X pose parameters using Pymafx [37].

This initial posture serves as the foundation for subsequent

refinements. Note that existing Text2Pose models [9], [11],

[10], which generate SMPL [20] posture parameters based

on text, are inadequate for this task due to the limited variety

imposed by the scarcity of text-posture datasets.

C. Custom Condition Generation

To ensure the generated interactions are plausible, we

define specific conditions for each interaction and design cus-

tom loss functions that account for the variability in location

and orientation. Interactions involve contact with the scene,

and the specific body parts that should be in contact vary

with each interaction. By utilizing GPT-4, we can effectively

select the relevant body parts and their corresponding areas

for distance calculations.

In our approach, we categorize selected body parts into

three types: Key Contact, Auxiliary Contact, and Ground

Contact. These categories are designed to specify necessary

conditions accurately and reduce errors caused by LLMs

and VLMs. Key Contact Body Parts calculate the distance

to a specific location in the scene. However, relying solely

on Key Contact Body Parts can lead to unnatural positions

and orientations because the segmentation of parts is not

sufficiently detailed. To address this, Auxiliary Contact Body

Parts are selected to calculate the distance to the scene,

ensuring a more natural appearance. Finally, to prevent the

human model from floating in certain interactions, we select

Ground Contact Body Parts to calculate the distance to the

ground. For example, consider the text prompt “sitting on a

chair.” In this scenario, the Key Body Parts can be the hips,

the Auxiliary Contact Body Parts can be the left and right

upper legs, and the Ground Contact Body Parts can be the

left and right feet. The detailed steps of this selection process

are explained below.

1) Key Contact Body Parts Selection: Identification of

the contact scene area and the corresponding body part is

crucial for generating effective human-scene interactions.

For example, when a person is opening a mailbox, their

hand should be in contact with the mailbox. We assume

each interaction involves a single pair of the scene area

and body parts. These critical elements are defined as Key

Scene Areas and Key Contact Body Parts. Key Scene Areas

are determined from a specified point location L, defined

as Vk = {v ∈ Vs | ∥v − L∥2≤ d(k)(L)} where d(k)(L)
represents the k-th smallest distance from L to points in Vs,

and Vs denotes the vertices of the scene S. Consequently,

Vk represents the k nearest vertices to the given interaction

location. The identification of Key Contact Body Parts de-

pends on the specific interaction. Therefore, we use three

main steps for this process:

• Assessing Specific Area Contact Need First, we query

GPT-4 to determine if the interaction described in the

text prompt requires contact with a specific area on the

object. The answer is “Yes” or “No”, denoted as Ak.

• Identifying the the name of Key Scene Area To obtain

accurate answers about which body parts should be in

contact with Key Scene Area, it is necessary to provide

the names of the area where the interactions occur.

We use GPT-4 to identify the name of that area. We

employ multi-view rendering [18] to generate multiple

images centered on the location L and query GPT-4 to

determine the exact name of the area using a majority

voting strategy.The majority voting is used to reduce

errors in identifying the name of Key Scene Area.

• Selecting Key Contact Body Parts Finally, we ask

GPT-4 to identify which body part should be in con-

tact with the identified location. We pose the follow-
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Fig. 2. Outline of our method: In initial posture generation step, an interaction image is generated using DALLE-2, and 3D posture parameters are
estimated. In custom condition generation step, GPT-4 analyzes the image, text prompt, and scene to identify contact body parts for customizing loss
functions. Finally, a 3D human is synthesized by optimizing these customized loss functions to ensure realistic 3D human interactions.

ing question: “Generally speaking, when a person is

{PROMPT}, which body part should be in contact with

the {AREA’S NAME}? Please select just one body part

from the following options: <list of body parts>.”,

where the list is [’rightHand’, ’rightUpLeg’, ’leftArm’,

’head’, ’leftLeg’, ’leftFoot’, ’rightFoot’, ’rightArm’,

’rightLeg’, ’leftForeArm’, ’rightForeArm’, ’neck’, ’left-

UpLeg’, ’leftHand’, ’hips’]. The answer is the name of

one body part.

The vertices of the selected body part are denoted as V̂k.

Using V̂k, we calculate the distance loss function dkey. The

dkey is defined as:

dkey =

{

∑

v̂k∈V̂k
minvk∈Vk

∥v̂k − vk∥2 if Ak = “yes”
∑

v̂k∈V̂k
minvs∈Vs

∥v̂k − vs∥2 otherwise

(1)

where v̂k denotes the location of a vertex in V̂k. If the

answer to Assessing Specific Area Contact Need, Ak, is

“No,” indicating that the body does not need to be in contact

with a specific area, the distance between V̂k and the entire

scene is then calculated.

The second and third steps of this process are illustrated

in Fig. 3. Here is an example of how these processes are

conducted. When the text prompt is “sitting on the saddle of a

cow”, the human should sit on a specific location of the cow,

specifically the cow’s back, not the head or neck. Therefore

the answer to Assessing Specific Location Contact Need, Ak

becomes “yes”. Then based on multi-view rendered images,

the interaction area is identified as “cow’s back”, and “hips”

is selected as the body part that should contact the “cow’s

back”.

These steps ensure consistency between scenes and syn-

thesized bodies. Scene information is obtained by rendering

images around the Key Scene Area. Key Contact Parts are

then selected based on this scene information to ensure

semantic consistency. We have conducted experiments to

assess the impact of these restrictions, and the results are

provided in the supplementary materials.

Cow’s back Cow’s hip Cow’s back

Majority Voting

…

…

Cow’s back

GPT-4
“Generally speaking, when a person is sitting on 
the saddle of a standing cow, which body part 

should be in contact with the cow’s back?. 
Please select just one body part from the 
following options: <list of body parts>”

Rendering from 
multiple angles

Scene
𝐿

Responses for 
each angle

Identifying the name of 
Key Scene Area

Querying name 
of the Key Scene 
Area

Selecting Key 
Contact body parts

GPT-4
“What is the name of the part in the center of the 

picture? Please answer in as detailed a part as 
possible and answer in word or phrase. If you are 

not confident with specifying the name of the 
part, please answer 'null’.”

hipsKey Contact body part

Fig. 3. A part of Key Contact Body Parts Selection (identifying the
interaction area and selecting Key Contact Body Parts).Multiple images
centered on the interaction location are rendered, and the name of the
location is identified using GPT-4 and majority voting. This identified name
is then passed to GPT-4 to select Key Contact Body Parts.

2) Auxiliary Contact Body Parts Selection: We identify

the body parts that should contact the scene by querying

GPT-4. Specifying a single pair of body and scene parts often

does not suffice to define natural interactions. For example,

relying solely on the distance between the hip (Key Contact

Body Parts) and a cow’s back when sitting on a cow’s saddle

can result in unrealistic interactions due to the hip’s large

segmentation area. Fig. 4 illustrates this failure case. To



“sitting on the saddle of a standing cow”

Fig. 4. Examples showing the effect of Auxiliary Contact. The yellow
and blue areas represent the segmentation of the Key Contact and Auxiliary
Contact Body Parts, respectively, with the hip selected as the Key Contact
body part. In the left image, without Auxiliary Contact, the body is angled
unnaturally. In the right image, the human model is not angled due to the
use of Auxiliary Contact Body Parts, including the left upper leg, right leg,
and both feet.

address this, we select Auxiliary Contact Body Parts that

should contact the scene, ensuring more natural positions

and orientations by regulating the distances between relevant

parts and the scene. The query is: “In the given image, a

person is {PROMPT}. Which body parts should be in contact

with the OBJECT? Please select from the following parts:

<list of body parts>.”. The answer is a list of body parts.

Based on the responses, in order to obtain more precise part,

we determine the specific areas (front or back) of these body

parts that should be in contact with the object by querying

GPT-4. The vertices of the selected body parts are denoted

as V̂a = (V̂ 0
a , ..., V̂

m
a ) where V̂ m

a is vertices of mth selected

parts. The distance loss function dauxiliary is calculated as:

dauxiliary =
1

|V̂a|

∑

V̂ m
a ∈V̂a

∑

v̂a∈V̂ m
a

min
vs∈Vs

∥v̂a − vs∥2 (2)

where v̂a denotes the location of a vertex in V̂ m
a , Vg denotes

the vertecis of the ground within the scene S.

3) Ground Contact Body Parts Selection: To avoid unre-

alistic scenarios such as floating models, we identify Ground

Contact Body Parts that should be in contact with the ground.

This is achieved by querying the GPT-4 to determine if

the person is in contact with the ground and, if so, which

parts are involved. This step ensures the 3D human model

maintains physical plausibility within the scene. The queries

are: “Given the person in the input image, do you think any

of this person’s body parts are touching the floor? Please

just answer Yes/No.” and “When the person in the given

image {PROMPT}, which body parts should be contacting

with the floor? Please select from the following parts: <list

of body parts>.” The answer to the first query is denoted

as Ag . The vertices of the selected body parts are denoted

as V̂g = (V̂ 0
g , ..., V̂

m
g ) where V̂ m

g is vertices of mth selected

parts. The distance loss function between these selected parts

and the ground within the scene is calculated as:

dground =










1

|V̂ g|

∑

V̂ m
g ∈V̂g

∑

v̂g∈V̂ m
g

min
vg∈Vg

∥v̂g − vg∥2 if Ag = “yes”

0 otherwise

(3)

where Vg denotes the vertices of the ground within the scene

S and v̂g denotes a vertex in V̂ m
g .

4) Customizing Loss Functions: We customize the loss

functions based on interaction requirements to ensure re-

alistic and contextually accurate human-scene interactions.

Using dkey,dauxiliary, and dground, the composite Distance Loss

(Ldis) is defined as Ldis = αkey · dkey + αauxiliary · dauxiliary +
αground ·dground where αkey, αauxiliary, and αground represent the

weights assigned to each respective distance.

Additionally, we define a Penetration Loss, Lpen =∑
v̂∈V̂

min(Ψ(v̂), 0), to prevent unrealistic interpenetration

of the human model with the environment, with Ψ(v̂) de-

noting the signed distance of body vertex v̂ to the scene.

When Ψ(v̂) has a negative sign, it indicates that the body

vertex v̂ is located inside the nearest scene object, signi-

fying penetration. For computational efficiency, we use a

precomputed SDF grid for each scene. Finally, the Pose

Regularization Loss, Lreg = ∥θ − θinit∥2, penalizes SMPL-

X pose parameter θ deviating from their initialization. The

optimization objective is defined as:

E(t, R, θ) = Ldis + wregLreg + wpenLpen (4)

where the weights wreg and wpen balance the contributions

of regularization and penetration losses, respectively.

D. Synthesizing through Optimization

The synthesis process begins by setting the initial body

location and orientation parameters. The initial location is

randomly chosen from around the given interaction location,

and the initial orientation is selected from various angles

around the vertical axis. Through iterative optimization, we

adjust (t, R, θ) to minimize the loss functions. This process

is repeated N times, and the parameters that achieve the

minimum loss are selected as the final output, ensuring the

generation of realistic and diverse human-scene interactions.

IV. EXPERIMENT

To demonstrate the efficacy of our method for generat-

ing diverse human-scene interactions, including uncommon

scenarios, we conduct both quantitative and qualitative eval-

uations, following the methodologies in previous works [41],

[18]. We compared our approach with a baseline method for

this novel task.

A. Dataset

To evaluate a variety of interaction types, including both

common and uncommon ones, we constructed a dataset

based on GenZI’s Sketchfab dataset [18]. Our dataset in-

cludes not only frequent interactions (e.g., “pulling dumb-

bells, standing”) similar to those in GenZI’s Sketchfab



dataset but also infrequent interactions (e.g., “kicking a door

handle”). This enables us to evaluate a diverse range of

interactions with one dataset, setting it apart from existing

datasets, like GenZI’s dataset and PROX [12], [41], which

mainly focus on common interactions.

Due to copyright constraints, we selected 6 out of the orig-

inal 8 scenes from GenZI’s Sketchfab dataset. We generated

3-5 text prompts per scene, describing human interactions

at specified approximate point locations, with the aid of

GPT-4 to suggest both common and uncommon interactions

involving specific objects. In total, 30 prompts for 26 point

locations were utilized in the experiment. Fig. 6 presents

some examples of the prompts and locations.

B. Baseline

In this study, we use GenZI as a comparative method. To

the best of our knowledge, GenZI is the only baseline method

that estimates 3D human-scene interactions based on natural

language input in a zero-shot manner.

While GenZI used COINS [41] and Hassan et al. [13] as

their baselines, we do not use them as our baseline in this

study due to their limited variations of actions and scenes.

COINS, a state-of-the-art method for estimating 3D humans

in indoor scans, relies on a fixed vocabulary of actions and

objects, using 〈action, object〉 pairs for semantic control, and

requires full supervision with captured 3D interaction data

for CVAE training. However, its applicability is limited by

its training on a dataset with a small vocabulary, making it

unsuitable for our dataset. Hassan et al. perform 3D human

estimation from a single RGB image and require the presence

of humans in the image, which is incompatible with our

method, as it does not generate or require such images.

C. Evaluation Metrics

We evaluate our method by conducting perceptual stud-

ies and assessing interaction performance, including the

interactions’ physical plausibility, semantic consistency, and

diversity.

1) Perceptual Studies: Our perceptual studies follow the

methodology employed by GenZI and consist of two mea-

surements: Binary-Choice and Unary.

Binary-Choice Study: In the Binary-Choice measurement,

participants compare images generated by two different

methods based on the same text prompt and select the image

that best matches the prompt.

Unary Study: For the Unary study, participants rate how

well the displayed image matches the text prompt used to

generate it, using a 5-level Likert scale ranging from 1

(strongly disagree) to 5 (strongly agree).

To prevent participants from being influenced by seeing

the same interaction more than once, we divided 30 prompts

randomly into two groups of 15 each. Participants were then

instructed to respond to each study accordingly.

2) Assessing Interaction Performance: To assess the qual-

ity of human-scene interaction, we employed several metrics

including semantic consistency, physical plausibility, and

diversity, following the evaluation methodology used in

Binary-Choice Study
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Fig. 5. Results of perceptual studies (Binary-Choice and Unary study). Par-
ticipants evaluated synthesized human-scene interactions using our dataset.
The results indicate that interactions generated by our method are preferred
over those produced by GenZI.

previous works [41], [18].

Semantics: For semantic consistency, we use the CLIP-score

(CLIP) as proposed by GenZI. This score is calculated by

re-rendering the 3D interaction from multiple view angles

and averaging the image-text cosine similarities from CLIP

ViT-B/32 across all views. The view angles are determined

following the method used by GenZI.

Physical Plausibility: To assess physical plausibility, we

evaluate the non-collision score (Collision) and the contact

score (Contact). The non-collision score is calculated as the

ratio of the number of body vertices with non-negative scene

SDF values to the total number of body vertices. The contact

score is the ratio of the number of body meshes in contact

with the scene to the total number of generated body meshes.

A body mesh is considered in contact with the scene if any

of its vertices have a non-positive SDF value.

Diversity: To measure diversity, K-Means clustering is ap-

plied to the SMPL-X parameters of the generated bodies,

clustering them into 20 groups. We then evaluate diversity

using the entropy of the cluster ID histogram (Entropy) and

the mean distance to cluster centers (Cluster Size).

D. Implementation Details

Our method is implemented using PyTorch and executed

on an Nvidia A100 GPU. The optimization process involves

a learning rate of 0.001, with a total of 200 optimization

steps. Additionally, the generation process is repeated N =
30 times to ensure robustness and consistency in the results.

k, nearest points from the given interaction point location, is

set to 50. The parameters αkey, αscene, and αground are set

to 2, 1, and 1.5, respectively. Additionally, the weights wreg

and wpen are set to 50 and 10, respectively.

E. Comparison with Baseline

1) Quantitative Evaluation: In this evaluation, we con-

ducted perceptual studies and evaluated interaction perfor-

mance, following previous works [41], [18]. It is crucial to

highlight, as discussed in [18], that results from perceptual

studies are critical for evaluation because the metrics of inter-

action performance often fail to align with human perceptual
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Fig. 6. Comparison of visualization results: GenZI vs. Ours. The synthesized interactions are captured from different angles. The interactions produced
by our method demonstrate more plausible interactions compared to those generated by GenZI.

evaluations. For instance, despite achieving a Collision and

Contact score of 1.0, this metric merely indicates any physi-

cal contact between the body and scene elements, irrespective

of its relevance to the intended interaction. Similarly, the

CLIP-score can be elevated when both human and object

are present in the picture, without necessarily reflecting the

interaction’s realism.

Results of Perceptual Studies: 22 people answered Binary-

Choice study and 18 people answered Unary study. We

should note that some of the participants did not answer

the Unary study. Fig. 5 shows the results of perceptual

studies. As shown in Fig. 5, participants indicated that the

interactions generated by our method matched the input

text prompts better 77.6% of the time. In the Unary study,

our method achieved an average score of 3.63, which is

significantly higher (p < 0.01, Student’s t-test) than GenZi’s

average score of 2.67. These results suggest that our method

can generate more natural and realistic interactions, even in

unusual scenarios, as perceived by human observers.

Results of Interaction Performance: As shown in Table I,

TABLE I

COMPARISON OF QUANTITATIVE RESULTS FOR SEMANTIC

CONSISTENCY, PHYSICAL PLAUSIBILITY, AND DIVERSITY ON OUR

DATASET. OUR FULL VERSION ACHIEVES THE HIGHEST SCORES IN CLIP

AND CONTACT METRICS, WHILE THE VERSION WITHOUT KEY CONTACT

BODY PARTS SELECTION (OURS W/O KEY CONTACT) SCORES THE

HIGHEST IN COLLISION.

Method Semantics Physical Plausibility Diversity
CLIP Collision Contact Entropy Cluster Size

GenZI 0.2546 0.9792 1.0000 2.7388 1.0502

Ours w/o
Key Contact

0.2574 0.9932 0.7666 2.6821 0.9475

Ours w/o
Auxiliary Contact

0.2590 0.9905 0.8333 2.7192 0.9414

Ours w/o
Ground Contact

0.2590 0.9893 0.8333 2.6350 0.9665

Ours 0.2597 0.9890 1.000 2.6844 0.9787

our method achieves higher scores in CLIP (0.2597) and

Collision (0.9890) compared to GenZI’s scores of 0.2546

in CLIP and 0.9792 in Collision, and a perfect score of

1.0000 in Contact. These results suggest that our approach



generates high-quality human-scene interaction synthesis, as

CLIP score is considered a more reliable assessment of

human-scene interaction quality compared to other metrics,

as indicated in [18].

In terms of diversity scores, our method scores lower

than GenZi. This is due to GenZi occasionally producing

significantly different and unusual postures when prompted

with instructions for uncommon and infrequent interactions.

Despite this, our method’s performance in producing realistic

and plausible interactions, as evidenced by the high CLIP and

Collision scores, demonstrates its effectiveness in generating

high-quality human-scene interactions.

2) Qualitative Evaluation: Fig. 6 presents qualitative

comparisons between GenZI and our method. GenZI strug-

gles with unusual scenarios like “stamping a trash bag,

standing” (second row) and “handstanding on the saddle

of a standing cow” (third row), where the postures do

not align with the text prompts. In contrast, our method

successfully synthesizes plausible human-scene interactions

with natural postures that accurately reflect the prompts in

these challenging situations.

F. Ablation Studies

We conducted several ablation studies to validate the

effectiveness of our approach for customizing loss functions,

as described in Section 3.3.

1) The effect of loss functions: To assess the effectiveness

of Key Contact, Auxiliary Contact, and Ground Contact

Body Parts, we compared the performance of our method

with variants where dkey, dauxiliary, dground were individually

omitted. The results for physical plausibility, diversity, and

semantic scores are presented in Table I. Our full version

archives higher scores in CLIP, Contact, and Cluster Size

compared with other variants. Ours w/o Key Contact marks

a higher Collision than our full version, however, the Con-

tact score (0.76666) is significantly lower than that of our

method (1.0000). Additionally, without Key Contact, the

model struggles to find a reasonable location and orientation.

Consequently, the gap in CLIP score between our method

with and without Key Contact is larger than in the other

ablation study conditions.

2) The effect of Initial Posture Generation: In our method,

Initial Posture Generation, as described in Sec. III-B, plays a

crucial role in determining natural postures and synthesizing

humans within scenes. To assess its importance, we con-

ducted an experiment by omitting Initial Posture Generation,

setting all ”body pose” parameters of SMPL-X to zero (T-

pose), and directly proceeding to the Optimization phase

(Sec. III-D).

We assessed the outcomes through additional perceptual

studies and interaction performance evaluations. The per-

ceptual studies, using Binary-Choice and Unary methods

as described in Sec.IV-C.1, involved 12 and 10 partici-

pants respectively. The results, displayed in Fig.7, reveal

that 86.7% of interactions generated with Initial Posture

Generation aligned more naturally compared to those using

T-pose initialization in the Binary-Choice study. In the Unary

Binary-Choice Study

T-pose initialization

Initial Posture Generation

86.7%
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Fig. 7. Results from the experiment on the effect of Initial Posture
Generation. Perceptual studies, including Binary-Choice and Unary, show
that interactions generated with Initial Posture Generation are preferred over
those produced with T-pose initialization.

TABLE II

COMPARISON OF QUANTITATIVE RESULTS WITH T-POSE INITIALIZATION

AND INITIAL POSTURE GENERATION

Method Semantics Physical Plausibility Diversity

CLIP Collision Contact Entropy Cluster Size

T-pose initialization 0.2571 0.9756 0.9766 2.7368 0.9534

Initial Posture

Generation (Proposed)
0.2597 0.9890 1.000 2.6844 0.9787

study, the average score for Initial Posture Generation (3.86)

was significantly higher than that for T-pose initialization

(2.13), with p < 0.01 according to the Student’s t-test.

Interaction performance was evaluated using the metrics

outlined in Sec. IV-C.2, with results displayed in Table II.

The data reveal that interactions with Initial Posture Gener-

ation scored higher across all evaluation indices, except for

Entropy. In addition, for visualization results, we kindly refer

the reader to the supplementary material.

These findings underscore that Initial Posture Generation

is vital for creating natural and realistic human-scene inter-

actions.

V. CONCLUSION

In this paper, we introduce a novel zero-shot method

for generating both common and uncommon human-scene

interactions. This approach separates posture specification

from the scene and defines interaction conditions individ-

ually. Initially, we generate interaction images using T2I

based on text prompts, allowing for a diverse range of

postures without training data bias. To specify positions and

orientations, we leverage VLMs and LLMs to customize

conditions for each interaction. By defining and optimizing

loss functions based on the conditions, our method ensures

natural and contextually appropriate interactions. Validation

on a new dataset confirms the efficacy of our approach.

Future work will involve expanding the types of conditions

for customizing loss functions.
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