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Abstract— Passive, continuous monitoring of Parkinson’s
Disease (PD) symptoms in the wild (i.e., in home environments)
could improve disease management, thereby improving a
patient’s quality of life. We envision a system that uses
machine learning to automatically detect PD symptoms from
accelerometer data collected in the wild. Building such systems,
however, is challenging because it is difficult to obtain labels of
symptom occurrences in the wild. Many researchers therefore
train machine learning algorithms on laboratory data with
the assumption that findings will translate to the wild. This
paper assesses how well laboratory data represents wild data
by comparing PD symptom (tremor) detection performance of
three models on both lab and wild data. Findings indicate that,
for this application, laboratory data is not a good representation
of wild data. Results also show that training on wild data, even
though labels are less precise, leads to better performance on
wild data than training on accurate labels from laboratory data.

Clinical relevance— Results in this paper suggest that, when
building a system for in-the-wild PD symptom detection, it is
better to train machine learning algorithms on data from the
wild as opposed to from the lab, even though wild labels are
less precise. This paper also presents a newly released dataset
for PD tremor detection in lab and wild environments.

I. INTRODUCTION

An estimated 10 million people worldwide live with
Parkinson’s Disease [1], a chronic, neurodegenerative disor-
der that leads to both non-motor and motor symptoms. These
symptoms include, but are not limited to, depression, anxiety,
sleep disorders, slowness, muscle rigidity, postural instability,
and tremors. While there is no cure, medication can provide
symptomatic relief. However, dosages need to be adjusted
as a patient’s disease progresses and symptoms worsen.
We believe that continuous PD motor symptom monitoring
would enable clinicians to better adjust medication and
thereby improve their patients’ quality of life. Our eventual
goal is to build a system for continuous monitoring of PD
motor symptoms “in the wild” – i.e., in natural environments
without requiring any specific interaction from the patient.
Such a system would use machine learning algorithms to
detect symptoms in data collected from wearable accelerom-
eters (see Fig. 1).

Machine learning algorithms for symptom detection typ-
ically require accurate labels: i.e., the start and end of each
symptom. Labels are time consuming to annotate and the
exact onset of a symptom can be subjective. These issues are
compounded in wild settings. Therefore, researchers often
use data collected in laboratory settings for training. Fewer
researchers have explored the use of wild data for training
because labels for these data are typically supplied by PD pa-
tients via paper diaries [2], [3]. Therefore, only approximate
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Fig. 1. Depiction of automated tremor detection with wearable sensors
during everyday activities

(typically ±1 hour) timestamps of symptom occurrences are
available. That is, these data are weakly labeled.

In this paper, we assess how well laboratory data
represents wild data by comparing PD symptom detection
performance of three models on laboratory versus wild
data. Similar performance across datasets would imply
that findings on laboratory data should transfer to the
wild. Results from each of the models, however, show that
laboratory data is not representative of wild data. Of the
three models, we find that the one trained on weakly labeled
wild data has better performance on wild data than the ones
trained on accurately labeled laboratory data. While this
paper focuses on upper-limb PD tremor, we expect results to
translate to other PD symptoms. The findings in this paper
may also generalize to other problems in human activity un-
derstanding, such as monitoring of other motor impairments,
activity tracking, or sports performance analysis.

II. RELATED WORK

With the advent of wearable sensors and recent advances
in machine learning, there has been a preponderance of
interest in automated and objective analysis of PD. Many re-
searchers have attempted to diagnose PD, evaluate symptom
severity, or detect symptoms. Indeed, the use of wearable
devices for PD monitoring and assessment has been well-
studied, and we refer the reader to the following review
papers for more information: [4]–[7]. Many studies, however,
are conducted within laboratory settings, which may not
accurately reflect a patient’s at-home disease state. Some
researchers have explored systems for automated at-home
disease analysis [8]–[15]. These studies, all within the past
five years, reflect the great potential of smartphones and other
portable devices to facilitate in-home monitoring by enabling
motor tests that can be performed in-home and analyzed au-
tomatically. However, each of these studies requires patients
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to perform specific actions for analysis throughout the day,
which can be burdensome and lead to noncompliance.

We believe the future in PD monitoring is through passive,
continuous monitoring “in the wild,” where the system auto-
matically detects symptoms through a smartphone or smart-
watch without requiring any specific interaction from the
user. Several studies have collected this form of naturalistic
data [13], [15]–[21]. However, none of these data collections
asked participants to label when they experienced symptoms.
Therefore, none attempt to explicitly detect symptoms.

Some researchers have asked study participants to label
the approximate time their symptoms occur in wild settings.
These approximate labels are called weak labels. Fisher et
al. [2] used a neural network to detect dyskinesia in weakly
labeled data collected in the homes of subjects with PD,
but treated the data as accurately labeled before training the
network. Das et al. [3] compared several weakly supervised
learning techniques on in-home data collected from two
subjects. In a follow-up paper, Zhang et al. [22] compared
several weakly supervised learning algorithms, including a
novel “stratified” algorithm, on a larger dataset collected in
a laboratory setting. In this paper, we extend previous work
and assess how well laboratory data represents data collected
in the wild, and we compare the performance of algorithms
trained on these two types of data.

III. METHODS

Here, we describe our data collection procedures, our data
processing and feature extraction methods, our algorithms
and data partitioning protocols, and our performance metrics.

A. Data Collection

We collected data both in laboratory and wild settings1.
More details about the data collection protocol are given in
[23]. This research was approved by the Carnegie Mellon
University Institutional Review Board.

1) Laboratory recordings (LAB): Data were collected
from 12 subjects (eight male, four female, ages 66 to 85)
who had been diagnosed with PD two to five years prior.
Each subject self-reported tremor in one or both hands.
The subjects wore one Axivity AX3 accelerometer on each
wrist while they completed several actions, some of which
were taken from the UPDRS and others from daily living
(playing cards, making/eating a sandwich, e.g.). Data were
collected at 100 Hz. Three cameras were used to record the
subjects so as to minimize occlusion (see Fig. 2 for views
from the three cameras). These video data were used to
annotate tremor events, thereby providing ground truth data.
Table I shows a summary of the collected, labeled data.
Note that subjects 1 and 6 did not exhibit any tremor during
the data collection and were thus excluded from this study.
These data are subsequently referred to as LAB.

2) In-the-wild recordings (WILD): Subjects 2, 4, 5,
10, 11 and 12 agreed to participate in an in-home study,
which involved wearing two Axivity AX3 accelerometers

1A link to this dataset is available at http://www.humansensing.
cs.cmu.edu/software.

Fig. 2. Experimental setup

TABLE I
SUMMARY OF DATA COLLECTED IN LAB

Subject # Labeled minutes
per hand

% Tremor events

Left hand Right hand

2 74.9 80.0 40.6
3 55.9 55.9 73.7
4 55.2 57.1 37.1
5 88.1 39.0 44.1
7 97.1 26.9 19.3
8 91.3 8.6 37.9
9 96.1 21.9 7.6

10 84.5 7.8 11.7
11 51.5 69.2 26.3
12 74.7 2.0 1.2

Total 769.2 (∼12.8 hours)

throughout the day for two to four weeks. Labels of tremor
were provided by the subjects via a cell phone app, which
was designed to prevent subjects from submitting many
entries within a short time span or backdating entries. The
app prompted subjects to submit an entry roughly every hour
and subjects were paid per entry. To improve label accuracy,
subjects were only asked to record the amount of tremor
they experienced within the 5 minutes prior to submitting
the entry. Following the recommendation given in previous
work [22], we used stratified rather than binary weak
labels. That is, rather than asking subjects whether they
experienced or did not experience tremor within the previous
five minutes, we instead provided three label options (Almost
none, Half the time, and Almost always). We chose to use
three options, a slight deviation from the four strata used
by Zhang et al. [22], because we felt that subjects would be
able to more accurately select from a smaller set of options.
All subjects made regular entries during the data collection
period. Fig. 3 shows the labels provided by the subjects
over time. Note that subject 12 only participated for two
weeks while all other subjects participated for four weeks.
While these labels may be subject to the biases inherent in
self-reporting, they are no less accurate than paper diaries,
which are the current gold-standard for obtaining wild
labels. Furthermore, the time stamps available from the
cell phone app are much more precise than what could be
gleaned from paper diaries. These stratified weakly labeled
data are subsequently referred to as WILD.

B. Features

Previous work on automated tremor detection [24]–[28]
have generally used very similar features. In this work, we
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Fig. 3. Labels submitted by each subject over time

used the same features as those described by Patel et al. [28].
We first high-pass filtered the accelerometer signals with a
1 Hz cutoff using an 8th-order elliptic filter. Features were
computed over three-second windows of the signal with
one-second overlap. Each window was labeled as tremor if
at least half of the window was tremor. On each window,
the range, root mean square, Shannon entropy, dominant
frequency and ratio of energy in the dominant frequency
over total energy were computed over each axis. The peak
normalized cross-correlation and the time lag associated with
the peak were computed over each pair of axes. Our feature
vector for each window was therefore 21-dimensional.

C. Algorithms and model selection

The purpose of this paper is to explore how well LAB
data represents WILD data and to understand what kinds of
training datasets would be most effective for an automated,
in-home, tremor monitoring system. Given the small size
of our dataset, we chose to use linear Support Vector Ma-
chine (SVMs) for all experiments. In particular, we trained
SVMs on three different partitions of our dataset (described
below). Training data were normalized to have a mean of
zero and a standard deviation of one. (Note that different
algorithms used different training data sets, therefore normal-
ization parameters differed across the various algorithms.)
The SVMs were implemented using the LIBLINEAR library

provided by Fan et al. [29]. In all cases, model selection
for the hyperparameter C was chosen through 3-fold cross
validation. That is, the training dataset was partitioned into
three folds, two of which were used for training and one for
validation. Thirteen models were trained (one for each C in
the range of 2−13 to 2−1 in powers of 2) on the training
folds and evaluated on the validation fold. This procedure
was repeated for each of the three possible permutations of
selecting training and validation sets from the three folds.
The results were averaged across the three trials and the
highest performing C was then used to train a new model
on the entirety of the training data set (all three folds).
Performance of this model was then evaluated on the test
dataset, which was distinct from the dataset used for training.

Below we describe the three different partitionings of our
dataset for training. A graphical representation is shown in
Fig. 4. Note that, because people use their left and right
hands in very different ways, data from separate hands were
considered to be from separate subjects.

1) Generic SVM from LAB data (Gen-LAB): We evaluated
a standard, binary SVM on LAB data using leave-one-
subject-out cross validation: i.e. training on all subjects
excluding one, and testing on that left out subject. For model
selection, the three folds were chosen such that each fold
contained data from one third of the training subjects. To
select C, we chose that which led to the highest average
Area Under the Curve (AUC) value across the three possible
validation sets. The final model was then tested on the test
subject’s LAB and WILD data. This experimental protocol
represents a typical machine learning pipeline and is subse-
quently referred to as Gen-LAB. See Fig. 4(a,b).

2) Person-specific SVM from LAB data (PS-LAB): We
trained a standard, binary SVM on LAB data from the
test subject. The LAB dataset was first partitioned into
three folds, two of which were used for training/validation
and one for testing. Model selection was performed on the
training/validation portion. The learned SVM was then tested
on the test partition of the LAB data and the entire WILD
dataset. Results were then averaged across all three learned
SVMs, corresponding to three permutations of selecting the
training/validation and test sets from the three folds of the
LAB data. Following the recommendation of [30], all folds
were chosen to be temporally connected segments, rather
than selected from randomized samples. It has been shown
that training a person-specific classifier leads to improved
performance over a generic classifier [31], and we compared
performance on LAB versus WILD data for such a classifier,
which is subsequently referred to as PS-LAB. See Fig. 4(c,d).

3) Person-specific SVM from WILD data (PS-WILD):
Using the WILD data from the test subject, we trained a
stratified, Multiple Instance SVM (MI-SVM), as was used
by Zhang et al. in [22]. We assigned approximate tremor
percentages of [0-33%], [33-66%], and [66-100%] to the
labels Almost none, Half the time, and Almost always,
respectively. Similarly to the methodology for PS-LAB, the
WILD dataset was first partitioned into three folds (two for
training/validation and one for testing). The learned SVMs
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Fig. 4. Schematic representation of training, validation, and test datasets
for all experiments in which P1 is the test subject. Models were trained for
each given test subject. Note that, because training and test sets differ for a
given test subject, the reported number of samples/segments are average
values across all subjects. Cross validation (averaging validation results
across all folds) was used to do model selection. For PS-LAB and PS-
WILD, the subject’s LAB or WILD data were split into three folds, two of
which were used for training/validation. Three models were trained, one for
each permutation of selecting folds for training and testing. Results were
averaged across all three models.

were tested on the test partition of the WILD dataset and
the entirety of the LAB dataset. Results were averaged
across all three permutations. As with PS-LAB, folds were
chosen to be temporally connected. As shown in Fig. 3,
labeling frequency was relatively consistent across the data
collection period. Therefore, these partitions correspond
to similar numbers of days. Because accurate labels are
not available for WILD data, we could not use AUC for
selecting C. Instead, we chose to use mean absolute error
of the detected percentage (described below in Sec. III-D)
as the performance metric for model selection. Note that,
for some partitions, training data would lack segments with
“Almost none” or “Almost always” labels, making it not
possible to initialize the stratified MI-SVM algorithm. Such
partitions were ignored during model selection.

The purpose of training on WILD data is to explore
the relative benefits of accurate labels from other subjects
versus weak labels from the test subject. This classifier is
subsequently referred to as PS-WILD. See Fig. 4(e,f).

D. Performance metrics

All learned models (with no retraining) were tested on
both LAB and WILD data, and were compared across
three performance metrics: (1) accuracy, (2) area under the

(Receiver Operating Characteristic) curve (AUC), and (3)
mean absolute error in detected percentage (MAE). In this
paper, we define MAE as follows: For each segment, the
percentage of tremor within was computed using the trained
model. If the detected percentage was within the associated
range for the given label, the error on that segment was
set to be zero. Otherwise, it was set to be the absolute
difference between the detected percentage and the closest
bound. For example, if a segment’s label was Almost always
(associated range of [66-100%]) and the detected percentage
of tremor in that segment was 50%, then the absolute error
on that segment would be 16%. The absolute error was
then averaged across all segments to get the mean absolute
error. Note that, because accurate labels (exact time points
of tremor events) are not available for WILD data, we
could not compute accuracy and AUC on WILD data. To
compute mean absolute error in detected percentage on LAB
data, we converted accurate labels into weak labels: LAB
data were broken into 5-minute segments (no overlap), the
percentage of tremor within each segment was computed,
and the segment was assigned a label of Almost none, Half
the time, or Almost always if the percentage of tremor was
within [0-33%], [33-66%], or [66-100%], respectively

IV. RESULTS AND DISCUSSION

The left side of Table II, which corresponds to the ex-
periments represented by Fig. 4(a,c,e), gives accuracy, AUC
and MAE values on LAB data for the Gen-LAB, PS-LAB,
and PS-WILD classifiers. Consistent with previous findings
on person specific classifiers [31], the PS-LAB classifier
has the highest performance. The Gen-LAB classifier has
slightly lower accuracy than PS-LAB on average, but very
similar AUC values. Meanwhile, PS-WILD has much lower
performance. These results are unsurprising for two reasons:
(1) weak labels are inherently less precise than accurate
labels, and (2) LAB and WILD data are poor representations
of each other, as discussed below.

On the right half of Table II, we can compare MAE values
when testing on LAB versus WILD data, corresponding to
partitions shown in Fig. 4(a,c,e) versus Fig. 4(b,d,f), respec-
tively. Gen-LAB and PS-LAB both exhibit significant drops
in performance (p < 0.01 for a one-sided paired t-test). The
large variations in performance indicate that LAB data may
not be very representative of WILD data. Interestingly, the
largest performance deviation occurs with the PS-LAB clas-
sifier, implying that it is likely overfitting to the individual’s
LAB data. Consistent with findings from Hammerla [32],
results show that the PS-WILD classifier experiences the least
variation in performance between LAB and WILD data, and
the difference is not significant (p > 0.05). Furthermore, PS-
WILD demonstrates the highest performance on WILD data.

It is possible that one reason for the improved performance
of PS-WILD is that it was able to learn the biases of the
participants. That is, the participants may have perceived
their tremors to occur more or less frequently than reality,
and the algorithm learned to concur with these skewed per-
ceptions. Alternatively, they may have interpreted the labels
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TABLE II
COMPARING CLASSIFIER PERFORMANCE ON LAB AND WILD DATA

Test on LAB (Fig. 4a/c/e) Test on WILD (Fig. 4b/d/f)

Accuracy AUC MAE MAE

Gen- PS- PS- Gen- PS- PS- Gen- PS- PS- Gen- PS- PS-
LAB LAB WILD LAB LAB WILD LAB LAB WILD LAB LAB WILD

Subject Fig. 4(a) 4(c) 4(e) 4(a) 4(c) 4(e) 4(a) 4(c) 4(e) 4(b) 4(d) 4(f)

2 (L) 71.6 89.9 57.2 0.84 0.86 0.64 8.90 0.22 7.53 9.36 12.55 7.47
2 (R) 79.9 85.4 29.1 0.85 0.90 0.65 1.07 0.17 6.84 11.51 13.09 8.51
4 (L) 83.4 79.5 39.6 0.89 0.80 0.72 1.39 5.11 2.66 9.75 7.68 6.05
4 (R) 89.5 88.9 28.4 0.92 0.88 0.80 0.06 0.58 3.80 10.90 10.56 5.46
5 (L) 67.1 74.6 22.1 0.77 0.80 0.49 12.67 3.54 5.93 14.37 11.16 4.50
5 (R) 63.4 69.1 20.7 0.76 0.77 0.54 15.35 10.61 9.39 11.75 8.49 3.80
10 (L) 86.5 87.6 3.2* 0.75 0.79 0.56* 1.71 2.22 12.72* 6.44 8.93 3.62*
10 (R) 86.0 87.4 2.2* 0.79 0.88 0.49* 1.15 1.18 1.44* 5.51 7.51 3.12*
11 (L) 86.4 88.1 69.3 0.93 0.94 0.80 1.93 1.50 - 14.48 12.72 -
11 (R) 83.2 83.3 0.0* 0.88 0.89 0.75* 3.67 5.00* 16.58 4.64 3.57 0.00*
12 (L) 87.3 97.8 0.3 0.87 0.77 0.53 0.00 0.00 3.52 3.81 7.51 3.23
12 (R) 84.0 9.7 0.9 0.79 0.75 0.76 0.43 0.00 8.12 6.53 14.66 5.26

Average 80.7 85.9 22.7 0.84 0.84 0.64 4.03 2.51 7.14 9.09 9.87 4.64

Bold indicates best performance within the associated performance metric.
MAE, described in Sec. III-D, is the mean absolute error in detected percentage.
Because accurate labels are not available for WILD data, accuracy and AUC could not be computed on WILD data.
* indicates results were averaged over only two partition. In the third partition, stratified MI-SVM for the PS-WILD classifier could not be
initialized because the training set was lacking either “Almost none” or “Almost always” segments.
Note: for participant 11 (L), none of the training partitions included any “Almost none” segments.

differently, and the algorithm learned each participant’s par-
ticular interpretation. However, while it would certainly be
beneficial to clinicians to have completely unbiased symptom
monitoring, the PS-WILD is no more biased than the current
gold standard of patient self-reports. Furthermore, PS-WILD
can at least improve monitoring frequency by automating it.

Another possible cause for the high performance of PS-
WILD on the WILD data is due to overfitting. As described in
[30], refraining from randomizing the samples before split-
ting into folds helps prevent performance estimates from be-
ing overly optimistic. However, to truly test generalizability,
one would need to examine performance on data collected
several months later. Nonetheless, these results indicate that
training on 2⁄3 of weakly labeled WILD data generalizes better
to the left out 1⁄3 than training on accurately labeled LAB
data. It is possible that a laboratory dataset with many more
participants and a broader set of activities could lead to better
performance than the PS-WILD models. However, these
findings suggests that, when building a system for automated,
passive, continuous symptom monitoring, it may be more
beneficial to personally tailor the system to specific users
by training on their own, in-home, weakly labeled data than
to invest significant resources in building a large, accurately
labeled dataset from laboratory recordings of other people.

V. CONCLUSION AND FUTURE WORK

This paper directly analyzes how well data collected in
laboratory settings represents data collected in-the-wild for
the purpose of continuous, automated PD tremor detection.
Previous work has typically trained machine learning algo-
rithms on laboratory data under the assumption that results
will generalize to in-the-wild data. Other work has collected
data in the wild, but these datasets lack labels for training the
algorithms and for assessing symptom detection performance

on such data. Three different methods of partitioning the
dataset were used to build three models – Gen-LAB, PS-LAB,
and PS-WILD – per subject. For every model, performance
on laboratory data differs greatly from that on wild data (see
Table II). Furthermore, while the person-specific classifier
trained on LAB data (PS-LAB) has the highest performance
on LAB data, it has the lowest performance on WILD
data. These findings imply that we should not assume in-
lab performance will transfer to the wild.

Another interesting finding is that the person-specific
classifier trained on WILD data (PS-WILD) performs better
on WILD data than either of the classifiers trained on LAB
data (Gen-LAB and PS-LAB). It is expected that training an
algorithm on data from a specific user/environment will lead
to higher performance on that user/environment. However, it
is surprising that training on weak (i.e., less precise) labels
from the test subject can outperform training on accurate
labels from the test subject.

Together, these findings suggest that when developing
a system for continuous, automated symptom detection,
higher accuracy can be achieved by asking users to weakly
label their own, in-the-wild data for training than to invest
significant resources in building a training dataset collected
from other people. In this way, machine learning algorithms
can be tailored to each user and a person-specific baseline
can be established for later comparison during monitoring.

The work in this paper serves as a preliminary exploration
into LAB versus WILD data. We envision a system where
users might submit labels over the course of one or two
weeks, after which a model would be trained and symptom
detection would proceed automatically. It would be interest-
ing to explore how many labels users would need to provide
for performance to stabilize and whether the distribution of
these labels over time affects performance. In this paper, due
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to the small size of our dataset, we chose to use a linear
SVM as our classifier. However, before building a product
requiring users to submit their own labels, future work should
investigate whether these findings hold with other feature
sets, datasets, and algorithms.
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