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Abstract Event discovery aims to discover a temporal seg-
ment of interest, such as human behavior, actions or activities.
Most approaches to event discovery within or between time
series use supervised learning. This becomes problematic
when relevant event labels are unknown, are difficult to
detect, or not all possible combinations of events have been
anticipated. To overcome these problems, this paper explores
Common Event Discovery (CED), a new problem that aims
to discover common events of variable-length segments in an
unsupervised manner. A potential solution to CED is search-
ing over all possible pairs of segments, which would incur a
prohibitive quartic cost. In this paper, we propose an efficient
branch-and-bound (B&B) framework that avoids exhaustive
search while guaranteeing a globally optimal solution. To
this end, we derive novel bounding functions for various
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commonality measures and provide extensions to multiple
commonality discovery and accelerated search. The B&B
framework takes as input any multidimensional signal that
can be quantified into histograms. A generalization of the
framework can be readily applied to discover events at the
same or different times (synchrony and event commonal-
ity, respectively). We consider extensions to video search
and supervised event detection. The effectiveness of the
B&B framework is evaluated in motion capture of deliber-
ate behavior and in video of spontaneous facial behavior in
diverse interpersonal contexts: interviews, small groups of
young adults, and parent-infant face-to-face interaction.

Keywords Common event discovery - Synchrony discov-
ery - Video indexing - Event detection - Human interaction -
Unsupervised learning - Global optimization - Branch and
bound - Bag-of-words

1 Introduction

Event detection is a central topic in computer vision. Most
approaches to event detection use one or another form of
supervised learning. Labeled video from experts or naive
annotators is used as training data, classifiers are trained,
and then used to detect individual occurrences or pre-defined
combinations of occurrences in new video. While supervised
learning has well-known advantages for event detection, lim-
itations might be noted. One, because accuracy scales with
increases in the number of subjects for whom annotated
video is available, sufficient numbers of training subjects
are essential (Girard et al. 2015; Chu et al. 2016). With too
few training subjects, supervised learning is under-powered.
Two, unless an annotation scheme is comprehensive, impor-
tant events may go unlabeled, unlearned, and ultimately
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Fig. 1 An illustration of Common event discovery (CED). Given two
videos, common events (kiss and handshake) of different lengths in the
two videos are discovered in an unsupervised manner

undetected. Three and perhaps most important, discovery
of similar or matching events is limited to combinations of
actions that have been specified in advance. Unanticipated
events go unnoticed. To enable the discovery of novel recur-
ring or matching events or patterns, unsupervised discovery
is a promising option.

To detect recurring combinations of actions without labels,
this paper addresses Common event discovery (CED), a rela-
tively unexplored problem that discovers common temporal
events in variable-length segments in an unsupervised man-
ner. The goal of CED is to detect pairs of segments that retain
maximum visual commonality. CED is fully unsupervised,
so no prior knowledge about events is required. We need not
know what the common events are, how many there are, or
when they may begin and end. Figure 1 illustrates the concept
of CED for video. In an exhaustive search of variable-length
video segments, kissing and handshake event matches are
discovered between videos.

A naive approach to CED would be to use a sliding win-
dow. That is, to exhaustively search all possible pairs of
temporal segments and select pairs that have the highest sim-
ilarities. Because the complexity of sliding window methods
is quartic with the length of video, i.e., Om?n?) for two
videos of lengths m and n, this cost would be computationally
prohibitive in practice. Even in relatively short videos of 200
and 300 frames, there would be in excess of three billion pos-
sible matches to evaluate at different lengths and locations.

To meet the computational challenge, we propose to
extend the Branch-and-Bound (B&B) method for CED. For
supervised learning, B&B has proven an efficient technique
to detect image patches (Lampert et al. 2009) and video
volumes (Yuan et al. 2011). Because previous bounding

functions of B&B are designed for supervised detection or
classification, which require pre-trained models, previous
B&B methods could not be directly applied to CED. For
this reason, we derive novel bounding functions for various
commonality measures, including £1/¢; distance, intersec-
tion kernel, X2 distance, cosine similarity, symmeterized
cross entropy, and symmeterized KL-divergence.

For evaluation, we apply the proposed B&B to application
of discovering events at the same or different times (syn-
chrony and event commonality, respectively), and variable-
length segment-based event detection. We conduct the exper-
iments on three datasets of increasing complexity: Posed
motion capture and unposed, spontaneous video of moth-
ers and their infants and of young adults in small groups. We
report distance and similarity metrics and compare discovery
with expert annotations. Our main contributions are:

1. A new CED problem Common event discovery (CED)
in video is a relatively unexplored problem in computer
vision. Results indicate that CED achieves moderate con-
vergence with supervised approaches, and is able to
identify novel patterns both within and between time
series.

2. A novel, unsupervised B&B framework With its novel
bounding functions, the proposed B&B framework is
computationally efficient and entirely general. It takes
any signals that can be quantified into histograms and
with minor modifications adapts readily to diverse appli-
cations. We consider four: common event discovery,
synchronous event discovery, video search, and super-
vised segment-based event detection.

A preliminary version of this work appeared as Chu
et al. (2012, 2015). In this paper, we integrate these two
approaches with video search and supervised segment-based
event detection, and provide a principal way of deriving
bounding functions in the new, unsupervised framework. We
also present new experiments on supervised event detection
with comparisons to alternative methods. The rest of this
paper is organized as follows. Section 2 discusses related
work. Section 3 presents the proposed B&B framework
for common event discovery. Section 4 applies the frame-
work to tasks of varying complexity. Section 5 extends the
B&B framework to discovery among more than two videos
and considers acceleration using warm-start strategy and
parallelism. Section 6 provides evaluation on unsupervised
and supervised tasks with unsynchronous and synchronous
videos. Section 7 concludes the paper with future work.

2 Related Work

This paper is closely related to event detection methods,
and unsupervised discovery in images and videos. Below
we review each in turn.
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2.1 Event Detection

CED closely relates to event detection. Below we categorize
prior art into supervised and unsupervised approaches, and
discuss each in turn.

Supervised event detection Supervised event detection is
well-developed in computer vision. Events can be defined
as temporal segments that involve either a single pattern
of interest or an interaction between multiple patterns. For
single-pattern event detection, popular examples include
facial expression recognition (Sangineto et al. 2014; Little-
wort et al. 2006; Valstar and Pantic 2006; Lucey et al. 2010;
Du et al. 2014), surveillance system (Feris et al. 2014), activ-
ity recognition (Gao et al. 2015; Yang et al. 2013a, b; Reddy
and Shah 2013; Duchenne et al. 2009; Jhuang et al. 2007),
and sign language recognition (Cooper and Bowden 2009).
These approaches aim to detect a temporal pattern that asso-
ciates with a pre-defined human behavior, action, or activity.

Events may also be defined as the co-occurrence of dis-
crete actions or activities. For instance, (Brand et al. 1997)
treated each arm as a process, and proposed to recognize
gestures by modeling motion trajectories between multiple
processes using coupled hidden Markov models (CHMMs).
Following up, Oliver et al. (2000)) proposed a CHMM-based
system, with pedestrian trajectories, to detect and recognize
interactions between people, such as following another per-
son, altering one’s path to encounter another, etc. Hongeng
and Nevatia (2001) proposed a hierarchical trajectory repre-
sentation along with a temporal logic network to address
complex interactions such as a “stealing” scenario. More
recently, Liu et al. (2010) proposed to recognize group behav-
ior in AAL environment (nursing homes), considering a
switch control module that alternates between two HMM-
based methods built on motion and poses of individuals.
Messinger et al. (2010) focused on specific annotated social
signals, i.e., smiling and gaze, and characterized the tran-
sition between behavior states by a maximum likelihood
approach. Interested readers are referred to Chaaraoui et al.
(2012) for a review. These techniques, however, require ade-
quate labeled training data, which can be time-consuming to
collect and not always available.

Unsupervised event detection The closest to our study
is unsupervised approaches that require no annotations. For
instance, Zheng et al. (2011) presented a coordinated motion
model to detect motion synchrony in a group of individu-
als such as fish schools and bird flocks. Zhou et al. (2013)
proposed aligned cluster analysis that extended spectral clus-
tering to cluster time series, and applied the technique to
discover facial events in unsupervised manner. On the other
hand, time series motifs, defined as the closest pair of sub-
sequences in one time series stream, can be discovered with
a tractable exact algorithm (Mueen and Keogh 2010), or an
approximated algorithm that is capable of tackling never-
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ending streams (Begum and Keogh 2014). Some attempts at
measuring interactional synchrony include using face track-
ing and expressions (Yu et al. 2013), and rater-coding and
pixel changes between adjacent frames (Schmidt et al. 2012).
Nayak et al. (2012) presented iterated conditional modes to
find most recurrent sign in all occurrences of sign language
sentences.

Common events refer to two or more actions that are sim-
ilar either in form or in timing. The meaning of similarity
depends upon the choice of features, similarity metrics, and
the threshold to accept similarity. While cluster analysis or
mode finding could be considered a potential method, it is
not well-suited for common event discovery for some rea-
sons. First, cluster analysis and mode finding methods are
designed for discovering the instances or values that appear
most often; yet, common events could appear rarely. Sec-
ond, cluster analysis and mode finding methods consider all
instances to obtain statistical “groups” or “modes’’; common
events are a sparse subset of instances with high similarity.
Finally, cluster analysis and mode finding methods for time
series require temporal segmentation as a pro-processing pro-
cedure; common event discovery has no such requirement.

2.2 Unsupervised Discovery

For static images, unsupervised discovery of re-occurring
patterns has proven informative, driven by wide applications
in co-segmentation (Chu et al. 2010; Liu and Yan 2010;
Mukherjeeetal. 2011), grammar learning (Zhu and Mumford
2006), irregularity detection (Boiman and Irani 2005) and
automatic tagging (Schindler et al. 2008) have been driving
forces. Discovery of common patterns in videos is arelatively
unexplored problem. See Wang et al. (2014) for a survey.
For video, to our best knowledge, this study is the first
to discover common events in an unsupervised manner. Our
work is inspired by recent success on using B&B for efficient
search. Lampert et al. (2009) proposed Efficient Subwindow
Search (ESS) to find the optimal subimage that maximizes
the Support Vector Machine score of a pre-trained classifier.
Hoaietal. (2011) combine SVM with dynamic programming
for efficient temporal segmentation. Yuan et al. (2011) gen-
eralized Lampert’s 4-D search to the 6-D Spatio-Temporal
Branch-and-Bound (STBB) search by incorporating time, to
search for spatio-temporal volumes. However, unlike CED,
these approaches are supervised and require a training stage.
Recently, there have been interests on temporal cluster-
ing algorithms for unsupervised discovery of human actions.
Wang et al. (2006) used deformable template matching of
shape and context in static images to discover action classes.
Si et al. (2011) learned an event grammar by clustering
event co-occurrence into a dictionary of atomic actions. Zhou
et al. (2010) combined spectral clustering and dynamic time
warping to cluster time series, and applied it to learn tax-
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onomies of facial expressions. Turaga et al. (2009) used
extensions of switching linear dynamical systems for cluster-
ing human actions in video sequences. However, if we cluster
two sequences that each has only one segment in common,
previous clustering methods would likely need many clus-
ters to find the common segments. In our case, CED focuses
only on common segments and avoids clustering all video
segments, which is computationally expensive and prone to
local minimum.

Another unsupervised technique related to CED is motif
detection (Minnen et al. 2007; Mueen and Keogh 2010). Time
series motif algorithms find repeated patterns within a single
sequence. Minnen et al. (2007) discovered motifs as high-
density regions in the space of all subsequences. Mueen and
Keogh (2010) further improved the motif discovery prob-
lem using an online technique, maintaining the exact motifs
in real-time performance. Nevertheless, these work detects
motifs within only one sequence, but CED considers two (or
more) sequences. Moreover, it is unclear how these technique
can be robust to noise.

Finally, CED is also related to the longest common sub-
sequence (LCS) (Gusfield 1997; Maier 1978; Paterson and
Dancik 1994). The LCS problem consists on finding the
longest subsequence that is common to a set of sequences
(often just two) (Paterson and Dancik 1994; Wang and
Velipasalar 2009). Closer to our work is the algorithm for dis-
covering longest consecutive common subsequence (LCCS)
(Wang and Velipasalar 2009), which finds the longest con-
tiguous part of original sequences (e.g., videos). However,
different from CED, these approaches have a major limita-
tion in that they find only identical subsequences, and hence
are sensitive to noisy signals in realistic videos.

3 A Branch-and-Bound Framework for Common
Event Discovery (CED)

This section describes our representation of time series, a
formulation of CED, the proposed B&B framework, and
the newly derived bounding functions that fit into the B&B
framework.

3.1 Representation of Time Series

Bag of Temporal Words (BoTW) model (Sivic and Zisserman
2003; Yuan et al. 2011) has been shown effective in many
video analysis problems, such as action recognition (Brendel
and Todorovic 2011; Han et al. 2009; Laptev et al. 2008;
Liu et al. 2011; Sadanand and Corso 2012). This section
modifies the BoTW model to describe the static and dynamic
information of a time series. Suppose a time series S can be
described as a set of feature vectors {X;} for each frame j

(see notation!). For instance, a feature vector can be facial
shape in face videos or joint angles in motion capture videos.
Given such features, we extract two types of information:
observation info from a single frame, and interaction info
from two consecutive frames. Denote S[b, e¢] = {x /}j'=b as
a temporal segment between the b-th and the e-th frames, we
consider a segment-level feature mapping:

¢ 0bs (v .
@S[b.e] = Z [imt((:jj))} : (1

Jj=b

The observation info ¢°P% (x ) describes the “pseudo” proba-
bility of x; belonging to a latent state, and the interaction info
q)im(xj) describes transition probability of states between
two consecutive frames. To obtain ¢°*(x;), we performed
k-means to find K centroids {ck},f:1 as the hidden states.
Then, we computed ¢°(x;) € [0, 115 with the k-th ele-
ment computed as exp(—y[|x; — ¢x|I>) and y chosen as an
inverse of the median distance of all samples to the centroids.
An interaction info ¢™™(x;) € [0, 1157 is computed as:

B (x) = vee (9™ (x)) ® ¢ (x141)) @)

where ® denotes a Kronecker product of two observation
vectors. As a result, each temporal segment is represented as
an £»-normalized feature vector of dimension (K2 + K).

Because this representation accepts almost arbitrary fea-
tures, any signal, even with negative values, that can be
quantified into histograms can be directly applied. One
notable benefit of the histogram representation is that it
allows for fast recursive computation using the concept of
integral image (Viola and Jones 2004). That is, the segment-
level representation for S[b, e] can be computed as ¢gyp ] =
®S[1.e] — ¢S[1.b—1]> Which only costs O(1) per evaluation.
Based on the time series representation, we develop our
approach below.

3.2 Problem Formulation

To establish notion, we begin with two time series S' and §?
with m and n frames respectively. The goal of common event
discovery (CED) is to find two temporal segments with inter-
vals [by, e1] C [1,m] and [b2, e2] C [1, n] such that their

visual commonality is maximally preserved. We formulate
CED:

CED max ( , ),
A U TR BEC-CT

I Bold capital letters denote a matrix X, bold lower-case letters a column
vector X. X; represents the ith column of the matrix X. x;; denotes the
scalar in the ith row and jth column of the matrix X. All non-bold letters
represent scalars.
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Fig. 2 Anexample of CED on two 1-D time series: a an illustration of
our notation (see Sect. 3.3). b Searching intervals at iterations (1t) #1,
#300 and #1181 over sequences S' and 8%, Commonalities S'[b1, e1]
and S? [b2, e2] are discovered at convergence (#1811). ¢ Convergence

subjectto ¢ <e; —b;, Vi e {l,2}, 3)
where f (-, -) is a commonality measure between two time
series representations, and ¢ controls the minimal length
for each temporal segment to avoid a trivial solution. More
details about f(-, -) are discussed in Sect. 3.4. Problem (3) is
non-convex and non-differentiable, and thus standard convex
optimization methods can not be directly applied. A naive
solution is an exhaustive search over all possible locations
for {b1, e1, b2, e2}. However, it leads to an algorithm with
computational complexity O(m>n?), which is prohibitive
for regular videos with hundreds or thousands of frames. To
address this issue, we introduce a branch-and-bound (B&B)
framework to efficiently and globally solve (3).

Note that, although ¢ controls the minimal length of dis-
covered temporal segments, the optimal solution can be of
length greater than ¢. For instance, consider two 1-D time
series S! = [1,2,2,1] and S*> = [1,1,3]. Suppose we
measure f(-,-) by £; distance, where smaller values indi-
cate higher commonality. Let the minimal length ¢ = 3,
and represent their 3-bin histograms as Pgifre = [2,2,0],
Psipa = [1,2,0] and Y2 = [2, 0, 1]. Showing the dis-
tance fgl(gosl[m],(psz) =3<4= fgl(gosl[m],(psz), we
prove by contradiction.

3.3 Optimization by Branch and Bound (B&B)

With a proper bounding function, B&B has been shown
empirically more efficient than straight enumeration. B&B
can eliminate regions that provably do not contain an opti-
mal solution. This can be witnessed in many computer
vision problems, e.g., object detection (Lampert et al. 2009;
Lehmann et al. 2011), video search (Yuan et al. 2011), pose
estimation (Sun et al. 2012) and optimal landmark detection
(Amberg and Vetter 2011). Inspired by previous success, this
section describes the proposed B&B framework that globally
solves (3).

@ Springer
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curve w.r.t. bounding value and #it. d Histograms of the discovered
commonalities. In this example, a naive sliding window approach needs
more than 5 million evaluations, while the proposed B&B method con-
verges at iteration 1181 using £ = 20

Problem interpretation As depicted in Fig.1, we inter-
pret Problem (3) as searching a rectangle in the 2-D space
formed by two time series. A rectangle r = [b1, eq, b2, e2]
in the search space indicates one candidate solution cor-
responding to S'[b1, e1] and S*[ba, e>]. To allow a more
efficient representation for searching, we parameterize each
step as searching over sets of candidate solutions. That is,
we search over intervals instead of individual value for each
parameter. Each parameter interval corresponds to a rect-
angle set R By x E1 x By x Ej in the search space,
where B; = [b!%, b and E; = [€!°, /"] (i € {1, 2}) indi-
cate tuples of parameters ranging from frame lo to frame
hi. Given the rectangle set R, we denote the longest and the
shortest possible segments as S’ and S~ respectively. We
denote |R| as the number of rectangles in R. Figure 2a shows
an illustration of the notation.

The B&B framework With the problem interpreted above,
we describe here the proposed B&B framework. Algorithm 1
summarizes the procedure. To maintain the search process,
we employ a priority queue denoted as Q. Each state in Q
contains a rectangle set R, its upper bound #(R) and lower
bound /(R). Each iteration starts by selecting a rectangle set
R from the top state, which is defined as the state containing
the minimal upper bound for f(:,-). Given this structure,
the algorithm repeats a branch step and a bound step until R
contains a unique entry.

In the branch step, each rectangle set R is split by its
largest interval into two disjoint subsets. For example, sup-
pose E is the largest interval, then R — R’ U R” where

lo lo ,hi
’ I ey + ey +e hi
E2 — |:620’ |2 2772 | 1, ezl

612” 4
=] and Ef = |25
the bound step, we calculate the bounds for each rectangle
set, and then update new rectangle sets and their bounds into
Q. The computed bounds tell the worst possible values in
f (-, -), and therefore enable the algorithm to efficiently dis-
card unlikely rectangle sets where their bounds are worse than
the current best. The algorithm terminates when R contains

. In
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Algorithm 1: Common Event Discovery (CED)
Input : Collection of frame-based features for sequences
S!, S2; minimal length ¢
Output: The optimal rectangle r* in the search space

1 Q < empty priority queue; // Initialize Q
2 R« [1,m] x[1,m] x [1,n] x[1,n]; // Initialize R
3 r* < BnB(Q, R); // Obtain the optimal r using BnB
4 return r*;

1 Procedure BnB (Q, R)

2 while [R| # 1 do

3 R— R'UR; // Branch step

4 0.push (bound (R") ,R’); // Push Ry and bound
5 Q.push (bound (R”) ,R"); // Push R, and bound
6 R < Q.pop(); // Pop from Q

7 end

8 return R;

a unique entry, i.e., |R| = 1. Figure2b—d show an example
of CED for discovering commonality between two 1-D time
series. Despite that in the worst case the complexity of B&B
can be still O(m?n?), we will experimentally show that in
general B&B is much more efficient than naive approaches.

3.4 Construction of Bounding Functions

One crucial aspect of the proposed B&B framework is
the novel bounding functions for measuring commonality
between two time series. The commonality measures can
interchangeably be formed in terms of distance or similar-
ity functions. Below we describe the conditions of bounding
functions, and then construct the bounds.

Conditions of bounding functions Recall that R repre-
sents a rectangle set and r = [b;, ¢;, bj, e;] represents a
rectangle corresponding to two subsequences S'[bi, e;] and
S/ [bj, e;]. Without loss of generality, we denote f(r) =
S (pgi bi.ei” PSb;, e,]) as the commonality measure between
Si[b;, e;] and S/ [bj, ej]. To harness the B&B framework,
we need to find an upper bound u(R) and a lower bound /(R)
that bounds the values of f over a set of rectangles. A proper
bounding function has to satisfy the conditions:

(@) uR) > Tgé( f(x), ’ Bounding conditions
(b)I(®) < min f (),

©u®) = f(r) =I1(R), if r is the only element in R.

Conditions (a) and (b) ensure that u(R) and /(R) appropri-
ately bound all candidate solutions in R from above and from
below, whereas (c) guarantees the algorithm to converge to
the optimal solution. With both lower and upper bounds, one
can further prune the priority queue for speeding the search,
i.e., eliminate rectangle sets R’ that satisfy /(R") > u(R) (Bal-
akrishnan et al. 1991).

Bound histogram bins Let S’ denote the i-th time series
and can be represented as an unnormalized histogram h’ or a
normalized histogram n using the representation in Sect. 3.1.
Denote h}( and /h\z as the k-th bin of h' and h', respectively.
The normalized histogram is defined as iz\}( = h;( / |S’|, where

ST = S, RIS = X, (h;()2 is the Euclidean norm

of histogram of S'. Considering histograms of S'* and S'~,
we can bound their k-th histogram bin:

0<hi” <hi <h’ Vi “)
. i hi~
Given a rectangle r = [by, e1, by, e2] and denote A, = ‘S’;Jrl
- nit . .
and h}c = lsf—_‘ For normalized histograms, we use the fact

that |S'"| < |S'[b;, e;]| < |S'T|. Then we can rewrite (4)
for bounding the normalized bins:

< h, Vi. §)

0<hi <hl

o~

Below we use Eq. (5) to construct bounds for various com-
monality measures with normalized histograms, whereas
those with unnormalized histograms can be likewise obtained.

Bound commonality measures: Given two time series S
and S/ represented as normalized histograms h' and h/
respectively, we provide bounding functions for various com-
monality measures: £1/€> distance, histogram intersection,
X2 distance, cosine similarity, symmetrized KL divergence,
and symmetrized cross entropy. These measures have been
widely applied to many tasks such as object recognition
(Everingham et al. 2006; Lampert et al. 2009) and action
recognition (Brendel and Todorovic 2011; Han et al. 2009;
Laptev et al. 2008; Liu et al. 2011; Sadanand and Corso
2012).

1. €1/4> distance Applying the min/max operators on (4),
we get

min (n",n]”) < min (. i) < min (k" 0]7),
and max (h};_, h,i_) < max (h}c, h,i) < max (h;':r, hi+> .

6)

Reordering the inequalities, we obtain the upper bound uy
and lower bound /i for the k-th histogram bin:

Il = max ( i h,f) — min (hff, hf“)

max( }(h,j(> —min( ;{hO = |h§< —h£|

max (g, n[T) = min (k" 0] ) = . 7

IA

IA
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Summing over all histogram bins, we obtain the bounds of
the ¢; distance for two unnormalized histograms h*, h/:

Zlki
3

—hf| = fu ' 0 = . ®)
k

For normalized histograms h', h/, we obtain their bounds
following same operations of (6) and (7):

® =Y Tk < fu (W) =Y T =un®. )
k k

where
’l; = max (h;, hi) — min (E, hi) ,
and 7y = max (E h,i) —min( ;c,hljc> (10)

Deriving bounds for ¢,-distance can be written as:
~ ~ ~\2
lo® =Y @3 =) (7~ )
k k
= fio (W.0) = Y@ =un®), an
k

where (-)4+ = max(0, -) is a non-negative operator.

2. Histogram intersection Given two normalized his-
tograms, we define their intersection distance by the Hilbert
space representation (Scholkopf 2001):

—Xk:min (ﬁ;;,ﬁ,{). (12)

Following (5) and (6), we obtain its lower bound and upper
bound:

fo (W) =

IhnR) =

—Zmin (h_;{, E)
k
< f (E",Ef) <~ min (ﬂ %) — un(R). (13)
k

3. x? distance The x? distance has been proven to be
effective to measure distance between histograms. The x>
distance is defined as:

N T 2
o (ﬁ",ﬁ/‘): ) % (14)

Incorporating the £ -bounds ; and 7y in (10) and the inequal-
ities in (5), we obtain the lower bound and upper bound for
[y as:
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)3
Le®) =) —X, (15)
k hi —i—h]
0
and u,2(R) = ~. (16)
G

4. Cosine similarity Treating two normalized histograms
h' and h/ as two vectors in the inner product space, we can
measure the similarity as their included cosine angle:

fe (Hi,ﬁj) =

hih}
h .t 2k m

i [[[h ]
\S' Zk \SJ|

ipJ
= 2 iy (17)

WW ”h, ||||hf||

Using (4) and the fact that |S'~|| < [|S[b;, ¢;1ll < IS,
we obtain the bounds:

Y hihi
Ic(R) = =~ &
1SS/
) ) Zk t+ J+
< fc' W) < =L * _—y (r). (18)
IS ””S, I

5. Symmetrized KL divergence By definition, the nor-
malized histograms h' and h/ are non-negative and sum to
one, and thus can be interpreted as two discrete probabil-
ity distributions. Their similarity can be measured using the
symmetrized KL divergence:

Jp (ﬁi,ﬁj) = Dk (ﬁillﬁj) + Dk (ﬁjllﬁi)

= Xk: (ﬁ;( —ﬁ,ﬁ) <1n71\}; — ln’ﬁ,{> , (19)

where D (hi|[h/) is the KL divergence of h/ from h'.
From (5) and that hi — hj < 71\’ — ﬁj < hi — h,{, we have

In h’ —In hj <In h’ —In h] <In h’ —In hj Then, we obtain
the b bounds for (19)

bhER=Y <ﬂ —Q) <1n@— 1nh_,{>
+ +

k
< fo (W. W) < Xk: (= 1) (1, = m ]
=up(R). 20

6. Symmetrized cross entropy The symmetrized cross
entropy (Murphy 2012) measures the average number of bins
needed to identify an event by treating each other as the true
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Fig. 3 Searching scenarios readily applicable to the proposed B&B
framework: a common event discovery (CED), b synchrony discovery
(SD), ¢ video search (VS) and d supervised segment-based event detec-
tion (ED). Green (lighter) area indicates the search space; an orange
(darker) box indicates a candidate solution r. (see Sect. 4 for details)
(Color figure online)

distribution. Similar to KL divergence that treats h' and h/ as
two discrete probability distributions, the entropy function is
written as:

P N 1 1
fE(hz,hJ)ZZh;10g7j+§ hi log =-. (21)
k hk k hk

Recall (5) and that 0 < L < 1,0 < il < 1, we obtain the
bounds:

E® =) <—ﬂlogh£ —h_ilogﬁ>
b

IA

fe@ b)) <3 (—@logh_,{— hi log@)
k
=ug(R). (22)

Above we have reported derivations for six commonly
used measures. However, choice of one or another is influ-
enced by a variety of factors, such as the nature of the
data, problem, preferences of individual investigators, etc. In
experiments, we picked ¢1, Xz, and KL-divergence because
due to their popularity in computer vision applications. For
instance, ¢1-distance is popular in retrieval problems (e.g.,
Gusfield 1997; Rubner et al. 2000), Xz-distance in object
recognition (e.g., Everingham et al. 2006; Lampert et al.
2009), and KL-divergence in measuring similarity between
distributions (e.g., Gaussian mixtures for image segmenta-
tion Goldberger et al. 2003).

4 Searching Scenarios

With the B&B framework and various bounds derived in
the previous section, this section discusses unsupervised and

Algorithm 2: Synchrony Discovery (SD)

Input : A synchronized video pair S', S?; minimal discovery
length £; commonality period T
Output: Optimal intervals r* =[by, e1, by, e2]

1 L < T + ¢; // The largest possible searching period

2 Q < empty priority queue; // Initialize Q

3forr < 1to(n—T—L+1)do

4 R <«

[t, HT Ix[tH—]1, t+-THL-1 X[ T, t+T [X[t—T+H—1, +T+L—1];
Q.push(bound(R), R);

end

r* < BnB(Q, R); / BnB procedure in Algo. 1

return r*;

® 9w

supervised searching scenarios that can be readily applied.
Figure 3 illustrates the searching scenarios in terms of dif-
ferent applications. The first application, common event
discovery (CED), as has been discussed in Sect. 3, has the
most general form and the broadest search space. Below we
discuss others in turn.

4.1 Synchrony Discovery (SD)

Social interaction plays an important and natural role in
human behavior. This section presents that a slight modifica-
tion of CED can result in a solution to discover interpersonal
synchrony, which is referred as to two or more persons pre-
forming common actions in overlapping video frames or
segments. Figure3b illustrates the idea. Specifically, syn-
chrony discovery searches for commonalities (or matched
states) among two synchronized videos S! and S? with n
frames each. Rewriting (3), we formulate SD as:

max

{b1,e1,b2,e2}

subjectto ¢ <e; — b;,

F@s11y.011 PS21by.e0))

Vie{l,2},|b1 —b2| =T,
(23)

where f (-, -) is the commonality measure, and T is a tempo-
ral offset that allows SD to discover commonalities within a
T -frame temporal window, e.g., in mother-infant interaction,
the infant could start smiling after the mother leads the smile
for a few seconds. A naive solution has complexity O(n?).
Algorithm: For an event to be considered as a synchrony,
they have to occur within a temporal neighborhood between
two videos. For this reason, we only need to search within
neighboring regions in the temporal search space. Unlike
CED or ESS (Lampert et al. 2009) that exhaustively prunes
the search space to a unique solution, we constrain the space
before the search begins. In specific, we slightly modify
Algorithm 1 to solve SD. Let L = T + £ be the largest pos-
sible period to search, we initialize a priority queue Q with
rectangle sets {[f, t + T] x [t +€—1,t +T+ L — 1] x [t —
T, t+TIx[t—=T+€—1,t+T+L— 11" 75" and their
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s Algorithm 3: Video Search (VS)
8 . O @ Input : A query Q with length ¢; a target time series S with
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1 2000 4000 6000
#iteration

(¢ S® ) S'O®
A Mt el A ML o
s’@ 'I ﬂ
M 1 10 20 30

Fig. 4 An example of SD on two 1-D time series using £ = 13 and
T = 5: atop 3 discovred synchronies at different iterations; exhaustive
search takes 39,151 iterations. b The convergence curve w.r.t. bounding
value and #iter. c—e Discovered synchronies and their histograms, where
blue (darker) and green (lighter) bars indicate the segment features ¢7°bs
and ¢™™, respectively. ¢'™ is 10x magnified for display purpose. The
£ distances between the three histogram pairs are 6.3e-8, 1.5e-7, and
5.8e-2, respectively (Color figure online)

associated bounds (see details in Sect. 3.4). These rectangle
sets lie sparsely along the diagonal in the 2-D search space,
and thus prune a large portion before the search. Once all rect-
angle sets are settled, the CED algorithm can be employed
to find the exact optimum. Algorithm 2 summarizes the SD
procedure.

Figure4 shows a synthetic example of 1-D time series
with two synchronies, denoted as red dots and green triangle,
where one is a random permutation of another. SD discovered
3 dyads with the convergence curve in (b), and histograms
of each dyad in (c)—(e). Note that the interaction feature dis-
tinguishes the temporal consistency for the first and second
discovery, maintaining a much smaller distance than the third
discovery.

4.2 Video Search (VS)

The CED algorithm can be also useful for efficient searching
for a time series with similar content. That is, given a query
time series, search for common temporal segments in a longer
video in an efficient manner. Figure 3¢ illustrates the idea.
More formally, let Q be the query time series with length ¢,
we find in the target time series S by modifying (3) as:

@ Springer

// Initialize Q
// Initialize R

1 Q < empty priority queue;

2 R« [1,n] x[1,n] x[1,1] x [£,£];
3 while frue do

4 r < BnB(Q, R); // Obtain r using BnB (Algo. 1)
5 b < r[0],e < r[1];

6 | if f(gsp.el» Q) < € then

7 | break;

8 end

9 Insert S[b, e] into {S[b;, ¢;1}i;

10 Q <« prune(Q, r); // Prune space (Sect. 5)

11 | R <« Qpop();

12 end

3 return {S[b;, ¢;};;

—

max S (@s[p,e1- Q)

subjectto ¢ <e —b. 24)

The problem now becomes searching along one axis of the
search space, but it is still non-convex and non-differentiable.
Nevertheless, Algorithm 1 can be directly applied to find the
optimal solution by fixing the beginning and ending frame of
the query time series, as summarized in Algorithm 3. Note
that we do not claim that VS is state-of-the-art method for
video search, but just illustrate the versatility of the B&B
framework. We refer interested readers to Hu et al. (2011)
for a more comprehensive survey.

4.3 Segment-Based Event Detection (ED)

Efficiently detecting variable-length events in time series
arises in a wide spectrum of applications, ranging from dis-
eases, financial decline, speech recognition to video security.
While event detection has been studied extensively in the lit-
erature, little attention has been paid to efficient inference
from a pre-trained classifier. Figure3d illustrates the idea.
Here we demonstrate event detection using an SVM deci-
sion function, which has been shown effective in many event
detection tasks (Schuller and Rigoll 2006; Hoai et al. 2011;
Laptev et al. 2008; Sadanand and Corso 2012).

Given the BoTW representation discussed in Sect. 3.1, we
represent time series by their histograms. These histograms
are used to train an SVM classifier to tell whether a new time
series contains an event of interest. To perform inference,
temporal segmentation (Schuller and Rigoll 2006; Laptev
et al. 2008; Sadanand and Corso 2012) or dynamic program-
ming (DP) (Hoai et al. 2011) is required. However, temporal
segmentation for many real-world videos may not be trivial,
and DP is computationally expensive to run it in large scale,
especially when a time series is too long and relatively small
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Algorithm 4: Seg.-based Event Detection (ED)

Input : A video S of length n; a pre-trained linear classifier w
Output: Detected events {S[b;, ¢;1};

// Initialize Q
// Initialize R

1 Q < empty priority queue;
2 R <« [1,n] x[1,n];

3 while rrue do

4 r < BnB(Q, R); // Obtain r using BnB (Algo. 1)
5 b < r[0],e < r[1];

6 if fw(S[b,e]) <0 then
7 | break;
8 end

9 Insert S[b, e] into {S[b;, ¢;1}i;

10 Q <« prune(Q, r); // Prune space (Sect. 5)
1 | R <« Qpop();

12 end

13 return {S[b;, ¢;};;

portion of frames contain an interested event. Instead, we
modify (3) for efficient inference of event detection:

max fW((pS[b,L’J)’
b,e

subjectto £ <e —b, (25)
where w is a pre-trained linear classifier with each element
w; =Y, aih;, and fw(-) = >, a;(-, h') is the common-
ality measure based on the classifier. ¢; is the weight vector
learned during SVM training.

Algorithm The ED problem in (25) becomes supervised
detection rather than unsupervised as mentioned in previ-
ous sections. The proposed bounds in Sect. 3.4 are thus
inapplicable. Due to the summation property of BoTW
in (1), we decompose the commonality measure into per-
frame positive and negative contributions: fw(S[b,e]) =
iy (faf (SLi,i]) + fy (Sli. i])). Denote the longest and
the shortest possible searching segments as ST and S~
respectively, with slight abuse of notation, we reach the
bounds:

y(R) = fof (87) + fo (§)

S WO+ [ (8) = fw(S)

< fa BN+ [ (87) = uw(®), (26)
where R = [b, e] corresponds to time series S, instead of
previous definition over two time series. With the derived
bounds, the CED algorithm can be directly applied for effi-
cient inference of an event of interest, as summarized in
Algorithm 4.

4.4 Comparisons with Related Work
The proposed CED bear similarities and differences with sev-

eral related work. Below we discuss in terms of problem
definition and technical details.

Problem definition Although CED achieves discovery via
“matching” between subsequences, it has fundamental differ-
ences from standard matching problems. For instance, CED
allows many-to-many mapping (e.g., Sect. 6.1.2), while stan-
dard matching algorithms assume one-fo-one or one-to-many
mapping. Moreover, a matching problem (e.g., graph match-
ing or linear assignment) typically measures sample-wise
similarity or distance to determine correspondence between
one another, e.g., a feature vector on a node in a graph. CED
uses bag-of-words representation that aggregates multiple
samples (i.e., frames) into one vector, making the applica-
tion of standard matching methods non-trivial.

CED is also different from time warping (e.g., dynamic
time warping Keogh and Ratanamahatana 2005) and tempo-
ral clustering (e.g., aligned cluster analysis Zhou et al. 2013).
Time warping aims to find the optimal match between two
given sequences that allow for stretched and compressed sec-
tions of the sequences. Given this goal, time warping assumes
the beginning and the ending frames of the sequences to be
fixed, and performs matching on entire sequence. Similarly,
temporal clustering considers entire sequence in its objective,
and hence is likely to include irrelevant temporal segments
in one cluster. On the contrary, CED does not assume fixed
beginning and ending frames, instead directly targeting at
subsequence-subsequence matching, and thus enables a large
portion of irrelevant information to be ignored.

Technical details Technically, the proposed B&B frame-
work is closely related to Efficient Subwindow Search
(ESS) (Lampert et al. 2009) and Spatio-Temporal B&B
(STBB) (Yuan et al. 2011). However, they have at least
three differences. (1) Learning framework: ESS and STBB
are supervised techniques that seek for a confident region
in image or a volume in video according to a pre-trained
classifier. CED is unsupervised, and thus requires no prior
knowledge. (2) Bounding functions: We design new bound-
ing functions for the unsupervised CED problem. Moreover,
ESS and STBB consider only upper bounds, while CED can
incorporate both upper and lower bounds. (3) Search space:
ESS and STBB search over spatial coordinates of an image
or a spatio-temporal volume in a video, while CED focuses
on temporal positions over time series.

For segment-based event detection (ED), we acknowledge
its similarity with the version of STBB that omits spatial
volume. Both address efficient search in a one-dimension
time series, and differ in the following ways. (1) Objective:
ED searches for segments with maximal, positive segment-
based decision values. STBB uses a Kadane’s algorithm for
Jframe-based max subvector search, which potentially lead
to inferior detection performance because the max sum is
usually found in an overly-large segment (as can be seen
in Sect. 6.3). (2) Searching strategy: ED prunes the search
space to avoid evaluating segments where an AU is unlikely
to occur; STBB evaluates every frame. (3) Inputs: ED can
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Fig. 5 Illustration of extensions: a pruning rules applied to multiple-
commonality discovery, b SD with warm start, and ¢ SD with parallelism

take the minimal length and normalized histograms as input,
yetitis unclear for STBB to accommodate such input because
of the linear nature of the Kadane’s algorithm.

5 Extensions to the B&B Framework

Given the aforementioned CED algorithm and variants, this
section describes extensions to discovery among multiple
time series and discover multiple commonalities. Due to the
special diagonal nature of SD, we also introduce its accel-
eration using warm start and parallelism. Figure 5 illustrates
these extensions.

Discovery among multiple time series We have described
above how the B&B framework can discover temporal com-
monalities within a pair of time series. Here we show that the
framework can be directly extended to capture commonality
among multiple time series. Specifically, we formulate the
discovery among N sequences {Si}fvz | by rewriting (3) as:

max F ({¢si [bi’ei]}l{\;])

{bisei Y,

subjectto ¢ <e; —b;, Vief{l,...,N}, 27

where F'(-) is a similarity measure for a set of sequences and
defined as the sum of pairwise similarities:

F <{¢Sf[bi)ei]}lN:1) N ; ! (¢S"[b,~,ei]’ ‘f’si[b,-,e,-]) S
i#]

Given a rectangle set R and a time series pair (S', S/), we
rewrite their pairwise bounds in Sect. 3.4 as/ lf] (R)and u’; (R).
The bounds for F (-, -) can be defined as:

R = Y1 ®) < F ((0gp o)1)
i#]

<D Wl R =ur(®). (29)
i#]

Given this bound, Algos. 1 and 2 can be directly applied to
discover commonalities among multiple time series.
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Discover multiple commonalities Multiple commonalities
occur frequently in real videos, while the B&B framework
only outputs one commonality at a time. Here, we introduce
a strategy that prunes the search space to accelerate multiple
commonality discovery. Specifically, we repeat the searching
algorithm by passing the priority queue Q from the previous
search to the next, and continue the process until a desired
number of solutions is reached, or the returned commonality
measure f (-, -) is less than some threshold. The threshold can
be also used for excluding undesired discoveries for the sce-
nario where two sequences have no events in common. That
is, if the first discovery does not pass a pre-defined threshold,
the algorithm returns empty because the subsequent discov-
eries perform no better than the first one. Figure 5a illustrates
an example of the pruning rule when E| overlaps with a pre-
viously discovered solution r. Because we want to exclude
the same solution for the next discovery, the search region is
updated by avoiding overlapping with previous solution. For
axes of both S' and S?, all R overlapped with r is updated
using the same rule, or discarded if the updated R is empty,
i.e., |R| = 0. The updated rectangle sets, along with their
bounds, are then pushed back to Q before the next search.

This pruning strategy is simple yet very effective. Previ-
ously derived bounds remain valid because each updated set
is a subset of R. In practice, it dramatically reduces |Q| for
searching the next commonality. For example, in synchrony
discovery of Fig. 4, |Q| is reduced 19% for the second search,
and 25% for the third SD. Note that this pruning strategy
differs from conventional detection tasks, e.g., Lampert et al.
(2009), Yuan et al. (2011), which remove the whole spatial or
temporal region for the next search. In CED, temporal seg-
ments can be many-to-many matching, i.e., s! [b1, e1] can
match multiple segments in S? and vice versa. Thus, remov-
ing any segments from either time series would cause missing
matches. This strategy allows us to maintain many-to-many
matching.

SD with Warm start Due to the B&B nature, SD exhibits
poor worst-case behavior, leading to a complexity as high
as an exhaustive search (Narendra and Fukunaga 1977). On
the other hand, B&B can quickly identify the exact solu-
tion when a local neighborhood contains a clear optimum
(Lampert et al. 2009). Given this motivation, we explore
a “warm start” strategy that estimates an initial solution
with high quality, and then initializes SD around the solu-
tion. Estimating an initial solution costs only few percentage
of total iterations, and thus can effectively prune branches
in the main SD algorithm. Figure5b illustrates the idea.
Specifically, we run sliding window sampled with step-
size=10, sort the visited windows according their distances,
and then determine a warm start region around the windows
within the top one percentile. Then SD is performed only
within an expanded neighborhood around the warm start
region.
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Table I Distribution of event = 1y, .y Min  25th  504h  75th  Max  Std
lengths in different datasets: min
and max show the shortest and RU-FACS (Bartlett et al. 2006) 13 4 79 159 754 125.6
longest length of a common
event Mocap (http://mocap.cs.cmu.edu/) 41 142 175 218 483 67.5
25-, 50-, and 75-th indicate degrees of percentiles
SD with Parallelism The use of parallelism to speed up leeth height  mouthangle  appearance

B&B algorithms has emerged as a way for large problems
(Gendron and Crainic 1994). Based on the block-diagonal
structure in the SD search space, this section describes an
parallelized approach to scale up SD for longer time series.
In specific, we divide SD into subproblems, and perform the
SD algorithm solve each in parallel. Because each subprob-
lem is smaller than the original one, the number of required
iterations can be potentially reduced. As illustrated in Fig. 5c,
the original search space is divided into overlapping regions,
where each can be solved using independent jobs on a clus-
ter. The results are obtained as the top k rectangles collected
from each subproblem. Due to the diagonal nature of SD in
the search space, the final result is guaranteed to be a global
solution. The proposed structure enables static overload dis-
tribution, leading to an easily programmable and efficient
algorithm.

6 Experiments

In this section, we evaluated the effectiveness and efficiency
of the proposed B&B framework under three applications:
Common event discovery (Sect. 6.1), synchrony discovery
(Sect. 6.2), and variable-length segment-based event detec-
tion (Sect. 6.3). As mentioned in Sect. 4, each application
relates to a particular searching scenario of the B&B frame-
work.

6.1 Common Event Discovery (CED)

In the first experiment, we evaluated CED on discovering
common facial events, and discovering multiple common
human actions.

Table 1 shows the distribution of event lengths in respec-
tive experiments. The mixture of long and short events
indicates a more realistic scenario of handling events with
slow and fast motions. Specifically, for RU-FACS, we com-
puted the distribution of AUI2 events among the 4950
sequence pairs. For mocap, the distribution was computed on
a total of 25 actions from 45 sequence pairs (details below).

6.1.1 Discovering Common Facial Events

This experiment evaluates the CED algorithm to find similar
facial events in the RU-FACS dataset (Bartlett et al. 2006).
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Fig. 6 Results on discovering common facial actions: a Facial features
extracted from the tracked points. b An example of common discov-
ered facial events (indicated by dashed-line rectangles). ¢, d Accuracy
evaluation on precision-recall and average precision (AP)

The RU-FACS dataset consists of digitized video of 34 young
adults. They were recorded during an interview of approx-
imately 2min duration in which they lied or told the truth
in response to interviewer’s questions. Pose orientation was
mostly frontal with moderate out-of-plane head motions. We
selected the annotation of Action Unit (AU) 12 (i.e., mouth
corner puller) from 15 subjects that had the most AU occur-
rence. We collected 100 video segments containing one AU
12 and other AUs, resulting in 4950 pairs of video clips from
different subjects. For each video, we represented features
as the distances between the height of lips and teeth, angles
for the mouth corners and SIFT descriptors in the points
tracked with Active Appearance Models (AAM) (Matthews
and Baker 2004) (see Fig. 6a for an illustration).

Accuracy evaluation Because the CED problem is rel-
atively new in computer vision, to our knowledge there
is no baseline we could directly compare to. Instead, we
compared against the state-of-the-art sequence matching
approach: Longest common consecutive subsequence match-
ing (LCCS) (Wang and Velipasalar 2009). Observe that when
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Fig. 7 Efficiency evaluation between CED and alternative sliding win-
dow (SW) approach. a Parameter settings (Viola and Jones 2004;
Lampert et al. 2009): size-ratio (SR), stepsize (SS), and aspect ratios
(AR). b Histogram of ratio of #evaluation: log ;‘g—wl Red vertical lines
indicate the average. Light green bars show CED performs less evalu-
ations than SW; dark blue bars represent the opposite. ¢ Histogram
of differences between resulting commonality measure: fp, (rSW¢)
- fu (xEP) (Color figure online)

the per-frame feature was quantized into a temporal word,
the unsupervised CED problem can be naturally interpreted
as an LCCS. Following LCCS that uses a 0—1 distance, we
chose ¢;-distance for CED. Note that the segment-based
BoTW representation is not helpful for LCCS (Wang and
Velipasalar 2009), because LCCS computes matches only at
frame-level. The minimal length ¢ was fixed as the smaller
length of ground truth segments for both LCCS and CED.
Given a discovered solution r and a ground truth g that indi-
cates a correct matching, we measured their overlap score
(Everingham et al. 2006) as overlap(r, g) = %. The
higher the overlap score, the better the algorithm discovered
the commonality. We considered r to be a correct discovery
if the overlap score is greater than 0.5.

Figure 6b shows an example of a correct discovery of
AU12. In this example, CED was able to correctly locate an
AU 12 segment with overlap score greater than 0.8. Figure 6¢
plots the precision-recall curves for the first discovery of CED
and LCCS. We reported the average precision (AP) (Evering-
ham et al. 2006) and found CED outperformed LCCS by 0.15
points. Unlike LCCS that sought for identical subsequences,
CED considered a distribution of temporal words present in
two videos, and thus was able to more reliably capture com-
mon events in real-world videos. Figure 6d shows the average
precision of our approach under different parameters. We var-
ied the minimal sequence length ¢ in {20, 25, ..., 40}, and
examined the AP of the 7-th result. As can be observed from
the averaged AP (black dashed line), our B&B approach per-
formed more stably across different combinations of £ and .
As aresult, CED performed on average 16% higher AP than
LCCS in discovering the common facial actions.
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Efficiency evaluation Using the above settings, we evalu-
ated speedup of the CED algorithm against exhaustive sliding
window (SW) approach, which was implemented follow-
ing parameter settings in Lampert et al. (2009), Viola and
Jones (2004). Figure 7a shows these settings denoted as SW;
(i = 1, 2, 3). Denote lengths of two time series as m,n and
the minimal length for each sequence is ¢, we set the max-
imal and minimal rectangle size for SW to be (m x n) and
(ﬂm X ﬁ), respectively. To be independent of imple-
mentation, we measured the discovery speed as the number
of evaluation for the bounding functions, referred as nCED
and n3Wi for CED and SW, respectively. Figure 7b shows
the histograms of the log ratio for n°FP /nSWi_ The smaller
the value, the less times CED has to evaluate the distance
function. As can be seen, although SW was parameterized
to search only a subset of the search space, CED searched
the entire space yet still performed on average 6.18 times
less evaluations than SW. To evaluate the discovery quality,
we computed the distance difference measured by CED and
SW, i.e., fo, (SWViy — o (r“ED). The larger the difference,
the lower quality of discovery SW got. Figure 7c shows the
histograms of such differences. One can observe that the dif-
ferences are always greater than or equal to zero. This is
because our method provably finds the global optimum. On
the other hand, SW only performed a partial search according
to its parameters, and thus was likely to reach larger distance
than ours.

6.1.2 Discover Multiple Common Human Motions

This experiment attempts to discover multiple common
actions using the CMU-Mocap dataset (http://mocap.cs.cmu.
edu/). We used Subject 86 that contains 14 long sequences
with 1,200~2,600 frames and human action annotation
(Barbic et al. 2004). Each sequence contains up to 10 actions
(out of a total of 25) such as walk, jump, punch, etc. See
Fig. 8a for an example. Each action ranged from 100 to 300
frames. We randomly selected 45 pairs of sequences and dis-
covered common actions among each pair. Each action was
represented by root position, orientation and relative joint
angles, resulting in a 30-D feature vector. Note that this exper-
iment is much more challenging than the previous one due to
the large number of frames and more complicated actions. In
this case, we excluded SW for comparison because it needs
10'2 evaluations that is impractical.

Figure 8a illustrates the first six common motions discov-
ered by CED. A failure discovery is shown in the shaded
number 6, which matches walk to kick. An explanation is
because these actions were visually similar, resulting in sim-
ilar features of joint angles. Figure 8b shows the precision-
recall curve for different values of overlapping threshold .
Using £ distance, the curve decreases about 10% AP when
the overlap score ¢ raises from 0.4 to 0.7, which implies that
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on x? distance

we can retain higher quality results without losing too much
precision. Figure 8c shows the average precision over various
£ on the ¢-th discovered result. LCCS performed poorly to
obtain long common subsequences because human motions
have more variability than just one facial event (e.g., AU-
12). On the contrary, CED used BoTW representation, and
thus allowed more descriptive power for activity recognition.
Figure 8d shows the precision-recall curve evaluated with x>
distance. Although the Mocap dataset is very challenging
in terms of various motions and diverse sequence lengths,
the CED algorithm with x? performed 30% better than ¢,
and LCCS. It suggest x? is a more powerful commonality
measure for histograms than £1. Overall, using the x> mea-
surement and ¢ = 0.5, CED achieved 81% precision.

6.2 Synchrony Discovery (SD)

This section evaluates SD for discovering synchronous
behavior using three datasets of increasing diversity: Posed

Table 2 Distance and quality analysis on CMU Mocap dataset: (top)
%2 distance using le-3 as unit, (bottom) recurrent consistency

Pair (1,11) (24) G.,13) (5,7 (6,8) (9,10) (12,14) Avg.

% 2-distance

SD 6.3 12 47 26 01 02 11.9 39
SW5 6.5 1.3 6.7 54 01 04 12.0 4.6
SWi, 6.7 27 6.7 10.1 0.2 0.7 14.3 5.9

SWSM 97.1 769 814 642 893 1720 3345 130.8
SW¢ 338 744 538 282 792 1177 345.1 104.6
SWi, 948 773 81.8 632 87.1 1702 3272 1288
SW{, 343 741 542 283 794 117.8 3415 1042

Recurrence consistency

SD 0.80 085 046 090 100 0.64 0.76 0.79
SW3; 095 081 050 0.84 1.00 069 0.73 0.79
SWi, 095 075 050 0.64 100 055 0.00 0.63
SWS’L 0.07 032 0.09 0.07 008 0.13 0.12 0.12
Swg 016 033 025 020 021 029 022 0.24
SW‘f0 0.08 031 0.09 0.07 009 013 0.12 0.13
SW¢, 0.19 033 026 021 022 029 023 0.25

SW7 indicates the optimal window found by SW; with step size s =
5,10; SW% and SWY indicate average and standard deviation among
all windows. The best discovery are marked in bold

motion capture (Sec. 6.2.1) and unposed, spontaneous video
of mothers and their infants (Sec. 6.2.2) and of young adults
in a small social group (Sec. 6.2.3).

6.2.1 Human Actions

We first provide an objective evaluation the SD algorithm
(Sec. 6.1.2) on discovering human actions using the CMU
Mocap dataset (http://mocap.cs.cmu.edu/). Mocap data pro-
vides high-degree reliability in measurement and serves as
an ideal target for a clean-cut test of our method. To mimic
a scenario for SD, we grouped the sequences into 7 pairs as
the ones containing similar number of actions, and trimmed
each action to up to 200 frames. SD was performed using

= 120 and T = 50. Denote the video index set as A,
we evaluated the discovery performance by the recurrence
consistency (Delaherche et al. 2012):

e 2 Y (Yilel = Y5Hal), (30)

¢ (i,j)eA P.q

Qr) =

nj

where 7 (X) is an indicator function returning 1 if the state-
ment X is true and O otherwise, and Yf[ p] denote the c-th
class annotation corresponding to the p-th frame in S'.
Table2 summarizes the SD results compared with the
baseline sliding window (SW). Results are reported using
x2-distance and the recurrent consistency. A threshold of
0.012 was manually set to discard discovery with large dis-
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tance. We ran SW with step sizes 5 and 10, and marked
the windows with the minimal distance as SW§ and SW7,
respectively. Among all, SD discovers all results found by
SW. To understand how well a prediction by chance can be,
all windows were collected to report average w and standard
deviation o. As can be seen, on average, a randomly selected
synchrony can result in large distance over 100 and low qual-
ity below 0.3. SD maintained an exact minimal distance with
good qualities as the ones found by exhaustive SW. Note
that, because SD is totally unsupervised, the synchrony with
minimal distance may not necessarily guarantee the highest
quality.

Figure 9 shows the speed up of SD against exhaustive SW.
SD and its extensions demonstrated an improved efficiency
over SW. In some cases, SD® improved search speed by
a large margin, e.g., in (01,11) with )(z—distance reached a
speed boost over 200 times. Across all metrics, the speed up
of SD? was less obvious with symmetrized KL divergence.
SD* was implemented on a 4-core machine; an extension to
larger clusters is possible yet beyond the scope of this study.

@ Springer

On average, SD* consistently accelerated the original SD due
to parallelism.

Figure 10 shows the qualitative results on all 7 pairs, anno-
tated with ground truth and the discovered synchronies. As
can be seen, SD allows to discover multiple synchronies
with varying lengths. Although some discovered synchronies
contain disagreed action labels, one can observe that the dis-
coveries share reasonable visual similarity, e. g., in pair (9,10),
the “look around” action in sequence 9 was performed when
the subject was seated, sharing the similarity with the “sit”
action in sequence 10.

6.2.2 Parent-Infant Interaction

Parent-infant interaction is critical for early social develop-
ment. This section attempts to characterize their affective
engagement by exploring the moments where the behav-
ior of both the parent and the infant are correlated. We
performed this experiment on the mother-infant interaction
dataset (Messinger et al. 2009). Participants were 6 ethnically
diverse 6-month-old infants and their parents (5 mothers, 1
father). Infants were positioned in an infant-seat facing their
parent who was seated in front of them. We used 3 min of nor-
mal interaction where the parent plays with the infant as they
might do at home. Because this dataset was not fully anno-
tated, we only evaluated the results quantitatively. After the
faces were tracked, we used only the shape features because
the appearance of adults and infants are different. Throughout
this experiment, we set £ = 80 and 7" = 40.

Figure 11 illustrates three discovered synchronies among
all parent-infant pairs. As can be seen, many synchronies
were discovered as the moments when both infants and par-
ents exhibit strong smiles, serving as a building block of
early interaction (Messinger et al. 2009). Besides smiles, a
few synchronies showed strong engagement in their mutual
attention, such as the second synchrony of group (O where the
infant cried after the mother showed a sad face, and the sec-
ond synchrony of the second group where the mother stuck
her tongue out after the infant did so. These interactive pat-
terns offered solid evidence of a positive association between
infants and their parents.

6.2.3 Social Group Interaction

This experiment investigates discovery of synchronies in
social group interaction. We used the GFT dataset (Sayette
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Fig. 12 Top 10 discovered synchronies from groups 113 and 128 in the GFT dataset. Each column indicates a discovered synchrony and its frame
number. The SD algorithm correctly matched the states of smiling, talking and silent

et al. 2012) that consists of 720 participants recorded during
group-formation tasks. Previously unacquainted participants
sat together in groups of 3 at a round table for 30 min while
getting to know each other. We used 2min of videos from
48 participants, containing 6 groups of two subjects and 12
groups of three subjects. SD was performed to discover dyads
among groups of two, and triads among groups of three. Each
video was tracked with 49 facial landmarks using IntraFace
(De la Torre et al. 2015). We represented each face by con-
catenating appearance features (SIFT) and shape features
(49 landmarks). In this dataset, we used annotations of AUs
(10,12,14,15,17,23,24) that appear most frequently.

Figure 12 shows qualitative results of the discovered
dyadic and triadic synchronies among two social groups.
Each column indicates a discovery among each group. As
can be observed, most common events are discovered as
concurrent smiles, talk, or silent moments where all partici-

pants remained neutral. Because the interaction was recorded
during a drinking section, the SD algorithm discovers more
frequent concurring smiles than other behavior. This discov-
ery is particular interesting for complying with the findings
in Sayette et al. (2012) that alcohol facilitates bonding dur-
ing group formation. It is noticeable that the SD algorithm
requires no human supervision, yet can identify meaningful
patterns (e.g., smiles) occult to supervised approaches.
Quantitatively, we examined SD with varying ¢, i.e.,
£ € {30, 60, 120}, resulting in synchronies that last at least 1,
2 and 4s; we set the synchrony offset 7 = 30 (1 s). Baseline
SW was performed using step sizes 5 and 10. Symmetrized
KL divergence was used as the distance function. We eval-
uated the distance and quality among the optimal window
discovered, as well as the average and standard deviation
among all windows to tell a discovery by chance. Figure 13
shows the averaged KL divergence and recurrent consistency
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Fig. 13 Analysis on top 10 discovered dyadic and triadic synchronies
of the GFT dataset. SW denoted with asterisk indicates the optimal
windows discovered, and without asterisk indicates the average and
standard deviation over all visited windows

(Eq. (30)) among top 10 discovered dyadic and triadic syn-
chronies. As can be seen, SD always guarantees the lowest
divergence because of its nature to find the exact optimum.
The recurrence quality decreases while £ grows, showing that
finding a synchrony with longer period while maintaining
good quality is harder than finding one with shorter period.
Note that, although the discover quality is not guaranteed
in an unsupervised discovery, SD consistently maintained
the best discovery quality across various lengths. This result
illustrates the power of our unsupervised method that agrees
with that of supervised labels.

6.3 Segment-Based Event Detection (ED)

This experiment evaluates performance and computation
time of segment-based event detection on the GFT dataset
(Sayette et al. 2012), as used in Sect. 6.2.3. The task is to
localize AU events using a pre-trained segment-based lin-
ear SVM classifier. The AUs of interest are 1, 2, 6, 7, 10,
11, 12, 14, 15, 17, 23, and 24. Unlike previous studies that
require temporal segmentation (Schuller and Rigoll 2006;
Laptev et al. 2008; Sadanand and Corso 2012), we focused on
joint detection and segmentation of a temporal event. Specif-
ically, we compared ED with a hybrid SVM-HMM (Kriiger
et al. 2005) (denoted HMM hereafter for simplicity) and
the state-of-the-art event detection algorithms, including a
dynamic programming (DP) approach (Hoai et al. 2011) and
the Kadane’s algorithm used in STBB (Yuan et al. 2011). We
trained a frame-based SVM for each AU, and used the same
SVM for the detection task on different methods. For SVM-
HMM, the HMM has two states, i.e., activation or inactivation
of an AU. The state transition probabilities and the a-priori
probability were estimated by the frequency of an AU activa-
tion in the training data. The emission probabilities of HMM
was computed based on normalized SVM output using Platt’s
scaling (Platt 1999). During test, the most likely AU state path
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for each video was determined by a standard Viterbi algo-
rithm, which has a complexity O(|s|> x N), where |s| = 2
is the number of states and N is the number of frames of
a test video. For both ED and DP, we set the minimal dis-
covery length ¢ = 30. For DP, we set the maximal segment
lengths in {100, 150, 200}, denoted as DP_100, DP_150,
and DP_200, respectively. For evaluation, we used the stan-
dard F1 score and the Fl-event metric (Ding et al. 2012)
defined as F1-event = %"?T'gl}g, where E P and E R stand for
event-based precision and event-based recall. Unlike a stan-
dard F1 score, Fl-event focuses on capturing the temporal
consistency of prediction. An event-level agreement holds
if the overlap of two temporal segments is above a certain
threshold.

Figure 14a shows the Fl-event curve w.r.t. event over-
lapping thresholds. Overall DP and ED performed better
than the baseline HMM. The performance of DP dropped
when threshold was greater than 0.6, which implies DP
missed highly overlapped events during detection. This is
because DP performed exhaustive search, and thus requested
a maximal search length for computational feasibility. On
the other hand, ED by construction excludes such limita-
tion. Figure 14b shows the running time on a 2.8 GHz dual
core CPU machine by comparing ED v.s. DP. Note that we
omitted STBB and HMM in Fig. 14b because the time dif-
ference between ED and STBB/HMM is insignificant under
this scale. Each detected AU event is plotted in terms of
the running time and sampled video length (#frame). As
can be seen, the computation time for DP increased linearly
with video length, while ED maintained invariance of video
length. These results suggest that ED was able to perform
comparably with significantly improved efficiency for event
detection.

Figure 14c, d shows the trend of running time v.s. F1-
event and F1 score across ED and all alternative methods.
Each marker indicates a detection result for a sequence. For
visualization purpose, we randomly picked 120 sequences
to include in this figure. The quantitative evaluation on the
entire dataset is shown in Table 3. As can be seen in Fig. 14c,
d, STBB and HMM performed significantly faster than oth-
ers due to their linear nature in computation. In general,
for Fl-event and F1, STBB led to suboptimal performance
because events with activation are usually found in over-
length segments. Figure 14e illustrates detection results of
three subjects. In all cases, it reveals the over-length detec-
tion of STBB due to its consideration of max subvectors. As
can be seen, STBB tends to include a large temporal window
so that the sum of decision values is maximized. HMM took
SVM outputs as emission probability, and thus performs sim-
ilarly as a frame-based SVM. HMM tends to generate lower
Fl-event, as also suggested in Fig. 14a. This is because of the
memoryless property considered in the Markov chain, i.e.,
the future state only depends upon the present state. On the
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Fig. 14 Comparison between ED and alternative approaches in terms
of: a Fl-event over 12 AUs, b running time v.s. video length, ¢ F1-
event v.s. time, d F1 v.s. time and e comparison between ground truth

Table 3 Comparison between ED and alternative methods in terms of
running time, Fl-event (F1E), and F1 on supervised AU detection

Method Time (s) F1E F1

STBB 0.003 £+ 0.002 0.297 £ 0.256 0.420 +0.270
HMM 0.090 £+ 0.049 0.405 £+ 0.209 0.698 +0.182
DP100 3.987 £2.184 0.586 +0.188 0.756 £ 0.179
DP150 6.907 £+ 3.720 0.586 +0.188 0.756 £ 0.179
DP200 9.332 +5.268 0.586 +0.188 0.756 £0.179
ED (ours) 0.668 £+ 0.873 0.572 £0.197 0.753 £0.165

contrary, ED and DP produced more visually smooth results
due to their segment-based detection. Similar to Fig. 14b, we
observed that, with comparable performance, ED is consis-
tently faster over DP with different parameters.

Table 3 summarizes the comparison between ED and alter-
native methods in terms of running time, FI1-Event and F1
scores averaged over sequences in the entire dataset. As what
we have observed in Fig. 14, STBB had the smallest running
time yet with the worst performance. Among the top perform-
ing DP and ED, without losing much accuracy, ED improved
the speed against DP from about 6x to 14x.

7 Conclusion and Future Work

Using Branch-and-Bound (B&B), we introduced an unsu-
pervised approach to common event discovery in segments

Running time (sec)

and detection results on 3 subjects. Light yellow and dark green indicate
activation and deactivation of AU12, respectively

of variable length. We derived novel bounding functions
so that the B&B framework guarantees a globally optimal
solution in an empirically efficient manner. With slight mod-
ifications, the B&B framework can be readily applied to
common event discovery, synchrony discovery, video search,
and supervised event detection. The searching procedure can
be extended to discovery among multiple time series, of
multiple commonalities, and can be accelerated with warm
start and parallelism. We evaluated the effectiveness of the
B&B framework in motion capture of deliberate whole-body
behavior and in video of spontaneous facial behavior in
interviews, small groups of young adults, and parent-infant
face-to-face interaction.

Future work includes promoting the scalability of the
proposed algorithm. Given current pairwise design, the com-
putational complexity grows quadratically with the number
of input sequences. One direction is to pursue parallelism,
i.e., compute pairwise bounds independently using clusters
or multi-threading, and then aggregate these bounds into a
overall score.
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