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“The person takes pictures with the camera” “The person drinks from the cup”

“The person calls on the phone”“The person eats the apple”
Fig. 1: Illustration of text-driven 3D human-hand-object interactions. The sequences depict different interactions based
on textual descriptions. Each sequence demonstrates how the model generates 3D human poses and object manipulations
corresponding to the given textual commands.

Abstract— Analyzing and synthesizing human-object interac-
tion is crucial for advancing intelligent systems that engage with
the physical environment. However, simultaneous tracking of
human and object data presents inherent challenges, resulting
in limitations in dataset scale, diversity, and annotation quality
within this domain, thereby hindering the generalization ability
of trained models. This study introduces OASIS, a novel
framework that extends pretrained text-conditional human
motion diffusion models to address the complex task of full-
body 3D hand-object interaction generation. Specifically, we
freeze the parameters of the pretrained motion diffusion model,
while incorporating additional object-guided attention layers,
which we train to adapt the human motion latents to match
the input object motion sequence and the text. Our method can
be understood as a ControlNet[38] for interaction. Through
extensive experimentation, we demonstrate the effectiveness
and robustness of our framework in generating realistic hand-
object interactions from textual descriptions. Our method

* denotes equal contribution

surpasses the state-of-the-art performance in FID and accuracy
interaction fidelity metrics compared to the prior best method
IMoS [10], with improvements of 0.08 in FID and 2% in
accuracy for body motion synthesis, and 0.15 in FID and 10%
in accuracy for hand motion synthesis.

I. INTRODUCTION

Understanding human-object interaction is crucial for de-
veloping intelligent systems capable of effectively engag-
ing with the physical world. Despite significant advance-
ments in computer vision and machine learning, datasets
specifically tailored for full-body human-object interaction
remain scarce. This scarcity presents a significant bottleneck,
hindering the development and evaluation of models and
algorithms aimed at understanding and synthesizing human-
object interactions.

Human-object interaction is often closely tied to hand-
object interaction, as hands are the primary means through
which humans manipulate objects. Datasets such as HO-3D
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[14], DexYCB [5] and Obman[15], which capture or synthe-
size hand interacting with objects, has been built to facilitate
the study in this field. For example, GraspTTA model [18] is
trained on Obman dataset [15] to generate grasp pose of hand
on objects, and D-Grasp [6], which is trained on DexYCB
dataset [5], adopts reinforcement learning to synthesize hand
motions of grasping and moving objects. However, these
works are limited to hand interactions and do not encompass
full-body motion.

Collecting datasets for full-body human-object interac-
tion poses several challenges. Unlike static image datasets,
capturing dynamic interactions between humans and ob-
jects requires careful planning, sophisticated equipment,
and meticulous annotation efforts. Consequently, existing
datasets such as GRAB [30] often suffer from limitations in
scale, diversity, and annotation quality, further exacerbating
the challenges faced by researchers in this field.

The most common solution to tackling this problem is
to decompose the task into two steps: i) start-conditional
goal pose and contact generation, and ii) contact-conditional
interpolation between the start and goal poses. Both GOAL
[29] and SAGA [34] follow this approach, training the
first step using the small GRAB dataset [30] . However,
GOAL uses deterministic autoregressive inpainting in the
second stage, while SAGA employs a stochastic variational
encoder to capture diversity. Both methods exhibit some
generalization capability to unseen objects, but only consider
motion synthesis until the moment of the grasp.

Concurrently, recent advancements in object-free, text-
conditional human motion synthesis [22], [32], [35], [37]
have demonstrated promising results, enabled by the de-
cently sized AMASS dataset [21] and its BABEL [24] and
HumanML3D [11] annotations. These advancements have
paved the way for unprecedented levels of realism and
diversity using open-vocabulary, zero-shot generalization.
However, these methods are limited to pure human motion
generation and do not facilitate human-object scenarios.

To the best of our knowledge, the only method that
facilitates whole-body object grasping with text-conditioning
is IMoS [10]. Unlike the aforementioned works, IMoS
considers post-grasp dynamic object motion, synthesizing it
jointly with human motion. The synthesis is conditioned on
text, as well as the starting object and body poses. IMoS
learns body and arm motion separately using two conditional
variational auto-regressors, then optimizes the synthesized
object motion to fit the synthesized hand motion. However,
they still train their model from scratch using only the small
GRAB dataset, limiting its generalization to novel objects
and interactions.

In this paper, we propose a novel framework that extends
the capabilities of pretrained text-driven human motion dif-
fusion models to tackle the challenging task of full-body 3D
hand-object interaction synthesis. Specifically, we freeze the
pretrained MDM [32] human motion diffusion model, and
introduce additional trainable object-guided attention layers
that guide the motion sampling to match the given object mo-
tion sequence. In other words, we propose a ControlNet[38]

TABLE I: Comparison of human hand-object interaction
methods across four criteria: Full Body, Text-Driven, Till
Grasp, and Post Grasp. Our method and IMoS emphasize
the more complex task of post-grasp interaction while SAGA
and GOAL focus on human approaches before grasping.

Method Full
Body

Text-
Driven

Till
Grasp

Post
Grasp

GOAL [29] ✓ - ✓ -
SAGA [34] ✓ - ✓ -
IMoS [10] ✓ ✓ - ✓

OASIS (ours) ✓ ✓ - ✓

to adapt human motion generators to human-object interac-
tion. By leveraging the pretrained models, our framework can
effectively generalize to more diverse interactions. Through
comprehensive experiments and evaluations, we demonstrate
the effectiveness and robustness of our proposed framework
in generating realistic hand-object interactions from textual
descriptions. Our approach outperforms IMoS[10] in terms
of FID and interaction accuracy metrics. Specifically, it
achieves an improvement of 0.08 in FID and 2% in accuracy
for body motion synthesis, and 0.15 in FID and 10% in accu-
racy for hand motion synthesis. These results highlight the
significant advancements our framework offers in both the
quality and accuracy of generated human-object interactions.

Here, we summarize our contributions:
• We propose a framework that enables a pretrained text-

conditional human motion diffusion model to perform
full-body hand-object interaction synthesis with strong
generalization capability.

• We achieve this by freezing the pretrained diffusion
model and incorporating additional object-guided atten-
tion mechanism layers that adapt the motion denoising
(and thus, the sampling) to follow and interact with
objects.

• We also propose a hand cVAE to generate detailed hand
motion from the generated full-body motion, facilitating
fine-grained grasping.

II. RELATED WORK

Text-Driven Human Motion Synthesis. In this task, the
synthesis is conditioned on a text prompt, in order to alleviate
the constraints posed by the limited number of categories in
class-conditional generation [22], [13], [2], by leveraging the
compositionality of free-form natural language. Earlier works
in this category employed multimodal autoencoders [1], [31]
or conditional Variational Autoencoders [12], [23], [2]. More
recently, denoising diffusion probabilistic models (DDPMs)
[32], [35], [39] have gained attention by fitting the data dis-
tribution more accurately without compression, using a stable
denoising MSE training objective and a multi-pass sampling
procedure for diversity. These methods typically condition
their synthesis on semantic, vision-aware text representations
from CLIP[26]. Another approach, T2M-GPT [37] adopts
a two-stage strategy involving a VQ-VAE model [33] for
discretized motion encoding and a transformer decoder for
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Fig. 3: Object-guided Human Body Motion Synthesis. This figure shows our module for human body motion synthesis,
where text descriptions t are encoded using a frozen CLIP Text Encoder. Object sequences o are embedded and combined
with human motion sequences xb via object-guided attention layers within a diffusion model. Trainable components are
marked with a flame icon, while frozen components are indicated with a lock icon.

autoregressive generation over the discrete motion tokens.
However, none of these methods consider human-object
interaction. Towards this end, in this paper, we extend frozen
pretrained motion diffusion models to facilitate full-body
hand-object interaction.

Hand-Object Interaction Generation Synthesizing inter-
actions between objects and human hands is a challenging
task due to the diversity and complexity. Some works address
this problem by generating static grasp poses for objects and
hands [7], [18], [3], [19], while more recent approaches focus
on generating dynamic motions of hand-object interactions
[41], [40], [36], [4]. For instance, GraspTTA [18] trains
a conditional variational autoencoder (CVAE) model [28]
conditioned on object point clouds to generate static grasping
hand poses, while it also uses a ContactNet to predict the
contact map on the object for pose refinement. Text2HOI [4]
decomposes interaction generation into two subtasks: mesh-
conditional contact generation with a cVAE, and contact-
conditional motion generation with a DDPM. While these
works focus solely on generating hand grasp poses or hand
motions, our approach has a broader scope by generating
full-body motion.

Full Body Human Hand-Object Interaction. Text-driven
full-body hand-object interaction focuses on synthesizing
realistic human motion, either before the human makes
contact with the object or after it is grasped [29], [34], [10],
[9], [20], [8], [4]. Approaches like GOAL [29] and SAGA

[34] generate full-body motion leading up to the point of
contact with the object, utilizing CVAEs [28] for motion
generation. In contrast, IMoS [10] extends this approach
by synthesizing motion sequences occurring after the object
is grasped, addressing post-grasping dynamics. However,
these methods struggle with limited datasets and less robust
generative models, leading to lower-quality and less diverse
interactions. Methods like InterFusion [8] aim to synthesize
static 3D human-object interactions through a two-stage
framework addressing challenges in text-to-3D generation
but lack temporal dynamics. Text2HOI [4] focuses on gen-
erating hand-object motion using contact maps and diffusion
models, but it is limited to hand motions rather than full-
body interactions. CG-HOI [9] models human-object motion
interdependently with a joint diffusion process guided by
explicit contact information but does not leverage pretrained
motion models. In comparison, our work addresses these
challenges by utilizing a frozen pretrained motion diffusion
model with fine-tuned attention layers for object interaction,
improving robustness and generalization. Unlike TOHO [20],
which generates task-specific human-object interactions us-
ing predefined task parameters, our method generalizes to
diverse text prompts without requiring task-specific priors.

III. APPROACH

We define the notations used in this paper. Our dataset,
D, consists of N instances of text-body-hand-object quadru-
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Fig. 4: Object-Guided Attention. This figure illustrates the
attention mechanism where eobjet, etext, and previous human
motion state xb

t are processed. Queries Q, keys K, and
values V are generated using weight matrices Wq , Wk, and
Wv , respectively. Attention scores are computed, followed by
softmax normalization and scaling, to produce the attention
output guiding the motion synthesis process.

plets, represented as {(texti, xb
i , x

h
i , oi)}Ni=1. Here, texti, xb

i ,
xh
i , and oi denote the text description, human body motion,

human hand motion, and object motion for each quadruplet,
respectively. Each object pose o and text description text are
embedded into embeddings eobject and etext via a learnable
embedding layer and freezed CLIP text encoder respectively.
To achieve more detailed and fine-grained interactions, we
separate the interaction synthesis into human body motion
synthesis and human hand motion synthesis and optimize
them independently. Our primary objective is to generate
3D full-body human poses that realistically interact with the
specified object, guided by the provided textual instructions.

A. Object-guided Human Body Motion Synthesis.

Each component of object-guided human body motion
synthesis module is illustrated in Fig. 3.

Diffusion Process. We use diffusion model as our base
generative model to generate human body motion. Diffu-
sion is modeled as a Markov noising process. During the
forward process, noise is incrementally introduced into real
data, gradually transforming it into pure Gaussian noise.

Conversely, the reverse diffusion process entails iteratively
removing noise at each step, resulting in denoised body
motion. Specifically, to model the distribution xb ∼ q(xb

0),
the forward diffusion process unfolds as a Markov chain over
T steps, yielding a sequence of time-dependent distributions
q(xb

t |xb
t−1). Formally, this process is formulated as follows,

q(xb
t |xb

t−1) = N (
√
αtx

b
t−1, (1− αt)I) (1)

where αt ∈ (0, 1) are constant hyper-parameters. In our
context, text-conditioned motion synthesis models the distri-
bution p(xb

0|t) as the reversed diffusion process of gradually
cleaning xb

T . Instead of predicting ϵt as formulated by [17],
we follow [27] and predict the signal itself.

Object-Guided Attention. As shown in Fig. 4, object-
guided attention comprises a cross-attention layer that in-
tegrates both human motion and object motion as input.
This layer enables the model to dynamically adjust its
focus during the generation process, allowing it to align
the generated human motion with the characteristics and
dynamics of the specified object. This dynamic allocation
of attention facilitates the synthesis of more contextually
relevant and visually coherent human-object interactions.
Formally, we first concatenate the motion sequence xb, the
object sequence embedding eobject, and the text embedding
etext in temporal dimension. Then, attention is applied to the
entire sequence, facilitating the interaction between body and
object representation.

Q = Wq{eobject, etext, xb}
K = Wk{eobject, etext, xb}
V = Wv{eobject, etext, xb}

Attention(Q,K,V) = softmax(QKT /
√
d)V

(2)

A causal attention mask is used to maintain the sequence’s
causal relationship. An object-guided attention layer is in-
serted before each of the 8 MDM blocks to control the
diffusion model’s generation process.

B. Hand Motion Synthesis

We build a hand motion synthesis module based on CVAE
[28] as shown in Fig. 5 to synthesize a detailed hand motion
conditioned on object motion o, generated human body
motion xb and the text description text.

Training. During training, we input hand embedding ehand
, object embedding eobject, human body motion pose sequence
xb and text embedding etext of the text description text into
the motion encoder, along with two learnable distribution
parameters, µ and Σ. More specifically, we form ehand by
concatenating the hand pose sequence xh with PointNet
[25] embedding of the hand point cloud, and form eobject by
concatenating the object pose sequence with PointNet [25]
embedding of the object point cloud. The CVAE encoder
learns to represent these inputs in a latent space by outputting
the learned distribution parameters, µ and Σ, which define
a Gaussian distribution. A latent vector z is sampled from
this distribution and concatenated with the object embedding
(eobject), the human body motion pose sequence (xb), and the
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Fig. 5: Hand Motion Synthesis Module. The module is built upon a CVAE [28] model with hand embedding ehand, object
embedding eobject, human body motion pose sequence xb and text embedding etext of t as input during training. During
inference, a latent vector z is sampled from this distribution and concatenated with the object embedding (eobject), the human
body motion pose sequence (xb), and the text embedding (etext) to condition the CVAE [28] decoder, which outputs the
hand motion that corresponds to the text.

text embedding (etext) to condition the CVAE decoder. We
follow [22] by inputting time information as a sinusoidal
positional encoding in the decoder, which then outputs
the reconstructed hand pose sequence x̂h

recon, ensuring the
generated motions are realistic and coherent.

We use two losses for training: the KL divergence loss LKL
and the reconstruction loss Lrecon. The KL divergence loss
measures the difference between the learned distribution and
a standard normal distribution, while the reconstruction loss
measures the L1 distance between the reconstructed hand
pose x̂h

recon and the ground truth hand pose xh. These losses
are defined as follows:

Lrecon = ∥x̂h
recon − xh∥1

LKL = KL(N (µ,Σ),N (0, I))

Ltrain = λLrecon + (1− λ)LKL

(3)

with λ ∈ (0, 1).
Inference. During inference,we sample z from a standard

normal distribution N (0, I) and concatenate it with the
object embedding (eobject), the human body motion pose
sequence (xb), and the text embedding (etext). This concate-
nated vector is then input into the decoder alone with the
positional encoding to generate the hand pose sequence x̂h.

Optimization. To ensure a realistic contact between the
object and the hand, we follow IMoS [10] and implement
an object pose optimization module. From the generated
hand pose sequence x̂h, we first identify the initial grasp
frame (t = g0) by analyzing the object’s movement across
frames and selecting the frame just before a significant

movement occurs. We obtain the hand vertices of this frame
V h
g0 = SMPLX(x̂h

t=g0) and calculate the distance between
the hand vertices V h

g0 and the object vertices V o
g0 by D =

dist(V h
g0 , V

o
g0). To ensure coherent contact between the hand

and object during the grasping, we then optimize the object’s
pose by maintaining this initial distance between the hand
and object vertices in subsequent frames. To achieve this,
for each subsequent time step t, we optimize Ro

t , T o
t by

minimizing the least squares objective:

Ro∗
t , T o∗

t = min
Ro

t ,T
o
t

∥∥dist(V h
t , V o

t )−D
∥∥
2

= min
Ro

t ,T
o
t

∥∥dist(V h
t , Ro

t · V o
0 + T o

t )−D
∥∥
2

(4)

with V o
0 as the object vertices of the initial frame.

IV. EXPERIMENTS

Implementation Detail. We implement our framework
using Pytorch. For the human motion synthesis module,
we use the diffusion mdoel pretrained on the HumanML3D
dataset released by [32]. We exclusively optimize the newly
introduced modules, maintaining the pretrained model in a
frozen state. We train our model for 5000 epochs using the
Adam with a base learning rate of 1 × 10−4. Our models
have been trained with T = 1000 noising steps and a cosine
noise schedule on a single NVIDIA GeForce RTX A4000
GPU for a period of about 8 hours.

For the data representation, we utilize the SMPL-X para-
metric body model to depict the human pose. SMPL-X
characterizes the entire human body, including the hands



TABLE II: Quantitative comparison with IMoS [10] in body motion synthesis. Lower FID indicates a closer match to
ground truth distribution. Higher accuracy reflects better alignment with specified interactions. For diversity and multimodality
metrics, closer alignment with the real data indicates better performance.

Method FID (↓) Accuracy (↑) Diversity (→) Multimodality (→)
Real Motions (GT) - 0.99 ± 0.0001 1.21 ± 0.0369 0.23 ± 0.0264

IMoS [10] 0.26 ± 0.0009 0.82 ± 0.0118 1.11 ± 0.0250 0.25 ± 0.0255
OASIS (ours) 0.18 ± 0.0046 0.84 ± 0.0271 1.16 ± 0.0377 0.22 ± 0.0314

TABLE III: Quantitative comparison with IMoS [10] in hand motion synthesis. We compare our hand motion synthesis
output, using the human body motion generated by the human motion synthesis module as input, with the hand motions
generated by IMoS [10]. Top-1s are highlighted in bold.

Method FID (↓) Accuracy (↑) Diversity (→) Multimodality (→)
GT Hand Motion - 0.99 ± 0.0001 1.12 ± 0.0202 0.21 ± 0.0057

IMoS 0.57 ± 0.0005 0.73 ± 0.0047 1.05 ± 0.0087 0.23 ± 0.0056
OASIS (ours) 0.41 ± 0.0001 0.83 ± 0.0001 1.07 ± 0.0104 0.21 ± 0.0042

and face, as a function that can be differentiated. This
function is defined by body shape parameters β ∈ R10,
root translation t ∈ R3, axis-angle rotations for 55 body
joints r ∈ R55×3, and facial expressions f ∈ R10. To
represent the human body excluding hand, we initially con-
vert SMPL-X to SMPL and then apply the pre-processing
pipeline outlined in MDM[32] to extract the body motion
representation. Each body pose is described by a composite
vector bi = (ṙa, ṙx, ṙz, ry, jp, jv, jr, cf ), where ṙa ∈ R
denotes the global root angular velocity along the Y-axis,
ṙx and ṙz represent root linear velocities on the XZ-plane,
ry indicates root height, jp and jv in R3×22, jr in R6×22

denote local joints positions, velocities, and rotations in root
space, respectively. Binary features cf ∈ R4 are obtained by
thresholding heel and toe joint velocities to accentuate foot
ground contacts. For human hand representation, we adhere
to the pre-processing pipeline utilized in IMoS [10]. Hand
poses hi are characterized by the concatenation of a 6-DOF
pose extracted from rotation matrix rh ∈ R9 and translation
vector th ∈ R3. Object pose oi follows the same method of
representing the hand pose.

Dataset.We utilize the GRAB dataset [30], which includes
comprehensive grasping sequences performed by ten dis-
tinct individuals. These participants interact with 51 diverse
objects, each representing one of four fundamental intents:
”use,” ”pass,” ”lift,” and ”offhand.” The ”use” category is
further divided into 26 specific actions, illustrating plausible
interactions between intent and object, such as drinking
from or pouring a cup, taking a picture with a camera,
or browsing its functionalities. Following the partitioning
strategy outlined in the dataset, we designate subject ’S1’
for validation, subject ’S10’ for testing, and subjects ’S2’
through ’S9’ for training our model. This approach ensures
that our testing phase includes individuals with unique body
shapes, introducing variability akin to real-world scenarios.
Notably, our testing also involves novel intent-object pairs
that are absent from the training set, such as offhanding a
water bottle. Due to inconsistencies in the dataset’s motions
depicting lifting actions, we exclude the ”lift” intention from

our experiments, same as IMoS[10]. This results in 789
sequences for training, 157 for validation, and 115 for testing.

Evaluation Metric. Following previous works [10], we
use the GRAB dataset to train an action recognition classi-
fier, enabling the computation of several evaluation metrics.
These metrics include FID (Fréchet Inception Distance) [16],
which measures the discrepancy between the distributions of
generated and ground truth data in latent space; Recognition
Accuracy, which assesses the consistency between the spec-
ified interaction and the generated output; Diversity, which
evaluates the breadth and variability within the generated
motion distribution; and MultiModality, which quantifies the
average variance observed across multiple samples generated
from a single text prompt. By leveraging the final layer of
the classifier as the motion feature extractor, we can calculate
FID, Diversity, and MultiModality, ensuring a comprehensive
evaluation of our framework’s performance. Following the
evaluation process of IMoS [10], we repeat our experiments
20 times and report a statistical interval with 95% confidence.

A. Quantitative Comparison

We compare our framework with the previous SOTA
method, IMoS [10], which is currently the only approach
that focuses on full-body post-grasping human hand-object
interaction similar to ours.

Human Body Motion Synthesis. As shown in Table II,
our method outperforms the previous SOTA, IMoS [10],
across various evaluation metrics. Our framework achieves a
lower Fréchet Inception Distance (FID), indicating a closer
alignment with the ground truth data distribution. Addition-
ally, our method significantly surpasses IMoS [10] in terms
of Recognition Accuracy, demonstrating higher consistency
between the specified interactions and the generated outputs.

Our method achieves superior Diversity and Multimodality
scores compared to IMoS [10], demonstrating its effec-
tiveness in generating high-quality, varied, and contextually
accurate text-guided human-object interactions.

Hand Motion Synthesis. To evaluate the performance of
the hand motion synthesis module, we trained a hand motion



IMoS OASIS (ours)

(a) Text Input: The person uses the hammer.

(b) Text Input: The person pours from the teapot.

(c) Text Input: The person uses the scissors.

Fig. 6: Qualitative comparison of full body motion synthesis between IMoS [10] and our work. Our framework
generates more realistic and contextually appropriate motions compared to IMoS. Each row shows sequences of actions
based on text instructions (a) ”The person uses the hammer,” (b) ”The person pours from the teapot,” and (c) ”The person
uses the scissors.”

action recognition classifier using the GRAB dataset [30],
following the same process used for evaluating human body
motion synthesis. We compared the hand motion synthesis
output of our model, which utilizes the human body motion
generated by the human body motion synthesis module as
input, with the hand motions produced by IMoS [10]. As
shown in Table III, our model outperforms IMoS [10] across
all metrics. This demonstrates the robustness and superior
performance of our approach in generating high-quality hand
motions.

B. Qualitative Comparison

In this section, we present qualitative comparisons be-
tween our model and IMoS [10], focusing on human body
motion synthesis, hand-object interaction generation, and the
integrated results of both.

Human Body Motion Synthesis. Fig. 6 presents a qualita-
tive comparison between IMoS [10] and our model. Across
various text instructions, our model consistently generates
more realistic and contextually appropriate motions com-
pared to the state-of-the-art IMoS [10]. Our approach par-
ticularly excels in capturing the nuances of each interaction,
resulting in full-body motions that are not only visually
coherent but also exhibit natural transitions between different
stages of the interaction. Additional motions involving dif-
ferent objects generated by our model are shown in Fig. 7.

Hand Object Interaction Analysis. In addition to full-
body motion synthesis, our framework demonstrates sig-
nificant improvements in hand-object interaction synthesis.
Fig. 8 illustrates the precision and naturalness of hand poses
generated by our method compared to the SOTA IMoS [10].
Our approach produces realistic motions that align with the
actions specified in the text input. It ensures that the hand’s
grip and interaction with objects such as a hammer, teapot,
and scissors are contextually accurate and realistic, providing
better contact and interaction with the objects.

V. DISCUSSION AND LIMITATIONS

Our OASIS framework shows significant advancements in
generating realistic hand-object interactions, surpassing state-
of-the-art performance in fidelity and accuracy. However,
there are several limitations that outline areas for future
work. First, our method is limited to hand-object interactions
and does not incorporate interactions involving other body
parts, such as the feet, torso, or head. Second, we did not
focus on accurately synthesizing the motions of other body
parts, such as the feet. While OASIS effectively models
hand-object interaction, the motion of other body parts may
be less precise, which can affect the overall realism in
interactions where multiple body parts are involved. Third,
our approach do not address long or complex interactions
involving multiple actions or extended sequences with ob-



Text Input: The person flies the airplane.

Text Input: The person drinks from the cup.

Fig. 7: Qualitative results for various text inputs. Our
model demonstrates its ability to generate natural motions
that align with the text prompt.

jects. Additionally, our method does not support texture
or fine appearance details, and therefore cannot produce
photo-realistic or deceptive content. The results generated
by our model are not designed to resemble real-world scenes
and cannot be confused with reality. However, future work
combining our technique with methods that support more
realistic textures might raise ethical concerns, especially if
such systems are used to create highly realistic, misleading
content.

VI. CONCLUSION

In conclusion, our paper presents a novel framework
that extends diffusion-based text-driven human motion syn-
thesis models to address the complex task of hand-object
interaction. By leveraging the generalization capabilities of
pretrained models, our framework shows robustness and ver-
satility in generating diverse and realistic interactions from
textual descriptions. Our contributions not only advance the
state-of-the-art in human-object interaction synthesis but also
set the stage for future research in this challenging domain.
We believe that our work will inspire further exploration ,
ultimately leading to the development of more intelligent and
capable systems for interacting with the physical world.

VII. ETHICAL IMPACT STATEMENT

This work focuses on developing a framework for synthe-
sizing human-object interaction via text instruction. While
the ability to generate realistic 3D hand-object interactions
from textual descriptions holds significant potential for ad-
vancements in human-computer interaction, virtual reality,
and robotics, it is important to consider the ethical implica-
tions associated with such technologies.

Positive Impacts: Our framework aims to advance the
field of human-object interaction modeling, leading to posi-
tive impacts in areas such as assistive technology, healthcare,
and education. By enabling more intuitive human-computer

(a) (b) (c)

Fig. 8: Qualitative comparison of hand-object interaction
synthesis between IMoS (upper) [10] and our work
(lower). Each row shows sequences of hand poses based
on text instructions: (a) ”The person uses the hammer,” (b)
”The person pours from the teapot,” and (c) ”The person
uses the scissors.” Our method demonstrates more accurate
and natural hand grips and transitions, enhancing the realism
of the interactions compared to IMoS[10].

interaction and facilitating training in virtual environments,
our technology has the potential to improve accessibility and
inclusivity across various domains.

Data Privacy and Security: Our framework relies on
publicly available datasets and does not collect or utilize
personal or sensitive data. We recognize the importance
of ensuring that datasets used in AI research are ethically
sourced, adequately anonymized, and used in compliance
with privacy standards. Future applications of this technology
must adhere to these principles to prevent privacy violations.

Bias and Representation: The quality and generalizabil-
ity of our model are inherently tied to the diversity and scale
of the training data. For example, if certain demographics or
object types are underrepresented in the data, the generated
interactions may not generalize well to those cases. To
mitigate these risks, we have focused on improving diversity
in our training process. However, further research is needed
to ensure the inclusion of a broader range of human-object
interactions, considering factors such as cultural and social
diversity.

Misuse and Unintended Consequences: As with any
generative model, there is potential for misuse, such as gener-
ating deepfakes or misleading content. While our framework
is designed for legitimate applications like human-computer
interaction and robotics, malicious actors could repurpose
this technology for harmful or deceptive purposes. It is
critical for developers, regulators, and policymakers to work
together in establishing guidelines and controls to limit the
misuse of synthetic content generation systems.

In summary, while this research presents significant ad-
vancements, we acknowledge the potential risks and encour-
age ongoing discourse around the ethical use of generative
models. We advocate for the responsible deployment of this
technology in ways that prioritize fairness, security, and
transparency.
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