Facial Expression Analysis

Fernando De la Torre and Jeffrey F. Cohn

Abstract The face is one of the most powerful channels of nonverbal communi-
cation. Facial expression provides cues about emotion, intention, alertness, pain,
personality, regulates interpersonal behavior, and communicates psychiatric and
biomedical status among other functions. Within the past 15 years, there has been in-
creasing interest in automated facial expression analysis within the computer vision
and machine learning communities. This chapter reviews fundamental approaches
to facial measurement by behavioral scientists and current efforts in automated fa-
cial expression recognition. We consider challenges, review databases available to
the research community, approaches to feature detection, tracking, and representa-
tion, and both supervised and unsupervised learning.

keywords : Facial expression analysis, Action unit recognition, Active Appear-
ance Models, temporal clustering.

1 Introduction

Facial expression has been a focus of research in human behavior for over a hun-
dred years [30]. It is central to several leading theories of emotion [ 14, 38] and
has been the focus of, at times, heated debate about issues in emotion science. Fa-
cial expression figures prominently in research on almost every aspect of emotion,
including psychophysiology [66], neural correlates [39], development [84], percep-
tion [2], addiction [47], social processes [52], depression [27] and other emotion
disorders [ | 16]. Facial expression communicates physical pain [100], alertness, per-
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sonality and interpersonal relations [46]. Applications of facial expression analysis
include marketing [105], perceptual user interfaces, human-robot interaction [ 124,
, 98], drowsy driver detection [126], telenursing [29], pain assessment [79], an-
alyzing mother-infant interaction [45], autism [83], social robotics [0, 18], facial
animation [72, ] and expression mapping for video gaming [54] among others.

In part because of its importance and potential uses as well as its inherent chal-
lenges, automated facial expression recognition has been of keen interest in com-
puter vision and machine learning. Beginning with a seminal meeting sponsored
by the US National Science Foundation [41], research on this topic has become
increasingly broad, systematic, and productive. IEEE-sponsorship of international
conferences (http://www.fg2011.org/), workshops, and a new journal in affective
computing, among other outlets (e.g., IEEE journal System, Man, and Cybernetics
and special issues of journals such as Image, Vision, and Computing Journal) speak
to the vitality of research in this area. Automated facial expression analysis is crit-
ical as well to the emerging fields of Computational Behavior Science and Social
Signal Processing.

Automated facial image analysis confronts a series of challenges. The face and
facial features must be detected in video; shape or appearance information must be
extracted and then normalized for variation in pose, illumination and individual dif-
ferences; the resulting normalized features are used to segment and classify facial
actions. Partial occlusion is a frequent challenge that may be intermittent or continu-
ous (e.g., bringing an object in front of the face, self-occlusion from head turns, eye-
glasses or facial jewelry). While human observers easily accommodate for changes
in pose, scale, illumination, occlusion, and individual differences, these and other
sources of variation represent considerable challenges for computer vision. Then
there is the machine-learning challenge of automatically detecting actions that re-
quire significant training and expertise even for human coders. There is much good
research to do.

We begin with a description of approaches to annotation and then review publi-
cally available databases. Research in automated facial expression analysis depends
on access to large, well-annotated, video data. We then review approaches to feature
detection, representation, and registration, and both supervised and unsupervised
learning of facial expression. We close with implications for future research in this
area. We emphasize approaches researched at Carnegie Mellon University (CMU).
For additional information on other approaches, see [44, s , 93].

2 Annotation of facial expression

Two broad approaches to annotating facial expression are message-judgment and
sign-based [25]. In the former, observers make inferences about the meaning of fa-
cial actions and assign corresponding labels. The most widely used approach of
this sort makes inferences about felt emotion. Inspired by cross-cultural studies
by Ekman [38] and related work by Izard [55], a number of expressions of what
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Fig. 1 Basic faial expression phenotypes. 1, disgust; 2, fear; 3, joy; 4, surprise; 5, sadness; 6,
anger. From

are referred to as basic emotions have been described. These include joy, surprise,
anger, fear, disgust, sadness, embarrassment, and contempt. Examples of the first
six are shown in Figure 1. Message-judgment approaches tend to be holistic; that
is, they typically combine information from multiple regions of the face, implicitly
acknowledge that the same emotion or cognitive state may be expressed in various
ways, and they utilize the perceptual wisdom of human observers, which may in-
clude taking account of context. A limitation is that many of these emotions may
occur infrequently in daily life and much human experience involves blends of two
or more emotions. While a small set of specific expressions that vary in multiple re-
gions of the face may be advantageous for training and testing, their generalizability
to new image sources and applications is limited. Moreover, the use of emotion la-
bels implies that posers are experiencing the actual emotion. This inference often
is unwarranted, as when facial expression is posed or faked, and the same expres-
sion may map to different felt emotions. Smiles, for instance, occur in both joy and
embarrassment [1].

AU 4: Brow lowering AU 7: Tightening of eyelids

AU 43: Closing eyes
AU 9: Wrinkling of nose
AU 6: Cheek raising

AU 12: Pulling at AU 10: Raising of upper lip
corner lip

AU 25: Parting lips

Fig. 2 An example of facial action units associated with a prototypic expression of pain [79].

In a sign-based approach, physical changes in face shape or texture are the de-
scriptors. The most widely-used approach is that of Ekman and colleagues. Their Fa-
cial Action Coding System (FACS) [40] segments the visible effects of facial muscle
activation into “action units”. Each action unit is related to one or more facial mus-
cles. The Facial Action Coding System (FACS) is a comprehensive, anatomically-
based system for measuring nearly all visually discernible facial movement. FACS
describes facial activity on the basis of 44 unique action units (AUs), as well as sev-
eral categories of head and eye positions and movements. Facial movement is thus
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described in terms of constituent components, or AUs. Any facial event (for exam-
ple, an emotion expression or paralinguistic signal) may be decomposed into one
or more AUs. For example, what has been described as the felt or Duchenne smile
typically includes movement of the zygomatic major (AU12) and orbicularis oculi,
pars lateralis (AU6).

| Upper Face Action Units |
AUl AU2 AU4 AUS AU6 AU7
y P— ]
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- 1
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Lip Droop Slit Eyes Closed Squint Blink Wink

Fig. 3 FACS action units (AU) for the upper face. From [24].

The FACS taxonomy was defined by manually observing graylevel variation be-
tween expressions in images and to a lesser extent by recording the electrical ac-
tivity of underlying facial muscles [24]. Depending on which edition of FACS is
used, there are 30 to 44 AUs and additional "action descriptors.” Action descriptors
are movements for which the anatomical basis is not established. More than 7000
AU combinations have been observed [103]. Tables 3 and 4 illustrate AUS from
the upper and lower portions of the face, respectively. Figure 2 provides an exam-
ple in which FACS action units have been used to label a prototypic expression of
pain. Because of its descriptive power, FACS has become the standard for facial
measurement in behavioral research and has supplanted use of message-judgment
approaches in automated facial image analysis. As well, FACS has become influen-
tial in the related area of computer facial animation. The MPEG-4 facial animation
parameters [92] are derived from FACS.

Facial actions can vary in intensity, which FACS represents at an ordinal level of
measurement. The original (1978) version of FACS included criteria for measuring
intensity at 3 levels (X, Y, and Z). The more recent 2002 edition provides criteria
for measuring intensity at 5 levels, ranging from A to E. FACS scoring produces a
list of AU-based descriptions of each facial event in a video record. Fig. 5 shows
an example for FACS coding AU12 (Smile), where the onset, peak and offset are
labeled.

For both message-judgment and sign-based approaches, the reliability of human
coding has been a neglected topic in the automated facial expression recognition lit-
erature. With some exceptions, publically available databases (Table 1) and research
reports fail to provide information about inter-observer reliability or agreement. This
is an important lack, in that inter-system agreement between manual and automated
coding is inherently limited by intra-system agreement. If manual coding disagrees
about the ground truth used to train classifiers, it is unlikely that classifiers will sur-
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pass them. Inter-system reliability can be considered in numerous ways [26]. These
range from the precision of measurement of onsets, peaks, offsets, and changes in
action unit intensity, to whether or not observers agree on action unit occurrence
within some number of frames. More attention to reliability of coding would be
useful in evaluating training data and test results. Sayette and Cohn [102] found
inter-observer agreement varied among AU. Agreement for AU 7 (lower lid tight-
ener) was relatively low, possibly due to confusion with AU 6 (cheek raiser). Some
AU may occur too infrequently to measure reliably (e.g., AU 11). Investigators may
want to consider pooling some AU to achieve more reliable units.

Agreement between human coders is better when temporal precision is relaxed.
In behavioral research, it is common to expect coders to agree only within a second
window. In automated facial image analysis, investigators typically assume exact
agrement between classifiers and ground truth, which is a level of temporal precision
beyond what may be feasible for many AU [24].

| Lower Face Action Units |
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Fig. 4 Action units of the lower face. From [24].

3 Databases

The development of robust facial recognition algorithms requires well labeled
databases of sufficient size that include carefully controlled variations of pose, il-
lumination and resolution. Publicity available databases are necessary to compara-
tively evaluate algorithms. Collecting a high quality database is a resource-intensive
task. The availability of public facial expression databases is important for the ad-
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Actian Unit

Onset Peak

Fig. 5 FACS coding typically involves frame-by-frame inspection of the video, paying close at-
tention to subtle cues such as wrinkles, bulges, and furrows to determine which facial action units
have occurred and their intensity. Full labeling requires marking onset, peak and offset of the ac-
tion unit and all changes in intensity. Full coding generally is too costly. Left to right, evolution of
an AU 12 (involved in smiling), from onset, peak, to offset.

vancement of the field. Table 1 illustrates the characteristics of publicly available
databases.

Most face expression databases have been collected by asking subjects to per-
form a series of expressions. These directed facial action tasks may differ in ap-
pearance and timing from spontaneously occurring behavior. Deliberate and spon-
taneous facial behavior are mediated by separate motor pathways, the pyramidal
and extrapyramidal motor tracks, respectively. As a consequence, fine-motor con-
trol of deliberate facial actions is often inferior and less symmetrical than what oc-
curs spontaneously. Many people, for instance, are able to raise their outer brows
spontaneously while leaving their inner brows at rest; few can perform this action
voluntarily. Spontaneous depression of the lip corners (AU 15) and raising and nar-
rowing the inner corners of the brow (AU 1+4) are common signs of sadness. With-
out training, few people can perform these actions deliberately, which incidentally is
an aid to lie detection [36]. Differences in the temporal organization of spontaneous
and deliberate facial actions are particularly important in that many pattern recog-
nition approaches, such as hidden Markov Models (HMMs), are highly dependent
on the timing of the appearance change. Unless a database includes both deliberate
and spontaneous facial actions, it will likely prove inadequate for developing face
expression methods that are robust to these differences.

4 Facial feature tracking, registration and feature extraction

Prototypical expression and AU detection from video are challenging computer vi-
sion and pattern recognition problems. Some of the most important challenges are:
(1) non-frontal pose and moderate to large head motion make facial image registra-
tion difficult, (2) classifiers can suffer from over-fitting when trained with relatively
few examples for each AU; (3) many facial actions are inherently subtle making
them difficult to be model; (4) individual differences among faces in shape and ap-
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Face Detection f
Facial Feture Tracking

Image / Video In Feature Extraction Classification

Fig. 6 Block diagram of our the CMU system. The face is tracked using an AAM; shape and
appearance features are extracted, normalized, and output to a linear SVM for action unit or ex-
pression detection.

pearance make the classification task difficult to generalize across subjects; (5)tem-
poral dynamics of AUs are highly variable. These differences can signal different
communicative intentions [62], levels of distress [9], and presents a challenge for
detection and classification; (6) and the number of possible combinations of 40+
individual action units numbers in the thousands (more than 7000 action unit com-
binations have been observed [42]). To address these issues over the last 20 years, a
large number of facial expression and AU recognition/detection systems have been
proposed. Some of the leading efforts include those at: Carnegie Mellon Univer-
sity [110, 80, s ], University of California, San Diego [7, 69], University
of Illinois at Urbana-Champaign [23, ], Rensselaer Polytechnic Institute [115],
Massachusetts Institute of Technology [43], University of Maryland [ 13, 1, Im-
perial College [121, 59, 95], IDIAP Dalle Molle Institute for Perceptual Artificial
Intelligence [44], and others [81, ].

Most facial expression analysis systems are composed of three main modules: (1)
face detection, facial feature tracking and registration, (2) feature extraction and (3)
supervised or unsupervised learning. Figure 6 illustrates an example of these three
modules. In the following sections we will discuss each of these modules in more
detail with emphasis in the current CMU system. For other systems see [44, ,

1.

4.1 Facial feature detection and tracking

Face detection is an initial step in most automatic facial expression recognition sys-
tems. For real-time, frontal face detection, the Viola and Jones [125] face detector
is arguable the most commonly employed algorithm. See [135] for a survey of re-
cent advances in face detection. Once the face is detected two approaches to regis-
tration are common. One performs coarse registration by detecting a sparse set of
facial features (e.g., eyes) in each frame. The other detects detailed features (i.e.
dense points around the eyes and other facial landmarks) in the video sequence.
In this section we will describe a unified framework for the latter, which we refer
to as Parameterized Appearance Models (PAMs). PAMs include the Lucas-Kanade
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method [74], Eigentracking [12], Active Appearance Models [28, 34, 87, 33], and
Morphable Models [14, 57], that have been popular approaches for facial feature
detection, tracking and modeling faces in general.

PAMs are among the most popular methods for facial feature detection and face
alignment in general. PAMs for faces build an appearance and/or shape represen-
tation from the principal components of labeled training data. Let d; € R”*! (see
Footnote 1 for an explanation of the notation') be the " sample of a training set
D € R"™*" of n samples, where each vector d; is a vectorized image of m pixels. In a
training set, each face image is previously manually labeled with p landmarks. A 2p-
dimensional shape vector is constructed by stacking all (x,y) positions of the land-
marks as s = [x;y1;X2;y2; ;xp;yp}. Fig. 9.a shows an example of several face im-
ages that have been labeled with 66 landmarks. Given the labeled training samples,
Procrustes analysis [28] is applied to the shape vectors to remove two-dimensional
rigid transformations. After removing rigid transformation with Procrustes, Prin-
cipal Component Analysis (PCA) is applied to the shape vectors to build a linear
shape model. The shape model can reconstruct any shape on the training shape as
the mean (sg) and linear combination of a shape basis (U*) (eigenvectors of the
shape covariance matrix), that is, s ~ sg + U*c’, where ¢* are the shape coefficients.
U’ spans the shape space that accounts for identity, expression and pose variation
in the training set. Figure 7(a) shows the shape mean and three PCA bases. Sim-
ilarly, after backwarping the texture to a canonical configuration, the appearance
(normalized graylevel) is vectorized into an m dimensional vector and stacked into
the n columns of D € R™*". The appearance model, U € R"*F is computed by
calculating the first k£ principal components [56] of D. Figure 7(b) shows the mean
appearance and the three PCA bases. Figure 7(c) contains face images generated
using the AAM by setting appropriate parameters of shape and texture.

Once the appearance and shape model have been learned from training samples
(i.e., U,U* is known), alignment is achieved by finding the motion parameter p that
best aligns the image w.r.t. the subspace U by minimizing:

min [|d(f(x,p)) — Ue|[3, (1)
where ¢ is the vector for the appearance coefficients. x = [x1,yy,...x;,]” is the co-
ordinate vector with the pixels to track. f(x, p) is the function for geometric transfor-
mation; the value of f(x,p) is a vector denoted by [uy,v1,...,u;,v;]”. d is the image
frame in consideration, and d(f(x, p)) is the appearance vector of which the i’ entry
is the intensity of image d at pixel (u;,v;). For affine and non-rigid transformations,

(u;,v;) relates to (x;,y;) by:
u; a a x5 as
- 1 d2 l? + 3. (2)
Vi aq as Vi dag
1 Bold uppercase letters denote matrices (e.g., D), bold lowercase letters denote column vectors
(e.g., d). d; represents the j”* column of the matrix D. d;; denotes the scalar in the row i and

column j* of the matrix D. Non-bold letters represent scalar variables. 17(D) = ¥, d;; is the trace
of square matrix D. ||d|| = v dTd designates Euclidean norm of d.
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Here [x},y},...x, y‘l"]T = x+ U*c’. The affine and non-rigid motion parameters are
a, ¢’ respectively, and p = [a;c®| a combination of both affine and non-rigid motion
parameters. In the case of the Lukas-Kanade tracker [74], ¢ is fixed to be one and
U is the subspace that contains a single vector, the reference template which is the
appearance of the tracked object in the initial/previous frame.

Given an unseen facial image d, facial feature detection or tracking with PAM
alignment algorithms optimize (1). Due to the high dimensionality of the motion
space, a standard approach to efficiently search over the parameter space is to use
gradient-based methods [10, 12, 5, 28, 87, 31]. To compute the gradient of the cost
function given in (1), it is common to use Taylor series expansion to approximate:

d(f(x,p+ 6p)) ~ d(f(x,p)) + Jpd(p)dp, 3)

where Jpd(p) = w is the Jacobian of the image d w.r.t. to the motion parame-
ter p [74]. Once linearized, a standard approach is to use the Gauss-Newton method
for optimization [10, 12]. Other approaches learn an approximation of the Jacobian
matrix with linear [28] or non-linear [101, 71] regression. Fig. 9.a shows an example
of tracking 66 facial features with an AAM in the RU-FACS database [7].

Fig. 7 (a) The figure shows the mean and first two modes of variation of 2D AAM shape (a-c) and
appearance (d-f) variation and the mean and first two modes of 3D AAM shape. IEEE. From [88].

4.2 Registration and feature extraction

After the face has been detected and the facial feature points have been tracked, the
next two steps registration and feature extraction follow.

Registration: The main goal of registration is to normalize the image to remove
3D rigid head motion, so features can be geometrically normalized. 3D transforma-
tions could be estimated from monocular (up to a scale factor) or multiple cameras
using structure from motion algorithms [51, ]. However, if there is not much out
of plane rotation (i.e. less than about 15 to 20 degrees) and the face is relatively far
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Fig. 8 Registration with two-step alignment.

away from the camera (assume orthographic projection), the 2D projected motion
field of a 3D planar surface can be recovered with an affine model of six parame-
ters. In this situation, simpler algorithms may be used to register the image to extract
normalized facial features.

Following [106, 141] a similarity transform registers facial features with respect
to an average face (see middle column in Fig. 8). To extract appearance representa-
tions in areas that have not been explicitly tracked (e.g., nasolabial furrow), we use
a backward piece-wise affine warp with Delaunay triangulation. Fig. 8 shows the
two step process for registering the face to a canonical pose for facial expression
recognition. Purple squares represent tracked points and blue dots represent non-
tracked meaningful points. The dashed blue line shows the mapping between the
point in the mean shape and the corresponding points on the original image. Using
an affine transformation plus backwarping, we can preserve the shape variation in
appearance better than by geometric normalization alone. This two-step registration
proves particularly important to detect low intensity AUs.

Geometric features: After the registration step, the shape and appearance fea-
tures can be extracted from the normalized image. Geometric features contain infor-
mation about shape and the locations of permanent facial features (e.g., eyes, brows,
nose). Approaches that use only geometric features (or their derivatives) mostly rely
on detecting sets of fiducial facial points [94, 96, 121], a connected face mesh or ac-
tive shape model [20, 22, 61], or face component shape parametrization [I11].
Some prototypical features include [106]: xf the distance between inner brow and
eye, xg the distance between outer brow and eye, xgj the height of eye, xf the height
of lip, x5 the height of teeth, and x4 the angle of mouth corners, see Figure (9b).
However, shape features alone are unlikely to capture differences between subtle
facial expressions or ones that are closely related. Many action units that are easily
confusable by shape (e. g., AU 6 and AU 7 in FACS) can be discriminated by dif-
ferences in appearance (e. g., furrows lateral to the eyes and cheek raising in AU 6
but not AU 7). Other AUs such as AU 11 (nasolabial furrow deepener), 14 (mouth
corner dimpler), and 28 (inward sucking of the lips) can not be detected from the
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movement of a sparse set of points alone but may be detected from changes in skin
texture.

Appearance features: Represent the appearance (skin texture) changes and tex-
ture of the face, such as wrinkles and furrows. Appearance features for AU detec-
tion [7, , 69, 50, 3] outperformed shape only features for some action units,
especially when registration is noisy see Lucey et al. [80, 4, 77] for a comparison.

Several approaches to appearance have been explored. Gabor wavelet coeffi-
cients are a popular approach. In several studies, Gabor wavelet coefficients outper-
formed optical flow, shape features, and Independent Component Analysis represen-
tations [3]. Tian [111, ], however, reported that the combination of shape and
appearance achieved better results than either shape or appearance alone. Recently,
Zhu et al. [141] have explored the use of SIFT [73] and DAISY [!12] descriptors as
appearance features. Given feature points tracked with AAMs, SIFT descriptors are
first computed around the points of interest. SIFT descriptors are computed from
the gradient vector for each pixel in the neighborhood to build a normalized his-
togram of gradient directions. For each pixel within a subregion, SIFT descriptors
add the pixel’s gradient vector to a histogram of gradient directions by quantizing
each orientation to one of 8 directions and weighting the contribution of each vector
by its magnitude. Similar in spirit to SIFT descriptors, DAISY descriptors are an ef-
ficient feature descriptor based on histograms. They are often used to match stereo
images [112]. DAISY descriptors use circular grids instead of SIFT descriptors’
regular grids; the former have been found to have better localization properties [89]
and to outperform many state-of-the-art feature descriptors for sparse point match-
ing [113]. At each pixel, DAISY builds a vector made of values from the convolved
orientation maps located on concentric circles centered on the location. The amount
of Gaussian smoothing is proportional to the radius of the circles. Donato [37] com-
bined Gabor wavelet decomposition and independent component analysis. These
representations use graylevel texture filters that share properties of spatial locality,
independence, and have relationships to the response properties of visual cortical
neurons. Zheng [136] investigated the use of two types of features extracted from
face images for recognizing facial expressions. The first type is the geometric po-
sitions of a set of fiducial points on a face. The second type is a set of multi-scale
and multi-orientation Gabor wavelet coefficients extracted from the face image at
the fiducial points.

Other features: Other popular technique for feature extraction include more dy-
namic features such as optical flow [3], dynamic textures [21] and motion history
images (MHI) [16]. In an early exploration of facial expression recognition, Mase
[86] used optical flow to estimate the activity in a subset of the facial muscles.
Essa [43] extended this approach by using optic flow to estimate activity in a de-
tailed anatomical and physical model of the face. Motion estimates from optic flow
were refined by the physical model in a recursive estimation and control frame-
work. The estimated forces were used to classify facial expressions. Yacoob and
Davis [129] bypassed the physical model and constructed a mid-level representa-
tion of facial motion, such as a right mouth corner raise, directly from the optical
flow. Ira et al. [22] implicitly recovered motion representations by building features
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Fig.9 (a) AAM fitting across different subJects. (b) Eight different features extracted from distance
between tracked points, height of facial parts, angles for mouth corners, and appearance patches.

such that each feature motion corresponded to a simple deformation of the face.
Motion history images (MHIs) were first proposed by Davis and Bobick [16]. MHIs
compress the motion over a number of frames into a single image. This is done
by layering the thresholded differences between consecutive frames one over the
other. Valstar et al. [119] encoded face motion into Motion History Images. Zhao et
al. [137] use volume local binary patterns (LBP), a temporal extension of local bi-
nary patterns often used in 2D texture analysis. The face is divided into overlapping
blocks and the extracted LBP features in each block are concatenated into a single
feature vector.

5 Supervised learning

Supervised and more recently unsupervised approaches to action unit and expres-
sion detection have been pursued. In supervised learning event categories are de-
fined in advance in labeled training data. In unsupervised learning no labeled train-
ing data are available and event categories must be discovered. In this section we
discuss the supervised approach.

Early work in supervised learning sought to detect the six universal expressions
of joy, surprise, anger, fear, disgust, and sadness, see Fig. 1. More recent work has at-
tempted to detect expressions of pain [4, 79, 70], drowsiness, adult attachment [ 132],
and indices of psychiatric disorder [27, 60]. Action unit detection remains a com-
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pelling challenge especially in unposed facial behavior. An open question is whether
emotion and similar judgment-based categories are best detected by first detecting
AU or by direct detection in which an AU detection step is bypassed. Work on this
topic is just beginning [68, 79] and the question remains open.

Whether the focus is expression or AU, two main approaches have been pursued
for supervised learning. These are (1) static modeling—typically posed as a dis-
criminative classification problem in which each video frame is evaluated indepen-
dently; and (2) temporal modeling— in which frames are segmented into sequences
and typically modeled with a variant of dynamic Bayesian networks (e.g., Hidden
Markov Models, Conditional Random Fields).

5.1 Classifiers

In the case of static models, different feature representations and classifiers for
frame-by-frame facial expression detection have been extensively studied. The pio-
neering work of Black and Yacoob [13] recognized facial expressions by fitting local
parametric motion models to regions of the face and then feeding the resulting pa-
rameters to a nearest neighbor classifier for expression recognition. Tian et al. [109]
made use of Neural Network classifiers for facial expression recognition. Barlett et
al. [69, 7, 8] used Gabor filters in conjunction with AdaBoost feature selection fol-
lowed by a Support Vector Machine (SVM) classifier. Lee and Elgammal [65] used
multi-linear models to construct a non-linear manifold that factorizes identity from
expression. Lucey et al. [80, 75] evaluated different shape and appearance represen-
tations derived from an AAM facial feature tracker, and an SVM for classification.
Similarly, [137] made use of a SVM.

More recent work has focused on incorporating the dynamics of facial expres-
sions to improve recognition performance (i.e. temporal modeling). De la Torre
et al. [35] used condensation and appearance models to simultaneously track and
recognize facial expression. Chang et al. [20] used a low dimensional Lipschitz
embedding to build a manifold of shape variation across several people and then
used I-condensation to simultaneously track and recognize expressions. A popular
strategy is to use HMMs to temporally segment expressions by establishing a cor-
respondence between the action’s onset, peak, and offset and an underlying latent
state. Valstar and Pantic [121] used a combination of SVM and HMM to tempo-
rally segment and recognize AUs. Valstar and Pantic [123, 94, ] proposed a
system that enables fully automated robust facial expression recognition and tem-
poral segmentation of onset, peak and offset from video of mostly frontal faces.
Koelstra and Pantic [59] used GentleBoost classifiers on motion from a non-rigid
registration combined with an HMM. Similar approaches include a nonparamet-
ric discriminant HMM from Shang and Chan [104], and partially-observed Hidden
Conditional Random Fields by Chang et al. [19]. For other comprehensive surveys
see [44, 95, , ]. Tong et al. [115] used Dynamic Bayesian Networks with
appearance features to detect facial action units in posed facial behavior. The cor-
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relation among action units served as priors in action unit detection. Ira et al. [22]
used a Bayesian network classifiers for classifying the six universal expressions
from video. In particular they used a Naive-Bayes classifiers and change the distri-
bution from Gaussian to Cauchy, and use Gaussian Tree-Augmented Naive Bayes
(TAN) classifiers to learn the dependencies among different facial motion features.

5.2 Selection of positive and negative samples during training

Previous research in expression and AU detection has emphasized types of registra-
tion methods, features and classifiers (e.g., [97, , 67, , ]). Little attention
has been paid to make efficiently use of the training data for assignment of video
frames to positive and negative classes. Typically, assignment has been done in one
of two ways. One is to assign to the positive class those frames that occur at the
peak of each AU or proximal to it. Peaks refer to the maximum intensity of an ac-
tion unit between the frame at which begins ("onset”) and ends ("offset”). Negative
class then is chosen by randomly sampling other AUs, including AU O or neutral.
This approach suffers at least three drawbacks: (1) the number of training exam-
ples will often be small, which results in a large imbalance between positive and
negative frames; and (2) peak frames may provide too little variability to achieve
good generalization. These problems may be circumvented by following an alterna-
tive approach; that is to include all frames from onset to offset in the positive class.
This approach improves the ratio of positive to negative frames and increases rep-
resentativeness of positive examples. The downside is confusability of positive and
negative classes. Onset and offset frames and many of those proximal or even further
from them may be indistinguishable from the negative class. As a consequence, the
number of false positives may dramatically increase. Moreover, how to make use of
all negative samples in an efficient manner?. Is there a better approach to selecting
positive and negative training samples?

In this section, we consider two approaches that have shown promise; one static
and one dynamic. We illustrate the methods with particular classifiers and features,
but the methods are not specific to the specific features or classifiers. As before, we
distinguish between static and dynamic approaches. In the former, video frames are
assumed to be independent. In the latter, first-order dependencies are assumed.

5.2.1 Static approach

Recently, Zhu et al. [141] proposed an extension of cascade Adaboost called Dy-
namic Cascade Bidirectional Bootstrapping (DCBB) to iteratively select positive
samples and improve AU detection performance. In the first iteration, DCBB se-
lected only the peaks and the two neighboring frames as positive frames, and ran-
domly sample other AUs and non-AUs as negative samples. As in standard Ad-
aBoost [125], DCBB defines the false positive target ratio, the maximum accept-
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Fig. 10 ROC:s for AU detection using DBCC: See text for the explanation of Init+Boost, spread x
and All+Boost.

able false positive ratio per cascade stage, and the minimum acceptable true posi-
tive ratio per each of the cascades. DCBB uses Classification and Regression Tree
(CART) [17] as a weak classifier. Once a cascade of peak frame detectors is learned
in the first iteration, DCBB enlarges the positive set to increase the discriminative
performance of the whole classifier. The new positive samples are selected after run-
ning the current classifier (learned in the previous iteration) in the original training
data and selecting for the new positive training set the frames that were classified as
positive. Recall that we have only trained with the peak frames in the first iteration.
For more details see [141].

Figure 10 shows the improvement in the Receiver-Operator Characteristic (ROC)
curve for testing data (subjects not in the training) using DCBB for three AUs
(AU12, AU14, AU17). The ROC is obtained by plotting true positives ratios against
false positives ratios for different decision threshold values of the classifier. In each
subfigure there are five or six ROCs corresponding to alternative selection strategies:
using only peak in the first step (same as standard Cascade AdaBoost), running three
or four iterations in DCBB (spread x), and using all the frames between onset and
offset (All+Boost). That is, there are three results shown using different positive
training samples: 1) peak frames (first step); 2) all frames between onset and off-
set(All+Boost); and 3) iterations of DCBB (spread x). The first number between
lines | denotes the area under the ROC, the second number is the size of positive
samples in the testing dataset and separated by / is the size of negative samples in
the testing dataset. The third number denotes the size of positive samples in train-
ing working sets and separated by / the total frames of target AU in training data
sets. We can observe that the area under the ROC for frame-by-frame detection is
improved gradually during each learning stage and the performance improves faster
for some AU rather than others. Improvement rate appears to be influenced by the
base rate of the AU. For AU14 and AU17, fewer potential training samples are avail-
able than for AU12.

Top of Figure 11 shows the manual labeling for AU12 of the subject SO15. We
can see eight instances of AU12 with varying intensities ranging from A (weak) to E
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Fig. 11 The spreading of positive samples during each dynamic training step for AU12. See text
for the explanation of the graphics.

(strong). The strong AUs are represented by rectangles of height 4 and the weak ones
with height 1. The remaining eight figures illustrates the sample selection process
for each of the instances of the AU12. In the top right of each subfigure there is the
corresponding AU instance number. The black curve in the bottom of the subfigures
represents the similarity between the peak and the neighboring frames. The peak
is the maximum of the curve. The positive samples in the first step are represented
by green asterisks, in the second iteration by red crosses, in the third iteration by
blue crosses, and in the final iteration by black circles. Observe that in the case of
high peak intensity, subfigures 3 and 8 (top right number in the similarity plots), the
final selected positive samples contain areas with low similarity values. However,
when AU intensity is low, subfigure 7, the positive samples are only selected if they
have a high similarity with the peak because otherwise we would select samples that
will lead to many false positives. The ellipses and rectangles in the figures contain
frames that are selected as positive samples, and correspond to strong and subtle
AUs. The triangles correspond to frames between the onset and offset that are not
selected as positive samples, and represent the ambiguous AUs.

Table 12 shows the area under the ROC for 14 AUs using DCBB and different set
of features. The appearance features are based on SIFT descriptors. For all AUs the
SIFT descriptor is built using a square of 48 x 48 pixels for twenty feature points for
the lower face AUs or sixteen feature points for upper face. The shape features are
the landmarks of the AAM. For more details see [141]. It is important to notice that
the results illustrated in this section are obtained using a particular set of features
and classifiers, but the strategy of positive sample selection in principle can be used
with any combination of classifiers and features.



18 Fernando De la Torre and Jeffrey F. Cohn

[ [[AUI]AU2]AU4[AU5[AU6[AU7[AUI0[AUI2[AUI4]AUI5[AU17[AUIS[AU23]

‘S’eva;‘fhp* 0.71/0.62]0.76|0.58[0.93 | 0.64| 0.61 | 0.89 | 0.57 | 0.73 | 0.66 | 0.86 | 0.74

Q\l};/[shp‘f 0.68]0.65(0.780.55]0.88|0.64| 0.67 | 077 | 0.72 | 0.61 | 0.72 | 0.88 | 0.67

l;:’/a;j[‘LAppJ’ 0.4310.45[0.61(0.86(0.77]|0.67| 0.63 | 0.90 | 0.50 | 0.69 | 0.53 | 0.95 | 0.62
All+PCA+
App+SVM
Peak+App+ 0.75{0.71{0.53(0.49(0.93|0.56| 0.52 | 0.83 | 0.50 | 0.52 | 0.59 | 0.57 | 0.34

Cascade Boost

DCBB 0.76|0.75{0.760.77 | 0.970.69| 0.72 | 0.92 | 0.72 | 0.86 | 0.81 | 0.86 | 0.75

0.74(0.7410.85]|0.89|0.96 (0.63| 0.54 | 0.91 | 0.82 | 0.86 | 0.78 | 0.94 | 0.54

Fig. 12 Area under the ROC for six different appearance and sampling strategies. AU peak
frames with shape features and SVM (Peak+Shp+SVM), All frames between onset and offset
with shape features and SVM (All+Shp+SVM), AU peak frames with appearance features and
SVM (Peak+App+SVM), Sampling 1 frame in every 4 frames between onset and offset with
PCA reduced appearance features and SVM (All+PCA+App+SVM), AU peak frames with ap-
pearance features and Cascade AdaBoost (Peak+App+Cascade Boost), DCBB with appearance
features (DCBB).

5.2.2 Dynamic approach

Extensions of dynamic Bayesian Networks have been a popular approach for ex-
pression analysis [115, 104, 22, 121]. A major challenge for dynamic Bayesian net-
works based on generative models such as HMMs is how to effectively model the
null class (none of the labeled classes) and how to train effectively on all possible
segments of the video (rather than independent features). In this section, we review
recent work on a temporal extensions of a bag-of-words (BoW) model called kSeg-
SVM [106] that overcomes these drawbacks. kSeg-SVM is inspired by the success
of the spatial BoW sliding-window model [ 5] that has been used in difficult object
detection problems. We pose the AU detection problem as one of detecting temporal
events (segments) in time series of visual features. Events correspond to AUSs, in-
cluding all frames between onset and offset (see Figure 13). kSeg-SVM represents
each segment as a BoW; however, the standard histogram of entries is augmented
with a soft-clustering assignment of words to account for smoothly-varying sig-
nals. Given several videos with AU labeled events, kSeg-SVM learns the SVM pa-
rameters that maximize the response on positive segments (AU to be detected) and
minimize the response in the rest of the segments (all other positions and lengths).
Figure 13 illustrates the main idea of kSeg-SVM.

kSeg-SVM can be efficiently trained on all available video using the Structure
Output SVM (SO-SVM framework) [ 17]. Recent research [90] in the related area
of sequence-labeling has shown that SO-SVMs can out-perform other algorithms in-
cluding Hidden Markov Model (HMM), Conditional Random Field [63] and Max-
Margin Markov Networks [107]. SO-SVMs have several benefits in the context of
AU detection: (1) they model the dependencies between visual features and the dura-
tion of AUs; (2) they can be trained effectively on all possible segments of the video
(rather than on independent sequences); (3) they explicitly select negative examples
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that are most similar to the AU to be detected; and (4) they make no assumptions
about the underlying structure of the AU events (e.g., i.i.d.). Finally, a novel param-
eterization of the output space is proposed to handle multiple AU event occurrences
such that occur in long time series and search simultaneously for the k-or-fewer best
matching segments in the time-series.

—————————

Most similar negative segment

Most constraining training
sample

Fig. 13 During testing, the AU events are found by efficiently searching over the segments (po-
sition and length) that maximize the SVM score. During training, the algorithm searches over all
possible negative segments to identify those hardest to classify, which improves classification of
subtle AUs.

Given frame-level features, we will denote each processed video sequence i as

x; € R where d is the number of features and m; is the number of frames in
the sequence. To simplify, we will assume that each sequence contains at most one
occurrence of the AU event to be detected. For extensions to k-or-fewer occurrences
see [106]. The AU event will be described by its corresponding onset to offset frame
range and will be denoted by y; € Z?. Let the full training set of video sequences
be xi,- - ,X, € 2, and their associated ground truth annotations for the occurrence
of AUs yi,---,y, € . We wish to learn a mapping f : Z~ — % for automatically
detecting the AU events in unseen signals. This complex output space contains all
contiguous time intervals; each label y; consists of two numbers indicating the onset
and the offset of an AU:

Y ={yly=0ory=[s,e] € 2’1 <s<e}. )

The empty label y = 0 indicates no occurrence of the AU. We will learn the mapping
f as in the structured learning framework [ 18, 15] as:

f(X) = argmaxyé@g(x7y)7 (5)

where g(x,y) assigns a score to any particular labeling y; the higher this value is, the
closer y is to the ground truth annotation. For structured output learning, the choice
of g(x,y) is often taken to be a weighted sum of features in the feature space:
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g(x,y) =w o(xy). (6)

where @(x,y) is a joint feature mapping for the segment x and the candidate label
y, and w is the weight vector. Learning f can therefore be posed as an optimization
problem:

1 d
m1n.§||w||2+CZ§,-7 (7
w,‘g i=1

stw o(xi,yi) > w o(xi,y) +A(yi,y) — & Vy,
& >0V

Here, A(y;,y) is a loss function that decreases as a label y approaches the ground
truth label y;. Intuitively, the constraints in Eq. 7 force the score of g(x,y) to be
higher for the ground truth label y; than for any other value of y, and moreover, to
exceed this value by a margin equal to the loss associated with labeling y.

Tab. 5.2.2 shows the experimental results on the RU-FACS-1 dataset. As can
be seen, kSeg-SVM consistently outperforms frame-based classification. It has the
highest ROC area for 7 out of 10 AUs. Using the ROC metric, kSeg-SVM appears
comparable to standard SVM. kSeg-SVM achieves highest F'1 score on 9 out of 10
test cases. As shown in Tab. 5.2.2, BoW-kSeg performs poorly. There are two pos-
sible reasons for this. First, clustering is done with K-means, an unsupervised, non-
discriminative method that is not informed by the ground truth labels. Second, due
to the hard dictionary assignment, each frame is forced to commit to a single clus-
ter. While hard-clustering shows good performance in the task of object-detection,
our time-series vary smoothly, resulting in large groups of consecutive frames being
assigned to the same cluster.

At this point, it is worth pointing out that until now, a common measure of clas-
sifier performance for AU detection has been the area under the curve (i.e. ROC).
In object detection, the common measure represents the relation between recall and
precision. The two approaches give very different views of classifier performance.
This difference is not unanticipated in the object detection literature, but little atten-
tion has been paid to this issue in facial expression literature. In pattern recognition
and machine learning, a common evaluation strategy is to consider correct classi-
fication rate (classification accuracy) or its complement error rate. However, this
assumes that the natural distribution (prior probabilities) of each class are known
and balanced. In an imbalanced setting, where the prior probability of the positive
class is significantly less than the negative class (the ratio of these being defined as
the skew), accuracy is inadequate as a performance measure since it becomes biased
towards the majority class. That is, as the skew increases, accuracy tends towards
majority class performance, effectively ignoring the recognition capability with re-
spect to the minority class. This is a very common (if not the default) situation in
facial expression recognition setting, where the prior probability of each target class
(a certain facial expression) is significantly less than the negative class (all other fa-
cial expressions). Thus, when evaluating performance of automatic facial expression
recognizer, other performance measures such as precision (this indicates the prob-



Facial Expression Analysis 21

ability of correctly detecting a positive test sample and it is independent of class
priors), recall (this indicates the fraction of the positives detected that are actually
correct and, as it combines results from both positive and negative samples, it is
class prior dependent), F1-measure (this is calculated as 2*recall*precision/( recall
+ precision)), and ROC (this is calculated as P(x—positive)/P(x—negative), where
P(x—C) denotes the conditional probability that a data entry has the class label C,
and where a ROC curve plots the classification results from the most positive to the
most negative classification) are more appropriate.

Area under ROC Max F1 score
BoW- | kSeg- BoW- | kSeg-
AU SVM | HMM2 | HMM4 kSeg | SVM SVM | HMM2 | HMM4 KSeg | SVM
1 0.86 0.85 0.83 0.52 | 0.86 | 048 0.43 0.39 0.13 | 0.59
2 0.79 0.71 0.62 0.45 | 0.81 | 042 0.42 0.18 0.14 | 0.56
6 0.89 0.92 0.92 0.69 [ 091 | 0.50 0.62 0.63 0.28 | 0.59

12 0.94 0.94 0.95 0.77 | 0.94 | 0.74 0.76 0.77 0.61 | 0.78
14 0.70 0.70 0.69 0.56 | 0.68 | 0.20 0.18 0.12 0.17 | 0.27
15 0.90 0.86 0.85 0.49 | 0.90 | 0.50 0.26 0.25 0.04 | 0.59
17 0.90 0.76 0.85 0.51 | 0.87 | 0.55 0.38 0.28 0.06 | 0.56
24 0.85 0.83 0.67 052 | 0.73 | 0.15 0.18 0.05 0.04 | 0.08
1+2 0.86 0.67 0.77 0.46 | 0.89 | 0.36 0.31 0.31 0.12 | 0.56
6+12 || 0.95 0.98 0.98 0.69 | 0.96 | 0.55 0.64 0.63 028 | 0.62

Table 2 Performance on the RU-FACS-1 dataset, ROC metric and F1 metric. Higher numbers
indicate better performance, and best results are printed in bold.

6 Unsupervised learning

With few exceptions, previous work on facial expression or action unit recognition
has been supervised in nature. Little attention has been paid to the problem of un-
supervised temporal segmentation or clustering facial events prior to recognition.
Essa and Pentland [43] proposed an unsupervised probabilistic flow-based method
to describe facial expressions. Hoey [53] presented a multilevel Bayesian network
to learn in a weakly supervised manner the dynamics of facial expression. Bettinger
et al. [11] used AAMs to learn the dynamics of person-specific facial expression
models. Zelnik-Manor and Irani [131] proposed a modification of structure-from-
motion factorization to temporally segment rigid and non-rigid facial motion. De
la Torre et al.[32] proposed a geometric-invariant clustering algorithm to decom-
pose a stream of one person’s facial behavior into facial gestures. Their approach
suggested that unusual facial expressions might be detected through temporal out-
lier patterns. In recent work, Zhou et al. [139] proposed Aligned Cluster Analysis
(ACA), an extension of spectral clustering for time series clustering and embed-
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ding. ACA was applied to discover in unsupervised manner facial actions across
individuals that achieves moderate agreement with FACS. In this section, we briefly
illustrate the applications of ACA for facial expression analysis, and refer the reader
to [139, 140] for further details.

6.1 Facial event discovery for one subject

Figure (14) shows the results of running unsupervised ACA on a video sequence of
1000 frames to summarize the facial expression of an infant into 10 temporal clus-
ters. Appearance and shape features in the eyes and mouth, as described in Section
4.2, are used for temporal clustering. These 10 clusters provide a summarization of
the infant’s facial events. This visual summarization can be useful to automatically
count the amount of time that they baby spend doing a particular facial expression
(i.e. temporal cluster), such as crying, smiling or sleeping.
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Fig. 14 Temporal clustering of infant facial behavior. Each color denotes a temporal unique cluster.
Each facial gesture is coded with a different color. Observe how the frames of the same cluster
correspond to similar facial expressions.

Extensions of ACA [139] can be used for facial expression indexing, given a
sequence labeled by a user. Figure 15(a) on the left shows a frame of a sequence
labeled by the user, and to the right there are six frames representative of the six se-
quences returned by Supervised ACA (SACA). Next to the frames one can observe
the matching score, which become higher the closer the retrieved sequence is to the
user-specified sequence of facial expression.

ACA inherits the benefits of spectral clustering algorithms in that it provides a
mechanism for finding a semantic low-dimensional embedding for time series. In
an evaluation, we tested the ability of unsupervised ACA to temporally cluster im-
ages and provide a visualization tool of several emotion-labeled sequencesuat Fig-
ure 15(b) shows the ACA embedding of 112 sequences from 30 randomly selected
subjects from the Cohn-Kanade database [58]. The frames are labeled with five emo-
tion labels: surprise, sadness, fear, joy and anger. The number of facial expressions
varies across subjects. It is important to notice, that unlike traditional dimensional-
ity reduction methods, each three dimensional point in the embedding represents a
video segment (of possibly different length) containing different facial expression.
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The ACA’s embedding provides a natural mechanism for visualizing facial events
and detecting outliers.

matched sequences

query sequence -l I - o surprise
I o sadness
~ fear
© joy
+ anger

slmllanty score
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Fig. 15 (a) Facial expression indexing. The user specifies a query sequence and Supervised ACA
returns six sequences with similar facial behavioral content as the video sequence selected by the
user. (b) Three dimensional embedding of 30 subjects with different facial expressions from the
Cohn-Kanade database.

6.2 Facial event discovery for sets of subjects

This section illustrates the ability of ACA to discover dynamic facial events in the
more challenging database RU-FACS [7] that contains naturally occurring facial
behavior of multiple people. For this database the labels are AUs. We randomly se-
lected 10 sets of 5 people and reported the mean clustering results and variance. The
clustering accuracy is measured as the overlap between the temporal segmentation
provided by ACA and the manually labeled FACS. ACA achieved an average ac-
curacy of 52.2% in clustering the lower face and 68.8% in upper face using AUs
labels. Figure (16a) shows the results for temporal segmentation achieved by ACA
on subjects S012, S028 and S049. Each color denotes a temporal cluster discovered
by ACA. Figure (16) shows some of the dynamic vocabularies for facial expres-
sion analysis discovered by ACA. The algorithm correctly discovered smiling, with
and without speech as different facial events. Visual inspection of all subjects’ data
suggests that the vocabulary of facial events is moderately consistent with human
evaluation. More details are given in [139].

7 Conclusion and future challenges

Although many recent advances and successes in automatic facial expression analy-
sis have been achieved, as described in the previous sections, many questions remain
open, for which answers must be found. Few challenges remain such as (1) how to
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Fig. 16 (a) Results obtained by ACA for subjects S012, S028 and S049. (b) Corresponding video
frames.

S012

S028

S049

detect subtle AUs: more robust 3D models that effectively decouple rigid and non-
rigid motion and better models that normalize for subject variability are needed to
be researched. (2) More robust real-time systems for face acquisition, facial data
extraction and representation, and facial expression recognition to handle head mo-
tion (both in-plane and out-of-plane), occlusion, lighting change, and low intensity
expressions, all of which are common in spontaneous facial behavior in naturalistic
environments; new 3D sensors such as structure light cameras or time-of-flight cam-
eras can are a promising direction for real-time segmentation (3) most work on facial
expression analysis has been done in the area of recognition (temporal segmentation
is provided), and more specialized machine learning algorithms are needed for the
problem of detection in naturally occurring behavior.

Because most investigators have used relatively limited data sets (with typically
unknown reliability), the generalizability of different approaches to facial expres-
sion analysis remains unknown. With few exceptions, investigators have failed to
report inter-observer reliability and the validity of the facial expressions they have
analyzed. Approaches to facial expression analysis that have been developed in this
way may transfer poorly to applications in which expressions, subjects, contexts, or
image properties are more variable. In the absence of comparative tests on common
data, the relative strengths and weaknesses of different approaches are difficult to
determine. In particular, there is need for fully FACS coded databases with natural
occurring behavior. Because intensity and duration measurements are critical, it is
important to include descriptive data on these features as well.

Facial expression is one of several modes of nonverbal communication. The mes-
sage value of various modes may differ depending on context and may be congruent
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or discrepant with each other. An interesting research topic is the integration of
facial expression analysis with gesture, prosody, and speech. Combining facial fea-
tures with acoustic features would help to separate the effects of facial actions due
to facial expression and those due to speech-related movements.

At present, taxonomies of facial expression are based on FACS or other observer-
based schemes. Consequently, approaches to automatic facial expression recogni-
tion are dependent on access to corpuses of FACS or similarly labeled video. This
is a significant concern, in that recent work suggests that extremely large corpuses
of labeled data may be needed to train robust classifiers. An open question in facial
analysis is of whether facial actions can be learned directly from video in an un-
supervised manner. That is, can the taxonomy be learned directly from video? And
unlike FACS and similar systems that were initially developed to label static expres-
sions, can we learn dynamic trajectories of facial actions? In our preliminary find-
ings [139] on unsupervised learning using the using the RU-FACS database, agree-
ment between facial actions identified by unsupervised analysis of face dynamics
and FACS approached the level of agreement that has been found between inde-
pendent FACS coders. These findings suggest that unsupervised learning of facial
expression is a promising alternative to supervised learning of FACS-based actions.
At least three benefits follow. One is the prospect that automatic facial expression
analysis may be freed from its dependence on observer-based labeling. Second, be-
cause the current approach is fully empirical, it potentially can identify regularities
in video that have not been anticipated by the top-down approaches such as FACS.
New discoveries become possible. Three, similar benefits may accrue in other ar-
eas of image understanding of human behavior. Recent efforts by Guerra-Filho and
Aloimonos [49] to develop vocabularies and grammars of human actions depend on
advances in unsupervised learning. However, more robust and efficient algorithms
that can learn from large databases are needed, as well as algorithms that can cluster
more subtle facial behavior.

While research challenges in automated facial image and analysis remain, the
time is near to apply these emerging tools to real-world problems in clinical science
and practice, marketing, surveillance and human computer interaction.
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