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Abstract. Many unsupervised learning algorithms make use of kernels
that rely on the Euclidean distance between two samples. However, the
Euclidean distance is optimal for Gaussian distributed data. In this pa-
per, we relax the global Gaussian assumption made by the Euclidean
distance, and propose a locale Gaussian modelling for the immediate
neighbourhood of the samples, resulting in an augmented data space
formed by the parameters of the local Gaussians. To this end, we pro-
pose a convolution kernel for the augmented data space. The factorisable
nature of this kernel allows us to introduce (semi)-metrics for this space,
which further derives relaxed versions of known kernels for this space.
We present empirical results to validate the utility of the proposed lo-
calized approach in the context of spectral clustering. The key result of
this paper is that this approach that combines the local Gaussian model
with measures that adhere to metric properties, yields much better per-
formance in different spectral clustering tasks.

1 Introduction

Many unsupervised learning algorithms rely on the exponential kernel KE , and
the Gaussian kernel KG to measure the similarity between two input vectors4

x,y ∈ Rp. The Euclidean distance in KE and KG, however, has two implicit
assumptions on the data under consideration. First, by expanding the squared
norm ‖x− y‖2 to (x− y)⊤I(x− y), where I is the identity matrix, one directly
obtains a special case of the generalized quadratic distance (GQD) d(x,y;A) =

4 Notations: Bold small letters x,y are vectors. Bold capital letters A,B are ma-
trices. Calligraphic and double bold capital letters X , Y, X, Y denote sets and/or
spaces. Positive definite (PD) and positive semi-definite (PSD) matrices are denoted
by A ≻ 0 and A � 0 respectively.
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Fig. 1. (A) The exponential kernel KE relies on the Euclidean distance between X

(green) and Y (blue). (B) The local Gaussian assumption considers the few nearest
neighbours (NNs) around X and Y , and then each set of NNs is modelled as a Gaussian
distribution as in (C). The proposed relaxed kernels will rely on the dissimilarity (or
difference) between the two Gaussian distributions instead of the Euclidean distance
between X and Y .

√

(x− y)⊤A(x − y), where A is a symmetric PD matrix. From a statistical
vantage point, the Euclidean distance is the optimal metric if the data is gener-
ated from a spherical Gaussian distribution with unit variances – the spherical

assumption – which is a hard to attain natural setting in real world data sets.

Second, the GQD has an inherent limitation for which the matrix A is con-
strained to be globally defined over the whole input space, which enforces the
global Gaussian assumption of the data, or the ellipsoidal assumption. Besides
that this constraint on A is restrictive, the ellipsoidal assumption is unjustified
since a large Gaussian distribution with a full covariance matrix, does not yield a
faithful modelling for the true empirical density of the data. In turn, this affects
the relative distances between the samples, which finally affects the similarity
evaluated by KE and KG.

In this paper, we propose to relax the constraint that enforces the global
Gaussian assumption on the data. That is, as depicted in Figure (1), instead of
being globally defined over all the data set, the Gaussian assumption is allowed
to only hold in a local neighbourhood around each sample xi ∈ X ⊆ Rp, where X
is the input space. Note that the local Gaussian assumption, does not impose any
constraints nor assumptions on the global data distribution. The local Gaussian
assumption, however, associates with each xi a symmetric PD matrix Ai, which
is the covariance matrix of the local Gaussian distribution centered at xi. In
turn, this changes the structure of the data from the simple set of vectors D =
{xi}ni=1 ⊆ X , to a new augmented data set DA = {(xi,Ai)}ni=1 ⊆ X of the
2-tuples (xi,Ai). Note that all Ai’s are defined in an unsupervised manner.

To this end, we propose a convolution kernel KX [18] that measures the simi-
larity between the inputs (xi,Ai) and (xj ,Aj). The kernel KX is an exponential
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function of a dissimilarity measure for the 2-tuples (xi,Ai). Due to the factor-
izable nature of KX, it turns that KX derives a set of metrics and semi-metrics
on the augmented space X, which further derive a set of relaxed kernels for X.
Interestingly, these (semi-)metrics are based on divergence measures of proba-
bility distributions, and the Riemannian metric for symmetric PD matrices [16].
Moreover, we show that using the exponential function in KX, the space X is
isometrically embeddable into a Hilbert space H [17].

Preliminaries In order to make the paper self-contained, we find it necessary to
introduce the following definitions. A metric space is an ordered pair (M, d) where M is
a non-empty set, and d is a distance function, or a metric, defined as d : M×M 7→ R,
and ∀ a, b, c ∈ M, the following Axioms hold: (1) d(a, b) ≥ 0, (2) d(a, a) = 0, (3)
d(a, b) = 0 iff a = b, (4) symmetry d(a, b) = d(b, a), and (5) the triangle inequality
d(a, c) ≤ d(a, b)+ d(b, c). A semi-metric distance satisfies Axioms (1), (2) and (4) only.
That is, the triangle inequality need not hold for semi-metrics, and d(a, b) can be zero
for a 6= b. For instance, ‖x − y‖2 in KE is a metric, but ‖x − y‖22 in KG is a semi-
metric. Similarly for the GQD, d2(x,y;A) is a semi-metric, and if A is not strictly
PD, then d(x,y;A) is also a semi-metric. Note that the definition of a metric space is
independent from whether M is equipped with an inner product or not.

Axioms (1) & (2) produce the positive semi–definiteness (PSD) of d, and hence
metrics and semi-metrics are both PSD. Note that this PSD property is only valid
for metrics and semi-metrics due to their Axiomitic definition above, and can not be
generalized to other PSD function as defined in the following.

A necessary and sufficient condition to guarantee that a symmetric similarity func-
tion K is a kernel function over X , is thatK should be PSD5. This ensures the existence
of a mapping φ : X 7→ H, where H is a Hilbert space called the feature space, in which
K turns into an inner product: K(xi,xj) = 〈φ(xi),φ(xj)〉.

The family of p–dimensional Gaussian distributions is denoted by Gp, and for G ∈
Gp, it is defined as:

G(x;µ,Σ) = (2π)−
p

2 |Σ|−
1

2 exp{− 1

2
(x− µ)⊤Σ−1(x− µ)},

where | · | is the determinant, x,µ ∈ R
p, Σ ∈ S

p×p
++ , and S

p×p
++ is the manifold of

symmetric PD matrices.

2 The local Gaussian assumption

Our proposal for relaxing the constraint on matrix A in the GQD is equivalent
to relaxing the global Gaussian assumption on the data to be only valid in a
small neighbourhood around each sample xi ∈ X . Note that this mild assump-
tion on the local distribution around each xi does not impose any constraints
nor assumptions on the global data distribution. To realize the local Gaussian
assumption, each xi is associated with a symmetric matrix Ai ≻ 0 defined as:

Ai =
1

m− 1

m
∑

xj∈Ni

(xj − xi)(x
j − xi)

⊤ + γI , (1)

5 For the set X and for any set of real numbers a1, . . . , an, the function K must satisfy
the following:

∑n

i=1

∑n

j=1
aiajK(xi,xj) ≥ 0.
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where xj ∈ X , Ni = {xj}mj=1 is the set of m nearest neighbours (NNs) to xi, and
0 < γ ∈ R is a regularization parameter. The regularization here is necessary to
avoid the expected rank deficiencies in Ai’s, which are due to the small number
of NNs considered around xi, together with the high dimensionality of the data6,
and hence, this helps avoid over-fitting and outlier reliance. The definition of Ai

in (1) is simply the average variance–covariance matrix between xi and its m
NNs. Hence, the local Gaussian assumption, depicted in Figure (1), can be seen
as anchoring a Gaussian density Gi(µi,Σi) at point xi, where its mean µi ≡ xi

and its covariance matrix Σi ≡ Ai. The local Gaussian assumption can be taken
further and extended in the spirit of manifold Parzen windows [19] by including
xi in Ni, and define µi and Σi as follows:

µi ≡ µ̂i =
1

m+ 1

∑

xj∈Ni

xj , and (2)

Σi ≡ Σ̂i =
1

m

∑

xj∈Ni

(xj − µ̂i)(x
j − µ̂i)

⊤ + γI . (3)

This can be seen as a local smoothing for the data, combined with local feature
extraction by means of a generative model, where the features are the parameters
µ̂i and Σ̂i for each xi ∈ X . Note that Ai and Σ̂i are defined in an unsupervised
manner, however when auxiliary information is available in the form of labels
or side information, they can be defined in a supervised or a semi–supervised
manner.

The result of the local Gaussian assumption introduces a new component
Ai for each xi ∈ X which changes the structure of the input data from the set
of vectors D = {xi}ni=1 to an augmented data set DA = {(xi,Ai)}ni=1 ⊆ X of
2-tuples (xi,Ai). This change in the data structure, in turn, requires a change in
KE and KG which can only operate on the first element of the 2-tuples (xi,Ai)
– elements in R

p – and not the symmetric matrix Ai ≻ 0.
Note that the augmented space X implicitly represents the parameters for

the set of local Gaussians G = {Gi(µi,Σi)}ni=1, which will be referred to as the
dual perspective for X. In order to avoid any future confusion in the notations,
this will be the default definition for X, where implicitly, (µi,Σi) ≡ (xi,Ai), or

(µi,Σi) ≡ (µ̂i, Σ̂i).

3 A convolution kernel for the space X

The framework of convolution kernels suggests that a possible kernel for the
space X can have the following structure [18]:

KX{(µi,Σi), (µj ,Σj)} = Kµ(µi,µj)KΣ(Σi,Σj),

whereKµ andKΣ are symmetric PSD kernels, which yields thatKX is symmetric
and PSD as well. Our approach for definingKµ andKΣ is based on the definition

6 Note that γ is unique for all Ai’s.
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of KE, which is an exponential function of the Euclidean distance between its
two inputs. Due to the PSD and symmetry properties of (semi-)metrics (Axioms
(1), (2), & (3)), it follows that KE is symmetric and PSD. This result is due to
Theorem (4) in [17] which states that:

Theorem 1. The most general positive function f(x) which is bounded away

from zero and whose positive powers [f(x)]α, α > 0, are PSD is of the form:

f(x) = exp{c+ ψ(x)}, where ψ(x) is PSD and c ∈ R.

If ψ(µi − µj) = ‖µi − µj‖, σ > 0, and c = − 2

σ
‖µi − µj‖, it follows from

Theorem (3.1) that KE is PSD. This discussion suggests that, if dµ(·, ·) and
dΣ(·, ·) is (semi-)metric for {µi}

n
i=1 and {Σi}ni=1 respectively, then Kµ and KΣ

can be defined as:

Kµ(µi,µj) = exp
{

− 1

σ
dµ(µi,µj)

}

,

KΣ(Σi,Σj) = exp
{

− 1

σ
dΣ(Σi,Σj)

}

, and hence

KX = exp
{

− 1

σ
[dµ + dΣ ]

}

, (4)

where σ > 0 , and [dµ + dΣ ] is a (semi-)metric for the augmented space X. In
Section (4), it will be shown that, in general, dµ is the GQD between µi and µj ,
while dΣ is a (semi-)metric for symmetric PD covariance matrices.

3.1 Isometric embedding in a Hilbert space H

An interesting property of the exponential function in KE and KG is its ability
to perform an isometric embedding for (Rp, ‖ · ‖2) and (Rp, ‖ · ‖22) into a Hilbert
space H. This result is due to Theorems (1) in [17] which states that:

Theorem 2. A necessary and sufficient condition that a separable space S with

a semi-metric distance d, be isometrically embeddable in H, is that the function

exp{−αd2}, α > 0, be PSD in S.

Moreover, if d is a metric, then the triangle inequality is preserved through the
embedding, and the new space becomes a metric space7. Therefore, if dµ and
dΣ are metrics (or semi-metrics) for {µi}

n
i=1 and {Σi}ni=1 respectively, then by

Theorem (3.1), Kµ � 0 and KΣ � 0, and by Theorem (3.2), ({µi}
n
i=1, dµ),

({Σi}ni=1, dΣ) and (X, [dµ + dΣ ]) are isometrically embeddable in H.

Theorem (2) in [17], which we do not state here due to space limitations,
is similar to Theorem (3.2), however it addresses the particular case of spaces
with m real numbers, denoted by Sm, and equipped with a norm function ϕ(x),

x ∈ Sm, and a distance function ϕ(x− x′)
1

2 . This theorem will be used instead
of Theorem (3.2), when the Riemannian metric for symmetric PD matrices is
introduced.

7 See footnote in [17, p. 525].
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4 Kernels for probability distributions

To derive dµ and dΣ , our discussion begins from the dual perspective for X, or
the set G = {Gi(µi,Σi)}ni=1, and the definition ofKE as an exponential function
of the Euclidean distance between its input vectors. The fundamental difference
here is that the elements of interests are not the vectors xi,xj ∈ Rp, but rather
two Gaussian distributions Gi,Gj ∈ Gp, with µi 6= µj and Σi 6= Σj . It follows
that the Euclidean distance describing the difference between xi and xj needs to
be replaced with a dissimilarity measure for probability distributions, and this
measure should be at least a semi-metric in order to guarantee that the resulting
kernel is PSD, according to Theorem (3.2).

A natural measure for the dissimilarity between probability distributions is
the divergence, which by definition according to [1] and [3] is not a metric. To
see this, let P be a family of probability distributions, and let P1, P2 ∈ P be
defined over the same domain of events E , then the divergence of P2 from P1 is:

div(P1, P2) = Ep1
{C(φ)} =

∫

E

p1(x)C(φ(x))dx, (5)

where div(P1, P2) ∈ [0,∞), p1, p2 are the probability density functions of P1 and
P2 respectively, φ(x) = p1(x)/p2(x) is the likelihood ratio, and C is a continuous
convex function on (0,∞). Note that by definition, div(P1, P2) ≥ 0, and equality
only holds when P1 = P2 [1]. This is equivalent to Axioms (1) & (2) of a metric,
and hence div(P1, P2) is PSD. The divergence as defined in Equation (5), is not
symmetric8, since div(P1, P2) 6= div(P2, P1). However, a possible symmetrization
for the divergence can be as : sdiv(P1, P2) = div(P1, P2) + div(P2, P1) , where
sdiv preserves all the properties of a divergence as postulated by Ali–Silvey and
Csiszar. Hence, sdiv is symmetric and PSD – a semi-metric – and a possible
kernel for P1 and P2 can be defined as:

KP(P1, P2) = exp{− 1

σ
sdiv(P1, P2)}, σ > 0. (6)

Using Theorems (3.1) and (3.2), KP is symmetric and PSD, and (P , sdiv) is
isometrically embeddable in H. Note that KP is in the same spirit of the expo-
nential kernelKE as explained above. In addition,KP is valid for any symmetric
divergence measure from the class of Ali–Silvey or f–divergence [3], and hence
it is valid for any probability distribution. It is also important to note that the
kernel KP is not the only kernel for probability distributions, and other kernels
were proposed in the work of [6, 4, 11].

4.1 The case of Gaussian densities

We now consider the particular case of Gaussian densities under some classical
symmetric divergence measures such as the symmetric KL divergence, or Jeffreys

8 Depending on the choice of C(·) in (5) and its parametrization, one can derive
symmetric divergence measures, see [1] for examples.
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divergence dJ , the Bhattacharyya divergence dB, and the Hellinger distance dH .
For G1,G2 ∈ Gp, Jeffreys divergence dJ can be expressed as:

dJ (G1,G2) =
1

2
u⊤Ψu+ 1

2
tr{Σ−1

1 Σ2 +Σ−1

2 Σ1} − p, (7)

where Ψ = (Σ−1
1 + Σ−1

2 ), and u = (µ1 − µ2). The Bhattacharyya divergence
dB and the Hellinger distance dH are both derived from the Bhattacharyya
coefficient ρ, which is a measure of similarity between probability distributions:

ρ(G1,G2) = |Γ |−
1

2 |Σ1|
1

4 |Σ2|
1

4 exp{− 1

8
u⊤Γ−1u},

where Γ = (1
2
Σ1 + 1

2
Σ2). The Hellinger distance can be obtained from ρ as

dH(G1,G2) =
√

2[1− ρ(G1,G2)], while dB(G1,G2) = log[ρ(G1,G2)] is defined as:

dB(G1,G2) =
1

8
u⊤Γ−1u+ 1

2
ln

{

|Γ |

|Σ1|
1

2 |Σ2|
1

2

}

. (8)

Kullback [9] notes that dJ is positive and symmetric but violates the triangle
inequality. Similarly, Kailath [7] notes that dB is positive and symmetric but
violates the triangle inequality, while dH meets all metric Axioms. Using the
kernel definition in (6), it is straight forward to define the following kernels:

KJ(G1,G2) = exp{− 1

σ
dJ (G1,G2)}, σ > 0, (9)

KH(G1,G2) = exp{− 1

σ
dH(G1,G2)}, σ > 0, and (10)

KB(G1,G2) = exp{dB(G1,G2)} = ρ(G1,G2). (11)

We note that [8] have proposed the Bhatacharyya kernel ρ(G1,G2) and confirm
that it is PSD through the product probability kernel (PPK). In contrary, [12]
have proposed the KL kernel KJ(G1,G2) and claim, without justification, that
it is not PSD. Since dJ and dB are semi-metrics, and dH is a metric, then using
Theorems (3.1) and (3.2), KJ , KH and KB are symmetric and PSD kernels, and
(X, dJ ), (X, dB), and (X, dH) are isometrically embeddable in H.

4.2 A close look at dJ and dB

Kullback [9, pp. 6,7] describes dJ (G1,G2) in Equation (7) as a sum of two com-
ponents, one due to the difference in means weighted by the covariance matrices
(the first term), and the other due to the difference in variances and covari-
ances (the second term). Note that this explanation is also valid for dB(G1,G2)
in Equation (8). Recalling KX from Equation (4), then dµ and dΣ can be char-
acterized as follows. The first term in Equations (7) and (8) is equivalent to the
GQD, up to a constant and a square root – hence both terms are semi-metrics.
If Σ1 = Σ2 = Σ, then:

dJ(G1,G2) = u⊤Ψu,
dB(G1,G2) = u⊤Γ−1u.

}

dµ (12)
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The second term in Equations (7) and (8) is a discrepancy measure between two
covariance matrices that is independent from µ1 and µ2. If µ1 = µ2 = µ then:

dJ(G1,G2) = tr{Σ−1

1 Σ2 +Σ−1

2 Σ1} − p,

dB(G1,G2) = ln
{

|Γ ||Σ1|−
1

2 |Σ2|−
1

2

}

,

}

dΣ (13)

which define two dissimilarity measures between Σ1 and Σ2, and both measures
are semi-metrics.

4.3 A metric for symmetric PD matrices

The factorisable nature ofKX, and the decomposition of dJ(G1,G2) and dB(G1,G2)
into two difference components, where the second term is independent from µ1

and µ2, allows us to introduce a metric for symmetric PD matrices that can be
used instead of the semi-metrics in Equation (13).

A symmetric PD matrix is a geometric object, and the space of all symmetric
PD matrices, denoted by S

p×p
++ , is a differentiable manifold in which each point

A ∈ S
p×p
++ has a tangent space TA(Sp×p

++ ) that is endowed with an inner product,
or a Riemmanian metric 〈·, ·〉A, on the elements of the tangent space. The di-
mensionality of Sp×p

++ and its tangent space is p(p+1)/2. Due to the inner product

〈·, ·〉A, the tangent space for Sp×p
++ is a finite dimensional Euclidean space.

The Riemannian metric, by default, respects the geometry of Sp×p
++ , which is

unlike the semi-metrics in (13) that are just derived from the divergence measures
dJ (G1,G2) and dB(G1,G2), and unaware of the geometry of Sp×p

++ . If dR is the

Riemannian metric for Sp×p
++ , then dΣ in Equation (4) can be replaced with dR,

and hence KX can be redefined as follows:

KX = Kµ(µ1,µ2)KR(Σ1,Σ2), (14)

= exp{− 1

σ
dµ} exp{−

1

σ
dR},

= exp{− 1

σ
[dµ + dR]}, σ > 0. (15)

where dR is the distance between the two matrices {Σ1,Σ2 ∈ S
d×d
++ } defined as :

dR(Σ1,Σ2) = tr{ln2 Λ(Σ1,Σ2)}
1

2 , (16)

and Λ(Σ1,Σ2) = diag(λ1, . . . , λd) is the solution of a generalized eigenvalue
problem (GEP): Σ1V = ΛΣ2V. The metric dR was first derived by C. Rao [16],
and latter analyzed by Atkinson and Mitchel [2] 9, while independently derived
by Förstner and Moonen in [5]. Note that dR is invariant to inversion and to
affine transformations of the coordinate system. Since dR is induced by a norm
on T (Sp×p

++ ), then using Theorem (3.1) and Theorem(2) in [17], KR is PSD, and

(TA(Sp×p
++ ), dR) is isometrically embeddable in H, for all A ∈ S

p×p
++ .

9 See their affiliated references
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5 Relaxed kernels for the augmented space X

Besides the Jeffreys kernel KJ , the Hellinger kernel KH , and the Bhattacharyya
kernelKB in Equations (9), (10) and (11) respectively, we define two new kernels
for the space X based on the metric dR:

KJR(G1,G2) = exp{− 1

σ
dJR(G1,G2)}, and (17)

KBR(G1,G2) = exp{− 1

σ
dBR(G1,G2)}, where (18)

dJR(G1,G2) = (u⊤Ψu)
1

2 + dR(Σ1,Σ2),

dBR(G1,G2) = (u⊤Γ−1u)
1

2 + dR(Σ1,Σ2),

Ψ ≻ 0, Γ −1 ≻ 0, and σ > 0.

The positive definiteness of Ψ and Γ −1, and the square root on the quadratic
terms of dJR and dBR, assure that the quadratic terms are metrics. If µ1 =
µ2 = µ, then dJR and dBR will yield the Riemannian metric dR, and hence,
KJR and KBR will be equal to KR. If Σ1 = Σ2 = Σ, then dJR and dBR will
yield the GQD. If Σ = I, the GQD will be equal to the Euclidean distance, and
KJR and KBR will yield the original exponential kernel KE.

Similar to KE and KG, the relaxed kernels KJ , KH , KB, KJR and KBR

rely on the distance between the 2-tuples (µ1,Σ1) and (µ2,Σ2). Moreover, they
all provide an isometric embedding for the space X, and the difference between
these embeddings is due the metric or semi-metric defining each kernel. While
dJ and dB are semi-metrics, dH , dJR and dBR are metrics. Since Axioms (3) &
(5) do not hold for semi-metrics, it follows that dJ and dB will not preserve the
relative geometry between the elements in Rp, and that between the elements in
S
p×p
++ . Although dH is a metric, it relies on a semi-metric for covariances matrices,

which is not the case for dJR and dBR.

6 Related work

Our research work parallels a stream of ideas that consider distances (or simi-
larities) between two subspaces, tangent spaces, or sets of vectors, instead of the
direct distance (or similarity) between points. In the context of learning over sets
of vectors (SOV’s), [20] propose a general learning approach within the kernel
framework. For two SOV’s, their kernel is based on the principal angles between
two subspaces, each spanned by one of the two SOV’s. In [8], each SOV is a
bag of pixels representing one image. Each SOV is modelled as a Gaussian dis-
tribution, and the Bhattacharyya kernel KB is used with SVMs to classify the
images. Similarly, in [12] each SOV is a bag of features representing one multime-
dia object (an image or an audio signal), and modelled as Gaussian distribution.
However, instead of KB, they use the KL kernel KJ with SVMs to classify the
multimedia objects.
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Table 1. Specifications of the data sets used in the experiments. The number of classes,
samples, and attributes are denoted by c, n, and p respectively.

Data set c n p Data set c n p

Balance 3 625 4 NewThyroid 3 215 5
Bupa 2 345 6 Pima 2 768 8
Glass 6 214 9 Segment 7 2310 18
Iris 3 150 4 Sonar 2 208 60
Lymphography 4 148 18 WDBC 2 569 30
Monks–1 2 556 6 Wine 3 178 13
Monks–2 2 601 6 Yeast 10 1484 6
Monks–3 2 554 6

7 Experimental results

We validate the proposed relaxed kernels in the context of unsupervised learning
using spectral clustering (SC) algorithms. Here we compare the performance of
1) the standard k-means algorithm, 2) SC according to the version of [14]–as
described in [10]–using the exponential kernelKE, and 3) SC over the augmented
space X using four (4) different kernels: the KL kernelKJ [12], the Bhattacharyya
kernel KB [8], the Hellinger kernel KH , and the proposed kernelKBR. Although
our experiments included KJR as well, we found that the results of KJR and
KBR are very close to each other, and hence we show only the results for KBR.
This shows that the main difference between dJ and dB are the semi-metrics
for covariance matrices in Equation (13). The parameter σ for KE , KJ , KB,
KH and KBR was selected using a simple quantile based approach10. In all our
experiments, the regularization parameter γ = 1. Although we do not focus
on selecting the best γ values, it nevertheless shows that, under this uniform γ
assumption, the local Gaussian assumption typically shows significantly better
results.

All algorithms were run on 15 data sets from the UCI machine learning
repository [13], shown in Table (1). Clustering accuracy was measured using the
Hungarian score of [21] 11. The performance of each algorithm was averaged
over 30 runs with different initializations. Since the number of classes of the
UCI data sets is given, we assumed that the number of clusters is known. Before
proceeding to the results, it is important to emphasize that selecting the best
parameter values for k, σ, γ and the number of clusters, is largely a model
selection issue, and hence, it should not be confounded with verification of the
effectiveness of the local Gaussian modelling premise.

Columns two and three in Table (2) show the results for k-Means and SC
with KE on the original data set X . Columns four to seven in Table (2) show

the results of SC over the augmented data set DA = {(µ̂i, Σ̂i)}ni=1 with the 4
different relaxed kernels. Due to space limitaitons, we do not show the results

10 The approach was suggested in Alex Smola’s blog: http://blog.smola.org/page/2
11 See [21] for more details.
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Table 2. Clustering accuracy for k-Means, SC with KE , and SC over DA =
{(µ̂i, Σ̂i)}

n
i=1 with KJ , KB , KH , and KBR.

Data set k-Means KE KJ KB KH KBR

Balance 51.1 (3.2) 53.6 (4.5) 60.0 (3.4) 61.2 (3.5) 60.3 (0.2) 64.9 (4.9)
Bupa 55.1 (0.1) 57.1 (0.2) 62.9 (0.1) 62.3 (0.18) 61.1 (0.07) 64.3 (0.18)
Glass 51.3 (3.4) 50.8 (2.0) 52.5 (2.8) 52.4 (3.3) 52.2 (2.9) 53.8 (4.6)
Iris 84.5 (12.0) 93.5 (7.1) 93.1 (18.1) 94.4 (9.2) 93.4 (5.4) 93.3 (10.4)
Lymphography 48.0 (6.1) 52.5 (5.7) 65.9 (2.1) 69.6 (2.9) 67.6 (5.3) 65.0 (6.0)
Monks–1 64.6 (5.4) 66.4 (0.1) 62.0 (2.1) 62.7 (1.0) 67.6 (0.02) 69.4 (0.04)
Monks–2 51.6 (2.0) 53.1 (3.0) 65.3 (0.1) 65.3 (0.02) 65.4 (1.7) 65.7 (0.1)
Monks–3 63.4 (4.2) 65.7 (0.1) 79.9 (0.02) 79.9 (0.02) 79.9 (0.02) 79.9 (0.02)
NewThyroid 78.0 (9.7) 75.8 (0.1) 79.9 (1.5) 80.3 (0.4) 86.5 (3.2) 91.1 (2.5)
Pima 66.0 (0.1) 64.7 (0.2) 68.2 (0.1) 67.8 (0.16) 67.9 (0.02) 67.5 (0.05)
Segment 51.5 (8.1) 65.4 (5.1) 62.7 (13.7) 62.9 (6.5) 67.7 (3.6) 69.1 (5.7)
Sonar 54.5 (0.7) 54.8 (4.2) 63.2 (3.1) 64.2 (2.4) 63.1 (2.1) 64.3 (2.4)
WDBC 85.4 (0.1) 84.0 (0.1) 92.7 (5.4) 93.6 (0.08) 94.2 (0.1) 95.6 (0.1)
Wine 67.8 (5.1) 67.8 (7.0) 90.4 (4.9) 88.1 (8.9) 88.7 (0.3) 88.2 (6.3)
Yeast 34.2 (1.3) 42.7 (2.8) 46.9 (1.8) 45.5 (1.8) 45.0 (2.2) 45.4 (2.5)

for SC over the augmented data set DA = {(xi,Ai)}ni=1. It can be seen that
for most of the cases, the performance of SC over the augmented data sets
outperforms the standard SC and the k-Means algorithms. More specifically,
the performance of SC over DA = {(µ̂i, Σ̂i)}ni=1, is consistently better than k-
Means and the standard SC, which is due to the smoothing included in defining
the 2-tuple (µ̂i, Σ̂i). In terms of kernels over DA = {(µ̂i, Σ̂i)}

n
i=1, KH and KBR

are usually better thanKJ andKB, and at least, very close to their performance.
This emphasizes the role of the (semi-)metric defining each kernel.

8 Conclusion

We relax the global Gaussian assumption of the Euclidean distance in the expo-
nential kernel KE . The relaxation anchors a Gaussian distribution on the local
neighbourhood of each point in the data set, resulting in the augmented data
space X. Based on convolution kernels, divergence measures of probability dis-
tributions, and Riemannian metrics for symmetric PD matrices, we propose a
set of kernels for the space X, and show using preliminary experiments that the
local Gaussian assumption significantly outperforms the global one. Since all
our approach described here is unsupervised, a main future research direction is
to investigate the usefulness of this approach in supervised and semi-supervised
learning tasks.
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