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Abstract— Estimation of the constituents of a gas
(e.g. temperature, concentration) from high reso-
lution spectroscopic measurements is a fundamental
step to control and improve the efficiency of com-
bustion processes governed by the Radiative Trans-
fer Equation (RTE). Typically such estimation is per-
formed using thermocouples; however, these sensors
are intrusive and must undergo the harsh furnace en-
vironment. In this paper, we follow a machine learn-
ing approach to learn the relation between the spec-
troscopic measurements and gas constituents such as
temperature, concentration and length. This is a chal-
lenging problem due to the non-linear behavior of the
RTE and the high dimensional data obtained from
sensor measurements. We perform a comparative
study of linear and neural network regression mod-
els, using canonical correlation analysis (CCA), prin-
cipal component analysis (PCA), reduced rank regres-
sion(RRR), and kernel canonical correlation (KCCA)
to reduce the dimensionality.
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1 Introduction

The regulation of harmful substances is getting tighter
in several commercial plants using combustion processes
(e.g. gas turbines, boilers, incinerators). The control
and retrieval of temperature is an important factor to
understand the mechanism of the combustion, and thus
minimize environmental disruption and improve the effi-
ciency of combustors [1, 2, 3, 4]. Usually, thermocouples
have been used to estimate temperature, however they
have several drawbacks: they are intrusive and disturb
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Figure 1: (Top) RTE measurement corresponding to the
forward model. (Down) Retrieval of combustion con-
stituents formulated as inverse problem.

the measurement, they must undergo the harsh furnace
environment, and these measurements are taken at single
points.

Several efforts have been done in the literature to re-
construct the flame temperature. Some studies make
use of different spectral regions (ultraviolet, visible, in-
frared) [1]. The infrared sensing appears to be very
promising due to the fact that hot gases in a flame, mainly
carbon dioxide CO2 and H2O, exhibit important emis-
sion bands in it. Others are based on spectroscopic data
and use tunable infrared laser and optical fibre in order
to measure the difference between the energy emitted and
received [2]. This is considered an active technique be-
cause it uses an infrared source in addition to the sensor
system. This method is high sensitive, but its high com-
plexity and high cost make it not suitable for routine
operations in industrial furnaces.

To overcome some of the limitations of previous ap-
proaches, we use remote sensing infrared measurements
(i.e. spectrometer) to infer gas constituents at a distance.
The remote sensing approach is a passive technique and



it does not disturb the measurement. Figure 1 illustrates
this approach. The spectral characteristics of the flame
are recorded with a spectrometer at a given distance. The
forward model is described with a set of well known in-
tegral equations (see section 2). The interaction of elec-
tromagnetic radiation with matter modifies to some ex-
tent the incident wave. The spectrometer measures the
amount of energy emitted by the target over a range of
wavenumbers, and these measurements are related with
the different properties of the target.

The challenge that we face in this paper is to invert the
forward model. Analytical or numerical inversion of for-
ward model is a challenging mathematical problem. In
this paper, we make use of machine learning techniques
to learn the relation between the flame energy spectrum
and the temperature, concentration, and length.

The rest of the paper is organized as follows: in section
2 we review previous work in the physics of RTE model
and related work in machine learning approaches. In sec-
tion 3, we introduce the inverse problem as a supervised
learning problem. Several techniques such as principal
component analysis, reduced rank regression, canonical
correlation, and kernel canonical correlation are summa-
rized. Section 4 shows the results obtained applying these
techniques. Conclusions and future work is given in sec-
tion 5.

2 Previous work

The RTE explains how the propagation of radiation
through a medium is affected by absorption, emission and
scattering processes. RTE is common in different fields
such as astrophysics, atmosphere, remote sensing, or geo-
physics, and has been studied in different ways over the
last 40 years. In the next subsection, we make a physi-
cal review of the RTE and to previous machine learning
approaches for dimensionality reduction and regression.

2.1 Physical Model

The most important by-products of combustion are car-
bon dioxide CO2 and water vapor H2O. These gases
exhibit important emission bands in the infrared spectral
region, and these types of emissions are governed by the
RTE [5]. The RTE gives the spectral radiance Li emitted
by an inhomogeneous gas cloud at a given wavenumber
i. The expression of the radiance Li is given by:

Li =
∫ z1

z0

Bi{T (z), C(z)}Ki(z)dz (1)

Ki =
dτi
dz

τi =
∏

∆

∏
g

τig

τig = exp−(αig·c·z·fi∆)

where Bi is Planck’s law (standard black body emission),
τi is the transmittance, T (z) is the temperature profile,
C(z) is the concentration profile, and Ki is the so-called
temperature weighting function that gives the relative
contribution of the radiance coming from each region dz.
In the transmittance formula, αig is the absorption coef-
ficient of the gas g, c is its concentration, z is the path
length and fi∆ is a Lorentzian function that takes into
account the spectral shape of the transmittance profile
and takes values over the spectral range ∆.

During the last decade the progress in optoelectronic
technologies has led to the fabrication of new sensors to
measure radiance with unprecedented high resolution in
spatial, spectral and temporal dimensions. For instance
the spectrometer we used has a spectral range of 400 −
4500cm−1 and a spectral resolution of 32cm−1−0.5cm−1.
This allows new possibilities but also new challenges.

Work has been done in previous years to invert the
RTE. In atmospheric sounding the objective is to retrieve
the state of the atmosphere(temperature) and its con-
stituents (e.g. water). In this context there are two main
approaches to retrieval. The variational approach uses
the forward model to calculate the radiance emitted by
a specific atmospheric state. The measured radiance is
compared with the estimated radiance and the state vec-
tor is adjusted to minimize the error [6]. Due to the fact
that the forward problem complexity increases exponen-
tially with the number of wavenumbers, this approach
can only be used if either the number of wavenumbers or
the number of iterations to converge is small. The second
approach is based on the probability density of the pair-
wise [p(X), P(Y), P(Y, X)] which in practice is difficult
to obtain.

2.2 Learning RTE inversion

There have been some approaches that use supervised
learning techniques to learn the inverse of RTE [7, 8, 9].
Due to the high resolution of the spectral measurements,
one of the challenges of this type of problem is to develop
supervised learning algorithms that can efficiently (mem-
ory and time) learn from very high dimensional data.
To solve the course of dimensionality, a common ap-
proach has been to apply dimensionality reduction tech-
niques. There are three main approaches to perform
dimensionality reduction: feature extraction (linear or
nonlinear),transformation of data, and feature selection
(searching for subsets of original variables) [10].

[7, 8] make use of PCA to reduce the dimensionality, and
linear and Neural Networks, respectively, to learn a map-
ping. [11] uses feature selection methods to choose a
few wavenumbers range, and show its effectiveness with
synthetic data. The feature subset selection approach
is interesting, because it allows the reduction of dimen-
sionality and it also retains the semantic interpretation.



Figure 2: Temperature profiles included in the dataset
used in the analysis.

Thus, a better understanding of the combustion prop-
erties is reached. Moreover, it allows for the design of
specific sensors.

This paper differs from previous work in several aspects:
firstly, we make a comparative study of several linear and
non-linear dimensionality reduction and regression tech-
niques. Secondly, we propose the use of KCCA and show
how it outperforms previous methods. Thirdly, we apply
these techniques in a gas retrieval ground remote sensing
context where the length is unknown.

3 Supervised Learning for Temperature
Retrieval

Equation 1 expresses the amount of energy emitted by
each wavenumber i, and it is referred to as the forward
problem. Typically, we would like to invert this equation,
that is: from the radiance measure Li provided by the
spectrometer, we would like to know the temperature and
concentration profiles. Given the measurements of energy
represented by xi ∈ <p×1 (see notation1), we would like
to predict the flame constituents such as spatial tempera-
ture, length and concentration, represented by yi ∈ <q×1.
We would like to learn a mapping f such that Y = f(X),
where X ∈ <p×n represents the energy emitted at differ-
ent wavenumbers and Y ∈ <q×n indicates the tempera-
ture profiles and concentration. Recall that each column
corresponds to a different observation. For instance, each
sample xi is a spectrum of radiance in the infrared range
of 2110cm−1 − 2410cm−1 with p = 6000. Likewise, each
sample yi is the corresponding temperature, length, and
concentration with q = 153.

The inversion of Equation 1 is non-linear and ill-posed
1Bold capital letters denote a matrix D, bold lower-case letters

a column vector d. dj represents the jth column of the matrix
D. dij denotes the scalar in the row i and column j of the matrix
D and the scalar i-th element of a column vector dj . All non-

bold letters represent scalar variables. ||x||2 =
√

xT x designates
Euclidean norm of x. ||A||F = tr(AT A) = tr(AAT ) designates
the Frobenious norm of a matrix.

since we are trying to retrieve T (z), a continuous func-
tion, from finite measurements [12]. The non-linearity
is due to the dependency of L with C and T . Also, re-
call that the mapping might not be unique; for instance,
there could be more that one temperature/concentration
profile that raises a particular radiance measurement.

In this section, a machine learning approach is adopted
to learn the relation between the spectroscopist measure-
ment and the gas constituents. Several techniques for a
first dimensionality reduction have been compared: PCA,
RRC, CCA and KCCA.

3.1 Principal Component Analysis (PCA)

PCA [15] is a standard linear dimensionality reduction
technique, and it is optimal for Gaussian distributed
classes. It is an energy-preserving transformation that
decorrelates the data by projecting it into the first
principal components. Following the notation of sec-
tion 3, let B ∈ <p×k be the first k principal compo-
nents which contains the directions of maximum varia-
tion of the data. The k principal components B maxi-
mize maxB

∑n
i=1 ||BT xi||22 = maxB ||BT ΓB||F under the

constraint BT B = I, where Γ = XXT =
∑

i xixT
i is

the covariance matrix (zero mean data). The columns of
B form orthonormal bases that spans the principal sub-
space. If the effective rank of X is much less than d, we
can approximate the column space of X with k << p
principal components. The sample xi can be approxi-
mated as a linear combination of the principal compo-
nents as xi ≈ Bci where ci = BT xi. PCA bases are en-
ergy preserving and do not necessarily provide a mean-
ingful representation of the signal; that is, it does not
correspond to physical quantities. To avoid this problem,
[11] proposes to select a subset of features on the original
raw data based in the coefficients of the first orthonormal
basis.

3.2 Reduced Rank Regression (RRR)

One of the drawbacks of PCA for supervised learning
is the lack of dependency between the principal compo-
nents of X and Y. That is, a small signal common to
both sets (relevant for regression) will be lost if perform-
ing independent PCA in each set [16]. PCA reduces the
dimensionality optimally in the sense of reconstruction
error, but it does not assure a better coupling between
the new features ci and the data to estimate yi. That
is, one could apply PCA separately to each set and then
learn the mapping between them. However, this solution
is suboptimal and assures the maximum variance within-
set but not between-set.

A more direct approach of finding the direct mapping
might be beneficial. A standard approach would be to
perform direct regression between the variables Y and
X. For instance, finding the regression matrix M that



minimizes ||Y − MX||F . The optimal M is given by
YXT (XXT )−1. For very high dimensional X, it is likely
that (XXT )−1 is rank deficient. A common approach
to solve this problem is to use reduced-rank regression
(RRR). RRR minimizes ||Y−MX||F subject to the con-
straint that rank(M) = k.

A closed form solution for RRR [17] is accomplished by
finding the principal directions of the augmented matrix
[XY], and use the QR-decompositions to extract subspaces
for the rank-r (truncated). The optimal M is given by:

M = QY FQT
X (2)

where [XY] = [UX

UY
]SVT is the singular value decomposition

over the augmented matrix, UX = QXRX and UY =
QY RY , are the QR-decomposition, and F = RY R−1

X

maps from QX projections onto QY, or vice versa. See
[17] for more details.

3.3 Canonical Correlation Analysis (CCA)

Another common approach used to reduce the dimen-
sionality between two or more datasets that preserve dis-
criminative information is CCA. CCA finds directions of
maximum correlation between two datasets. In particu-
lar, CCA finds a set of bases vectors for two sets of vari-
ables such that the correlation between the projections of
the variables onto these basis vectors are mutually max-
imized [18]. Consider the linear combinations x = wT x
and y = vT y (x and y are called canonical variates).
CCA finds the direction of W and V that maximizes:

ρ =
E[xy]√
E[x2]E[y2]

= E[wT xyT v]√
E[wT xxT w]E[vT yyT v]

(3)

= wT Cxyv√
wT CxxwvT Cyyv

where Cxx and Cyy are the within-sets covariance
matrices of X and Y respectively and Cxy = CT

yx

is the between-sets covariance matrix. The pair-
wise W and V can be found solving a general-
ized eigenproblem, (Cxx)−1Cxy(Cyy)−1CyxW = λ2W
(Cyy)−1Cyx(Cxx)−1CxyV = λ2V (see [19]).

3.4 Kernel Canonical Correlation Analysis
(KCCA)

In the previous section, we have reviewed linear dimen-
sionality reduction methods. However, eq. 1 describes a
non-linear physical phenomenon. In this section, we in-
troduce kernel canonical correlation analysis (KCCA), a
non-linear extension of CCA. KCCA maps the data to a
high dimensional space and performs linear CCA in this
space. The mapping is implicitly defined with the kernel,
and there is no need to explicitly compute the features in
the high dimensional space (kernel trick). Therefore, let
φx : X → Fx and φy : Y → Fy denote feature space map-
pings corresponding to possibly different kernel functions.

The covariances in the feature space are represented by
kernel matrices Kx = ΦxΦT

x and Ky = ΦyΦT
y , and the

spanned space is ={Φx} and ={Φy}.
Since the canonical vectors vj ∈ ={ΦT

x } and wj ∈
={ΦT

y } lie in the spaces spanned by the feature space
mapped, we can represent them as linear combinations
vj = ΦT

xαj and wj = ΦT
y βj using αj ,βj ∈ <n as ex-

pansion coefficients. Therefore, the canonical variates are
aj = Φxvj = Kxαj and likewise bj = Φywj = Kyβj .
As in the linear case, we have to find the canonical vec-
tors in terms of expansion coefficients αj ,βj ∈ <n. The
solution can be reduced to an eigenproblem, where the
objective is to find the canonical correlations between
kernel feature spaces reducing the solution to linear CCA
between kernel principal component scores

(CT
x Cx)−1CT

x Cy(CT
y Cy)−1CT

y Cxψj = λ2
jψj (4)

(CT
y Cy)−1CT

y Cx(CT
x Cx)−1CT

x Cyψj = λ2
jξj (5)

where Cx = ΦxUx = KxAx and Ux = ΦT
x Ax being Ux

the principal components of Φx, and aj = KxAxψj and
bj = KyAyξj are the kernel canonical variates. Likewise,
we can obtain Cy (for a detailed explanation see [20]).

4 Experiments

In this section, we describe the experimental design and
the results for synthetic data.

4.1 Experimental Design

The synthetic dataset used in this study has been gener-
ated with a simulator called CASIMIR [13], based on the
well known experimental database HITRAN [14]. The
parameter ranges used to generate this dataset are based
on typical combustion environment conditions. The tem-
perature ranges from 296 K to 1100 K with several dif-
ferent profiles (see figure 2), the length range covers from
0.05 to 0.85 meters, and the concentration values for CO2

and H2O have been selected as typical ones from com-
bustion of fossil fuels at different temperatures.

4.2 Results

In this section, we report results from applying the tech-
niques described above for dimensionality reduction and
regression to the combustion retrieval problem.

Let Y = f(C) be the mapping between the the projected
coefficients of the spectrum C ∈ <r×n and the temper-
ature and concentration profiles, represented by Y. C
is obtained by any of the dimensionality reduction tech-
niques explained in section 3 (e.g. PCA, RRR, CCA,
KCCA). To make a fair comparison in terms of param-
eters of the models, we have chosen r = 80 for each of
the projections. We also fix the multilayer perceptron



Table 1: Mean Absolute Error per sample(MAEs) of tem-
perature and concentration, and its standard deviation
(SD).

Melthod Temperature Concentration
(MAEs/SD)K (MAEs/SD)ppm.

PCA+MLP 2.38/17.33 1.6E-4/1.2E-3
KCCA+MLP 2.27/ 4.65 1.5E-4/3.1E-4
CCA+MLP 8.81/25.18 6.0E-4/1.7E-3
RRC 2.30/ 9.57 1.2E-4/6.0E-4
KCCA+linear 35.80/54.86 2.0E-3/3.8E-3
CCA+linear 32.09/75.84 2.0E-3/5.0E-3

(MLP) architecture to a unique hidden layer with 80 hid-
den neurons. We split the dataset in 70% training and
30% testing.

Figure 3 shows the temperature profile Mean Square Er-
ror (MSE) for the different types of dimensionality reduc-
tion and regression techniques. The MSE of temperature
profile is computed as MSEz = 1

n

∑n
j=1(||yzj − ŷzj ||)2

being ŷ the estimated value. Recall that linear refers
to a standard linear regression. As we can observe in
figure 3, KCCA+MLP (solid line) achieves the best re-
sults in terms of MSE. This is not surprising, since PCA
does not guarantee that the projection C has correlation
with the predicted variable Y. Surprisingly, CCA+MLP
achieves a worse performance than PCA+MLP, this can
be due to several factors such as local minima in the
MLP or not getting the optimal number of compo-
nents for CCA. However, KCCA achieves better perfor-
mance for the non-linear component. Table 1 shows the
Mean Absolute Error profile per sample (MAEs). The
MAEs in temperature and concentration is computed as
MAEs = 1

z
1
n

∑z
k=1

∑n
j=1 |ykj − ŷkj | where z is the dis-

cretized length, and n the number of samples. The MAEs
gives an idea of the physical error. In synthetic data ex-
periments, the MAEs is below 1% relative error (2.27 K.)
which is an acceptable level of accuracy for most practical
applications [2].

We also compare the MLP technique with linear regres-
sion techniques such as RRR and linear mapping. As can
be observed in fig. 3, RRR has a slight improvement over
PCA+MLP or CCA+MLP. This indicates that the map-
ping, although non-linear, is not far from being linear.
RRR has advantages with respect to the other techniques:
firstly, it is extremely efficient (in space and time) to com-
pute; secondly it is not prone to local minima problems
and the model for different dimensions can be computed
recursively.

5 Conclusions

In this paper, we have presented a comparative study
of different dimensionality reduction and regression
techniques to invert the radiative transfer equation.
KCCA+MLP has outperformed other techniques in
terms of MSE and MAEs, which confirms the non-

Figure 3: Temperature MSE. X axis is the length dis-
cretized in arbitrary units. Best performance is for
KCCA+MLP model in solid line.

linearity of the RTE. Not surprisingly, KCCA overcomes
the limitations of CCA and PCA to model non-linear
structure between the the spectrum values and the tem-
perature profiles. The relative error in temperature
achieved by KCCA+MLP is around 1%, which in the
literature is considered to be “extremely accurate” [2].
Furthermore, using MLP for regression allows the the
modelling of complicated dependencies.

On the other hand, RRR has worked surprisingly well
and it is a very computationally efficient method. RRR
works especially well when the length is known a priori.
This suggests a method of splitting the input data into
several lengths and computing a local model for each of
them. We are currently investigating extensions of this
idea.

Although we have reported promising results in synthetic
data, there are still several issues to solve in the future.
We plan to gather real data and test the robustness of
the algorithm and the validity of the RTE inversion in
real environments. Moreover, we have fixed the number
of projected components and the number of hidden units
in the MLP, to make a fair comparison in terms of pa-
rameters of the model. Each model may have its optimal
number of projections and hidden units. More research
needs to be done to address this problem. On the other
hand, the performance of KCCA greatly depends on the
choice of the kernels and their parameters and we are cur-
rently working on automatic methods to learn the kernels
following prior work in computer vision [22].
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