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Abstract. FACS (Facial Action Coding System) coding is the state of the art in
manual measurement of facial actions. FACS coding, however, is labor intensive
and difficult to standardize. A goal of automated FACS coding is to eliminate
the need for manual coding and realize automatic recognition and analysis of
facial actions. Success of this effort depends on access to reliably coded corpora;
however, manual FACS coding remains expensive and slow. This paper proposes
Fast-FACS, a computer vision aided system that improves speed and reliability
of FACS coding. Three are the main novelties of the system: (1) to the best of
our knowledge, this is the first paper to predict onsets and offsets from peaks, (2)
use Active Appearance Models for computer assisted FACS coding, (3) learn an
optimal metric to predict onsets and offsets from peaks. The system was tested in
the RU-FACS database, which consists of natural facial behavior during a two-
person interview. Fast-FACS reduced manual coding time by nearly 50% and
demonstrated strong concurrent validity with manual FACS coding.
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1 Introduction

FACS (Facial Action Coding System: [1]) coding is the state of the art in manual mea-
surement of facial action. FACS coding, however, is labor intensive and difficult to
standardize across coders. A goal of automated FACS coding [2—4] is to eliminate the
need for manual coding and realize automatic recognition and analysis of facial ac-
tions.Success of this effort depends on access to reliably coded corpora of FACS-coded
images from well-chosen observational scenarios. Completing the necessary FACS cod-
ing for training and testing algorithms has been a rate-limiter. Manual FACS coding
remains expensive and slow.

The inefficiency of current approaches for FACS coding is not inherent to FACS
but to the failure to make use of technology to make coders more productive. This
paper proposes an hybrid system, Fast-FACS, that combines automated facial image
processing with manual coding to increase the speed and reliability of FACS coding.
Figure 1 shows the main idea of the paper. The specific aims are to: (1) Reduce time and
effort required for manual FACS coding by using novel computer vision and machine
learning techniques. (2) Increase reliability of FACS coding by increasing the internal
consistency of manual FACS coding. (3) Develop an intuitive graphical user interface
that is comparable to commercially available packages in easy of use, while enabling
fast reliable coding.
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Fig. 1: FACS coding typically involves frame-by-frame inspection of the video, paying
close attention to subtle cues such as wrinkles, bulges, and furrows. Left to right, evo-
lution of an AU 12 (involved in smiling), from onset, peak, to offset. Using FastFACS
only the peak needs to be labeled and the onset/offset are estimated automatically.

2  Previous work

2.1 Facial Action Coding System (FACS)

FACS [1] is a comprehensive, anatomically-based system for measuring nearly all vi-
sually discernible facial movement. FACS describes facial activity on the basis of 44
unique action units (AUs), as well as several categories of head and eye positions and
movements. Facial movement is thus described in terms of constituent components, or
AUs. FACS is recognized as the most comprehensive and objective means for mea-
suring facial movement currently available, and it has become the standard for facial
measurement in behavioral research [5].

Human-observer-based methods like FACS are time consuming to learn and use,
and they are difficult to standardize, especially across laboratories and over time. A goal
of automated FACS coding [2—4] is to eliminate the need for manual coding and realize
automatic recognition and analysis of facial actions. However, the success of this effort
depends on access to reliably coded corpora of FACS-coded images from well-chosen
observational scenarios, which entails extensive need for manual FACS-coding.

Currently, FACS coders typically proceed in either single or multiple passes through
the video. When a single-pass procedure is used, they view the video and code the
occurrences of all target AU in each frame. FACS coders view video at both regular
video rate and in slow motion to detect often subtle changes in facial features, such
as wrinkling of facial skin, that indicate the occurrence, timing, and intensity of facial
AUs. AU intensity is coded on a 5-point ordinal intensity scale (which provides a metric
for the degree of muscular contraction) from trace to maximal intensity. FACS scoring
produces a list of AUs, their intensity, and the video frames or times at which each
began (i.e. onset), peaked (highest intensity observed), and ended (i.e., offset). Fig. 1
shows an example of how to code onset, peak and offset of AU12, which raises the
lip corners obliquely. To date, manual FACS coding remains slow, and achieving and
maintaining inter-coder reliability is challenging.
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2.2 Automatic FACS segmentation and recognition from video

Advances in computer vision over the past decades have yielded advances toward the
goal of automatic FACS. That is, to eliminate the need for manual coding and realize
automatic recognition and analysis of facial actions.

Two main streams on automatic analysis of facial expression consider emotion-
specified expressions (e.g., happy or sad) and anatomically based facial actions (e.g.,
FACS). The most relevant work is the one that addresses the temporal segmentation
of AUs into onset, offset, and peak. Pantic and Pantras [4] used a rule-based method
to separate onset, apex and offset. Valstar and Pantic [6] combined Hidden Markov
Models and Support Vector Machines to model the temporal dynamics of facial actions.
They considered the onset, apex, and offset frames as different classes. Accuracy was
measured as precision-recall in these classes. These approaches all used supervised
learning with the goal of fully automated expression or AU coding.

More recently, two groups have proposed hybrid systems that make use of more
unsupervised learning techniques to augment manual coding of AUs. Zhang et al. [7]
proposed an active learning approach to improve speed and accuracy in AU labeling. In
their approach, a sequence is labeled with an automatic system, and a user then is asked
to label the frames that are considered ambiguous by the system. De la Torre et al. [8]
proposed an unsupervised algorithm to segment facial behavior into AUs, an approach
that achieved concurrent validity with manual FACS coding. Subsequently, found that
this unsupervised approach could achieve fast, accurate, robust coding of AU onsets
and offsets when coupled with manual coding of AU peaks.

3 Fast-FACS

This section describes our Fast-FACS system, that uses advances in computer vision
and machine learning to increase the efficiency and reliability of FACS coding.

3.1 Active Appearance Tracking

There exist a variety of methods for facial feature tracking. Over the last decade, ap-
pearance models have become increasingly prominent in computer vision and graphics.
Parameterized Appearance Models (PAMs) have been proven useful for alignment, de-
tection, tracking, and face synthesis [9-11]. In particular, Active Appearance Models
(AAMs) have proven an excellent tool for detecting and aligning facial features. AAMs
[9,11,10] typically fit their shape and appearance components to an image through
a gradient descent, although other optimization approaches have been employed with
similar results. Figure 1 shows how a person-dependent AAM [11, 9] is able to track the
facial features during a segment that includes smiling (AU12). The person-dependent
AAM is build with few samples (typically 15-20) of one person containing expression,
pose and illumination changes in the video sequence. The AAM is composed of 66
landmarks that deform to fit perturbations in facial features. To the best of our knowl-
edge, the work described here is the first to use the results of AAMs in a hybrid system
to improve the speed and reliability of FACS coding. The hybrid system augments the
skill of highly trained FACS coders with computer vision and machine learning based
video editing and estimation of AU onsets and offsets.
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3.2 Peak, Onset and Offset Coding

In the first step of Fast-FACS, the user annotates the peak of a facial action. The system
then automatically determines the remaining boundaries of the event, that is, the onset
and offset (extent) of the AU. The estimation of the position of the onset and offset of
a given event peak is based on a similarity measure defined on features derived from
the AAM mesh of the tracked face and on the expected distribution of onset and offset
durations (for a given AU) derived from a database of manually coded AUs.
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Fig. 2: Left) Similarity matrix for a video segment. The red rectangle denotes a specific
AU 12 instance, as coded manually. The red circle marks the user-labeled peak. Observe
that the AU defines a region “bounded” by sharp edges in the similarity matrix. Right)
Similarity curve for the marked peak (ie. Kpcqr,; for all j in a neighborhood). Note
how the estimated onset and offset snap to local minima on the similarity curve.

We construct a symmetric affinity matrix K € R"*", where each entry k;; €
[0, 1] represents the similarity between frames ¢ and j, and n denotes the number of
frames [8]. This similarity measure will be used to decide where best to partition the
AU into onset, peak and offset sections.

To compute the similarity measure (a qualitative distance from the peak frame), k;;,
we use the 66 shape landmarks from the tracking. The particular distance measure will
be addressed in section 3.3. The description of the feature extraction process follows:
The AAM mesh is first interpolated to a finer resolution using B-Spline fitting in the
region of interest (upper or lower face). The resulting mesh from frame ¢ is aligned with
respect to frame j using an affine transform intended to remove the rigid movement of
the head while retaining the elastic deformations of facial actions. Once both frames
are commonly referenced, the landmarks are stacked into vectors f; and f;, and k;; =

—dE; fs
e% where d(f;, f;) measures distance.

Figure 2 shows the similarity curve for a video segment. The similarity measure is
robust to changes in pose (rigid motion) as well as to changes in facial expression that do
not affect the particular AU under study (non-rigid motion). Additionally, the measure
need to be invariant with respect to each AU class. The distance between frames is
computed with the Mahalanobis distance d(f;, f;) = (f; — f;)" A(f; —f;). Next section
describes a metric learning algorithm to learn A.
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3.3 Learning a metric for onset/offset detection

This section describes the procedure to learn a metric [12] for onset and offset estima-
tion. Let d features of each frame 7 be stacked into a vector, f; € R%*1. fip denotes a

frame 7 within a close neighborhood of an AU peak frame, f,. Let f,j (P) denote a frame
at or beyond the onset (or offset) of the same AU. The metric learning optimizes:

mlnz —£,)TA(fP — £,) +CZ§,”,

k.p

s.t. \/ W) _ENTAMEP) —£) > th— &y Vhp A =0, &p >0 (1)

where A € R™*™ is a symmetric positive semi-definite matrix that minimizes the
distance between frames neighboring the peak while ensuring that the distance between
the peak and those frames at or beyond the onset and offset is greater than a given
threshold th. Slack variables &, ), ensure that the constraints can be satisfied, while the
parameter C' adjusts the importance of the constraints in the minimization.

Eq. (1) can be solved with SDP approaches and we used the CVX package [13].
Restricting A to be diagonal is equivalent to individually weighting the features. While
a full matrix could be used, in our experience diagonal and full matrices provide com-
parable performance, and we used this strategy for the experimental results.

3.4 Graphical user interface (GUI)

There exist several commercial packages for manual event coding. These systems are
general purpose and must be adapted for FACS coding. They are proprietary systems,
and therefore cannot be easily if at all modified to accommodate user developed mod-
ules, such as automatic onset and offset detection. We have developed a GUI specifically
for FACS coding with the goal of creating an open-source framework that makes it pos-
sible to add new features (such as onset and offset detection) in order to improve the
speed and reliability of FACS coding.

Fig. 3 shows the GUI for Fast-FACS. As described above, the coder goes through
the video and manually codes the peaks that they detect, assigning an AU identifier
and related features of the event (intensity and laterality), as well as comments about
the peak to indicate whether it is gradual, ambiguous or an instance of multiple peaks.
Annotation other than labeling of the peaks is for the user’s reference and not used in
onset or offset estimation. Once the peaks have been labeled, the onset and the offset are
automatically detected and the resulting events made available for the user’s inspection.

For FACS coders, it is usually difficult to determine the appropriate intensity level
of a certain AU, meaning that they must go back to previous events to compare the
relative intensity of an AU with other instances of that AU for a given person or multiple
persons. Fast-FACS has the option (mosaic) to view all video events of a certain AU
in one screenshot, with the capability to select the images with the same or similar
intensity in order to code them all at the same time. By being able to compare multiple
instances of an AU, users (coders) can directly calibrate intensity without having to
hold multiple instances in mind. With the event navigation menu the coder can quickly
verify that the event has been correctly coded, as well as change the estimated onset and
offset if required. Fig. 3 (right) shows some of these functionalities.
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Fig. 3: Left) Fast-FACS main interface. Right) Details of mosaic window. 1.-AU list.
2.-Mosaic image. 3.-Intensity and side options. 4.-List of selected images.

4 Experimental evaluations

Fast-FACS enables computer-assisted coding of peaks and automatic coding of onsets
and offsets. To evaluate Fast-FACS, at least three questions are relevant.

— How well does Fast-FACS compare with leading commercial software for manual
coding of peaks? Inter-coder agreement should be comparable.

— Does automatic detection of onsets and offsets have concurrent validity with man-
ual coding? Inter-system agreement for onsets and offsets should be comparable to
inter-coder agreement of manual coding.

— Is Fast-FACS more efficient than manual coding? Does it substantially reduce the
time required to complete FACS coding?

We conducted several experiments using a relatively challenging corpus of FACS
coded video, the RU-FACS [14] video data-set. It consists of non-posed facial behavior
of 100 participants who were observed for approximately 2.5 minutes. FACS-coded
video from 34 participants was available to us. Of these, 5 had to be excluded due to
excessive occlusion or errors in the digitized video, leaving data from 29 participants.

4.1 Inter-coder and inter-system agreement

Two sequences, S60 and S47, were selected at random from the RU-FACS database.
The clips were 2 minutes 4 seconds and 2 minutes 50 seconds in duration, respectively.
Each coder coded the two interviews using two software packages, Observer XT 7.0
[15], and Fast-FACS. AUs coded include AU 1, AU 2, AU 4, AU 10, AU 12, AU 15,
and AU 20. Order of coding the clips was counter balanced across coders and across
systems. Thus, for one subject, one coder used Fast-FACS first and Observer second,
while the other coder began with Observer and then used Fast-FACS. The order was
reversed for coding the other subject. Coding of the same clip was conducted several
days apart to minimize the learning (familiarity) effect. The time it took each coder to
code peaks in Observer and Fast-FACS was recorded. In addition, onset and offset of
each AU were coded in Observer, and the time it took to code onset and offset was also
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recorded. Onsets and offsets in Fast-FACS were not manually coded, rather automati-
cally estimated.

In calculating inter-coder and inter-system agreement, a window of agreement of
+.5 seconds (15 frames) was used. In FACS coding, it is typical allowed a margin
of error [16]. Inter-coder agreement [17] refers to whether two coders using the same
system agree. Concurrent validity refers to whether there is agreement between systems.
Percent agreement was computed using percentage agreement Ekman & Frisen [18],
and as a coefficient Kappa (k) [19]. Kappa is a more rigorous metric as it is controls for
agreements due to chance. Agreement is reported for both all intensity levels and for
intensity levels B and higher. In the original FACS manual, AU at trace levels were not
coded, and reliability of A levels has not been reported in the literature.

Intra and inter-system agreement for AU peaks: For both percent agreement and co-
efficient kappa when labeling peaks of all intensities, agreement between systems (86%
and 74% kappa) was comparable to inter-coder agreement using commercial software
(84% and 70% kappa) . When considering intensities B or higher, agreement rose to
83% and 91

Temporal agreement of manual coding of peak, onset and offset This section evalu-
ated the inter-coder differences of manual coding. Temporal agreement of manual cod-
ing for peak, onset and offset was evaluated in Fast-FACS and Observer. The same two
clips from the RU-FACS [14] database were used. The temporal error was calculated
only when there was agreement between the two coders within a £.5 sec window. Re-
sults for temporal error using Fast-FACS and Observer are shown separately in Table 1a
(left) and Table 1b (right). Both systems achieved similar results. On average, temporal
error for manual coding of peaks and onset are about £2 frames. Temporal error for
manual coding of offset was much larger, on average £10 frames in Observer and +12
frames in Fast-FACS. Across AU, average agreement was within 10 — 12 frames. This
finding is consistent with what is known from the FACS literature. In general, onsets
are relatively discrete, whereas offsets for many AU fade gradually and may be diffi-
cult to delimit [5]. Also, it appears that temporal error of manual coding is different for
different AUs, with AU 10 and 12 showing larger temporal error and greater variability
than other AUs, especially for offset coding.

4.2 Accuracy of estimated onsets and offsets

To evaluate the accuracy of the onset and offset estimation we used 29 subjects from
the RU-FACS database. Leave-one-out cross-validation was used in the evaluation, us-
ing all subjects except the one currently under test to train the detection algorithm (i.e.
metric learning 3.3) and repeating the training/testing phases for every subject in the
database. The detected onsets and offsets for all subjects were then pooled and com-
pared with those coded manually, taken as ground truth.

As a baseline comparison and an intuition as to how much information the visual
AAM features contribute to the estimation, Fig. 4 shows the performance of our system
compared with a system that uses only the statistical distribution of AU onsets and
offsets along time, and estimates the onset at the mean onset position (w.r.t. the peak)
as found in the training data (similarly for offsets). Given that the temporal statistics of
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l | Peak Onset Offset H | Peak Onset Offset

AU/M|SD|N|M|SDIN| M |[SD|N||AUM|SDIN|M|SD|N| M |SD [N
1 |1.6(3.8|36(1.4|1.8(33| 4.5 6.4 |33|| 1 |2.5|4.7|35|3.0/ 4.9 |32| 8.5 |14.4|32
2 |1.212.1]27(1.0{1.3|27| 9.6 {19.4|27| | 2 |{1.9|2.9(29|1.5| 1.8 |26| 8.4 |13.3|26
4 |2.6/4.3|15|1.4|3.1{15/ 7.2 |11.2|15| | 4 |2.1|4.0{15(2.3| 2.7 [15|8.6 | 7.9 |15
10 |3.94.9|13|3.5|4.6(13|34.8]44.7|13| | 10 |2.8|3.4]14|2.0| 2.5 |14|14.5|29.4|14
12 |3.0(3.2|18|2.1]|4.1| 8 |24.5|30.3| 8 | | 12|2.3|2.4|21|4.3| 5.3 | 8 |25.2{35.3|8
15 |1.8|2.8|28|2.3|3.5(28| 4.2 | 6.7 |28| | 15|1.6]|2.6|32|5.8|22.6|32| 3.0 | 3.2 |32
20 0.4/0.5|10]0.4|0.5(10| 1.2 | 0.8 |10{ | 20 {0.9]0.8{10|1.2{ 0.9 |10| 1.5 | 0.9 |10
M |23 1.9 12.0 M 2.0 2.7 9.6

(a) Fast-FACS (b) Observer
Table 1: Temporal error of manual peak, onset and offset in (a) Fast-FACS and (b) Ob-
server. All units are in frames; M refers to mean, STD to standard deviation and N
represents the number of samples.

Error distribution, all AUS

S60 547
Manual|Fast-FACS |Manual |Fast-FACS

cl Peak 189 147 163 135

H Onset/Offset | 137 0.0 113 0.0
2 = Peak 114 64 64 72
Onset/Offset 66 0.0 62 0.0
Peak 151.5 105.5 113.5 103.5

Mean | Onset/Offset | 101.5 0.0 87.5 0.0

S —— All AU learned, onset error (1342 examples) % On/Off over 4{0'}‘{ O%/ 43% 0%
o1/, _ | — AllAU leamed, offset error total 253.0 105.5 200.0 103.5

_'= =] = = = All AU mean, onset error (1342 examples)

- ~ = ~ All AU mean, offset error

(b) Manual coding time

0 2 4 6 8 10 12 14 16 18 20
Frames

(a) Error distribution

Fig. 4: Left) Error distribution for onset and offset estimation using the learned metric
compared with estimating the mean onset and offset duration (for each AU). Graph
shows the fraction of instances in the database for which the error committed when
estimating the onset and offset from the coded peak was below a certain number of
frames. Results are pooled for all AUs (1,2,4,10,12,15,20). Right) Time required to code
peaks, onsets, and offsets using manual coding via Observer and Fast-FACS. Onset and
offset coding in Fast-FACS is fully automated, thus requiring no coder time. Units are
in seconds. C1 refers to coder 1.

each AU can be different, these measures are taken for each AU separately. Note that
for offsets especially, the visual features are key to an accurate estimation.

Figures 5a and 5b show the distribution of the errors committed for onsets of se-
lected AUs, measured as the absolute difference in frames from the manually labeled
onsets/offsets to those determined automatically, comparing the learned metric and Eu-
clidean distance. Temporal error for onsets was relatively low. The mean error ranged
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Error distribution, AUs 1, 2, 4 Error distribution, AUs 10, 12, 15
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AU15 onset error (147
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AUL learned, onset error (418 examples)
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(a) AUs 1,2, and 4 (b) AUs 10, 12, and 15

Fig. 5: Error distribution for onsets for (a) AUs 1, 2 and 4, (left) and (b) AUs 10, 12
and 15, comparing the learned metric with results obtained using Euclidean distance.

from 3.8 to 13.1 for AUs (1,2,4,10,15). This is within the standard of acceptable error
for manual coding. Inter-system agreement for offsets was lower and more variable.
With the exception of AU 12, mean offset error ranged from 10.6 to 36.2 frames. Mean
onset error for AU 12 was 32.13 frames, mean offset error 84 frames. Lower precision
for offsets is consistent with the reliability of manual coding. Many AU fade slowly as
the face relaxes, which attenuates the observable signal values of offsets. Indeed, only
in some selected types of smiles (e.g., embarrassed), does one find fast offsets [20]. Per-
haps the most important confound for AU 12 is mouth movement due to speech, which
makes similarity based methods fail.

4.3 Efficiency of Fast-FACS

Fast-FACS reduced total coding time by one half or more. As shown in the table in
Fig. 4 right, automatic coding of onsets and offsets was responsible for most of this
decrease. However, it also appeared that efficiencies in the Fast-FACS GUI may have
been a factor as well. Manual coding of peaks using Fast-FACS was faster in each case.
Overall, the increased efficiency from the GUI and from automatic coding of onsets and
offsets resulted in dramatically increased efficiency and productivity.

5 Conclusion and future work

Fast-FACS has shown very good performance in experiments, and we believe that Fast-
FACS shows great promise in providing a novel and easy tool for specific FACS event
coding, and also providing a framework in which the development of computer-aided
FACS tools such as automatic peak detection and verification is possible. Future work
includes the incorporation of appearance features (key to extending the system to cer-
tain AUs, e.g. 14), as well as comparing other methods for onset and offset detection,
particularly incorporating time to robustly account for changes due to speech.
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