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Abstract—Recognizing facial action units (AUs) is important
for situation analysis and automated video annotation. Previous
work has emphasized face tracking and registration and the
choice of features classifiers. Relatively neglected is the effect of
imbalanced data for action unit detection. While the machine
learning community has become aware of the problem of
skewed data for training classifiers, little attention has been
paid to how skew may bias performance metrics. To address
this question, we conducted experiments using both simulated
classifiers and three major databases that differ in size, type
of FACS coding, and degree of skew. We evaluated influence of
skew on both threshold metrics (Accuracy, F-score, Cohen’s
kappa, and Krippendorf’s alpha) and rank metrics (area
under the receiver operating characteristic (ROC) curve and
precision-recall curve). With exception of area under the ROC
curve, all were attenuated by skewed distributions, in many
cases, dramatically so. While ROC was unaffected by skew,
precision-recall curves suggest that ROC may mask poor
performance. Our findings suggest that skew is a critical factor
in evaluating performance metrics. To avoid or minimize skew-
biased estimates of performance, we recommend reporting
skew-normalized scores along with the obtained ones.

I. INTRODUCTION

Our everyday communication is highly influenced by the

emotional information available to us from other people.

Recognizing facial expression is important for situation

analysis and automated video annotation.

In the last decade many approaches have been proposed

for automatic facial expression recognition [7], [29]. Al-

though, previous work has emphasized face tracking and

registration and the choice of feature classifiers, relatively

neglected is the effect of imbalanced data when evaluating

action unit detection.

In the case of facial expression data, the samples can be

annotated using either emotion-specified labels (e.g., happy

or sad) or action units, as defined by the Facial Action

Coding System (FACS) [10]. Action units are anatomically

defined facial actions that singly or in combinations can

describe nearly all possible facial expressions or movements.

Action unit (AU) detection, as well as expression detection

of which AU detection is a subset, is a typical binary

classification problem where the vast majority of examples

are from one class, but the practitioner is typically interested

in the minority (positive) class.

The problem of learning from imbalanced data sets is

twofold. First of all, from the perspective of classifier

training, imbalance in training data distribution often causes

learning algorithms to perform poorly on the minority class.

This issue has been well addressed in the machine learning

literature [4], [15], [27], [26], [8] A common solution is

to sample the data prior to training to re-balance the class

distribution [2], [27]. An alternative to sampling is to use

cost-sensitive learning. This approach targets the problem

of skew by applying different cost matrices that describe

the costs for misclassifying any particular data point [26],

[8]. For a more detailed survey on the problem see [16] and

the references therein.

Relatively little attention has been paid to how skew

may spoil performance metrics. Facial expression data is

typically highly skewed. Imbalance in the test data distri-

bution might produce misleading conclusions with certain

metrics. Percentage agreement, referred to as accuracy, is

especially vulnerable to bias from skew. When base rate is

low, high accuracy can result even when alternative methods

rarely if ever agree [12], [14]. Agreement in that case is

about the very large number of negative cases rather than

the very few positive ones. Alternative metrics have been

proposed to address this issue [24], [15]. Ferri et al. studied

the relationship between different performance metrics and

address the problem of rank correlations between them [12].

How does skewed data influence performance metrics for

action unit detection? To address this question, we conducted

experiments using both simulated classifiers and three major

databases that include both posed and spontaneous facial

expression and differ in database size, type of FACS coding

[9], [10], and degree of skew. The databases were Cohn-

Kanade [21], RU-FACS [13], and UNBC-McMaster Pain

Archive [22].

We included a broad range of metrics that included both

threshold metrics (Accuracy, F1-score, Cohen’s kappa, and

Krippendorf’s alpha) and rank metrics (area under the ROC

curve [11] and precision-recall curve). With exception of

area under the ROC curve, all were attenuated by skewed

distributions; in many cases, dramatically so. Alpha and

kappa were affected by skew in either direction; whereas

F1-score was affected by skew only in one direction. While
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ROC was unaffected by skew, precision-recall curves can re-

veal differences between classifiers, because of the different

visual representation of the curves. Very different precision-

recall can be associated with same ROC.

Our findings suggest that skew is a critical factor in

evaluating performance metrics. Metrics of classifier per-

formance may reveal more about skew than they do about

actual performance. Databases that are otherwise identical

with respect to intensity of action units, head pose, and so

on may give rise to very different metric values depending

only on differences in skew. This finding has implications

for testing classifiers so as to avoid or minimize confounds

and for meta-analyses of classifier performance. Sensitivity

of the threshold metrics for skewed distributions could be

reduced by balancing the distribution of datasets.

The paper is built as follows. Datasets and their prop-

erties are reviewed in Section 2. Theoretical components

are described in Section 3. Experimental results on the

effect of imbalanced data on performance metrics and AU

classification are detailed in Section 4. Discussion and a

summary conclude the paper (Section 5).

II. DATASETS

First, we describe the datasets (Section II.A-C). We then

report findings with respect to skew for each AU (Section

II.D).

In our simulations we used three major databases that

include both posed and spontaneous facial expression and

differ in database size, type of FACS coding, and degree

of skew. The databases were Cohn-Kanade, RU-FACS and

UNBC-McMaster Pain Archive.

A. Cohn-Kanade Extended

The Cohn-Kanade Extended Facial Expression (CK+)

Database [21] is an extension of the original Cohn-Kanade

Database [18]. Cohn-Kanade has been widely used to com-

pare the performance of different methods of automated

facial expression analysis. CK+ includes 593 frontal image

sequences of directed facial action tasks (i.e., posed AU

and AU combinations) performed by 123 different partic-

ipants. Facial landmarks (68-point mesh) were tracked us-

ing person-specific active appearance models [28]. Twenty-

seven action units were manually coded for presence or

absence by certified FACS coders. For a subset of 118

sequences, the seven universal emotion expressions (anger,

contempt, disgust, fear, happy, sad and surprise) plus neutral

were labeled. We used all 593 sequences for the current

study.

B. McMaster Pain Archive

The Pain Archive [22] consists of facial expressions of

129 participants who were suffering from shoulder pain. The

participants performed different active and passive motion

tests with their affected and unaffected limbs on two separate

occasions. The distribution has 200 video sequences with

48398 frames from 25 participants. All of the frames were

FACS coded for 12 AU by certified FACS coders and

have frame level pain scores, sequence-level self-report, and

observer measures. Facial landmarks (66-point mesh) were

tracked using person-specific active appearance models [28].

C. RU-FACS Database

The version of RU-FACS available to us consisted of

unscripted (i.e., spontaneous) facial behavior from 34 par-

ticipants. Participants had been randomly assigned to either

lie or tell the truth about an issue for which they had strong

feelings. The scenario involves natural interaction with an-

other person. AUs were manually coded for each video

frame. Video from five participants had to be excluded due to

excessive noise in the digitized video. Thus, video from 29

participants was used. Facial landmarks were tracked using

a 68-point mesh using same AAM implementation [3].

D. Imbalance in the Datasets

Action unit classification is a typical two-class problem.

The positive class is the given action unit that we want

to detect, and the negative class contains all of the other

examples. Unless databases have been contrived to minimize

skew, skew is quite common. Most facial actions have

relatively low rates of occurrence. Smile controls, actions

that counteract the upward pull of a smile (e.g., AU 14 or AU

Table I
DATABASE STATISTICS. FOR MORE DETAILS, SEE TEXT.



15), occur less than 3% of the time even in a highly social

context [25]. Thus, for action unit detection, the number of

positive training examples will often be small, which can

result in large imbalance between the positive and negative

examples. While skew in training sets can be adjusted by

under-sampling negative cases, skew in test sets remains.

The imbalance of this type of data can be defined by the

skew ratio between the classes:

Skew =
negative examples

positive examples
, (1)

Table I shows the skew ratios of action units from the

three datasets. In the small, posed CK+ dataset, the average

skew ratio is around 30. In the case of larger, spontaneous

datasets the skew ratio is even more extreme: about 60 in

the Pain Archive and over 80 in RU-FACS.

III. METHODS

We tuned high precision shape-based AU classifiers in

each dataset. Details of the methods are presented in Section

III.A.

To evaluate the effect of skew on the classifiers, we used

a broad range of both threshold and rank metrics. These are

described in Section III.B.

In Section III.C we describe random sampling methods

to balance the distribution of the testing partition of the

datasets.

A. Training AU Classifiers

Our method contains two main steps. First, we estimate

3D landmark positions on face images using a 2D/3D AAM

method [23]. We describe the details of this technique in

Section III-A1. Second, we remove the rigid transformation

from the acquired 3D shape and perform an SVM-based

binary classification on it using the different AUs as the

class labels. We show this method in Section III-A2 and

III-A3.

1) Active Appearance Models: As noted above, each of

the datasets had been tracked using person-specific AAM.

AAMs are generative parametric models for face alignment.

A 3D shape model is defined by a 3D mesh and in particular

the 3D vertex locations of the mesh, called landmark points.

Consider the 3D shape as the coordinates of 3D vertices that

make up the mesh:

x = (x1, y1, z1, ..., xM , yM , zM )T , (2)

or, x = (x1, . . . ,xM )T , where xi = (xi, yi, zi)
T . We

have T samples: {x(t)}Tt=1. We assume that – apart from

scale, rotation, and translation – all samples {x(t)}Tt=1 can

be approximated by means of the linear principal component

analysis (PCA).

The interested reader is referred to [23] for the details of

the 2D/3D AAM algorithm.

2) Extracted Features: To register face images, 3D struc-

ture from motion first was estimated using the method of

Xiao et al. [28]. We then extracted the normalized 3D

shape parameters by removing the rigid transformation.

Next, we performed a personal mean shape normalization

[17]. We calculated an average shape for each subject (the

so called personal mean shape) and computed the differences

between the features of the actual shape and the features of

the personal mean shape. This step removes within-person

variation.

3) Support Vector Machine for AU Detection: After ex-

tracting the normalized 3D shape, we performed an SVM-

based binary-class classification using each AU in turn as

the positive class labels. Negative labels were all other AU.

Support Vector Machines (SVMs) are powerful for bi-

nary and multi-class classification as well as for regression

problems. They are robust against outliers [1]. For two-class

separation, SVM estimates the optimal separating hyper-

plane between the two classes by maximizing the margin

between the hyper-plane and closest points of the classes.

The closest points of the classes are called support vectors.

They determine the optimal separating hyper-plane, which

lies at half distance between them.

We are given sample and label pairs (x(k), y(k)) with

x
(k) ∈ R

m, y(k) ∈ {−1, 1}, and k = 1, ...,K . Here, for

class 1 (class 2) y(k) = 1 (y(k) = −1). Assume further

that we have a set of feature vectors φ(= [φ1; . . . ;φM ]) :
R

m → R
M , where M might be infinite. The support vector

classification seeks to minimize the cost function

min
w,b,ξ

1

2
w

T
w + C

K∑

i=1

ξi (3)

y(k)(wTφ(x(k)) + b) ≥ 1− ξi, ξi ≥ 0. (4)

We used binary-class classification for each AU, where

the positive class contains all shapes labelled by the given

AU, and the negative class contains every other shapes. In

all cases, we used only linear classifiers and also varied the

regularization parameter by factors of ten from 10−4 to 102.

B. Performance Metrics

In a binary classification problem the labels are either

positive or negative. The decision made by the classifier can

be represented as a 2× 2 confusion matrix. The matrix has

four categories: True positives (TP) are examples correctly

labeled as positives. False positives (FP) refer to negative

examples incorrectly labeled as positive. True negatives (TN)

correspond to negatives correctly labeled as negative and

false negatives (FN) refer to positive examples incorrectly

labeled as negative. Using these categories we can derive

two performance metrics: the precision (P = TP
TP+FP

) and

the recall (R = TP
TP+FN

) values of the classifier. Precision is



the fraction of recognized instances that are relevant, while

recall is the fraction of relevant instances that are retrieved.

For the comparison we used both threshold metrics (Ac-

curacy, F1-score, Cohen’s kappa, and Krippendorf’s alpha)

and rank metrics (area under the ROC curve and precision-

recall curve).

1) Threshold Metrics: The threshold metrics used in this

paper are Accuracy, F1-score, Cohen’s kappa, and Krippen-

dorf’s alpha. These metrics have a threshold level, where

examples above the threshold are predicted as positive and

the rest as negative. For these metrics, it is not important

how close a prediction is to the level, only if it is above or

below threshold.

Accuracy is the percentage of the correctly classified

positive and negative examples:

Acc =
TP + TN

TP + FP + TN + FN
. (5)

Accuracy is a widely used metric for measuring the

performance of a classifier, however, when the prior proba-

bilities of the classes are very different, this metric can be

misleading.

A better choice is F1-score, which can be interpreted as

a weighted average of the precision and recall values:

F1 = 2 ·
P ·R

P +R
(6)

Cohen’s kappa is a coefficient developed to measure

agreement among observers [6]. It shows the observed

agreement normalized to the agreement by chance:

K =
PObs − PChance

1− PChance

. (7)

Krippendorff’s α-reliability measures the observed dis-

agreement normalized to the observed disagreement [19],

[20]:

α = 1−
DObs

DChance

. (8)

2) Rank Metrics: The rank metrics depend only on the

ordering of the cases, not the actual predicted values. As

long as ordering is preserved, it makes no difference whether

predicted values fall between different intervals. These met-

rics measure how well the positive cases are ordered before

negative cases and can be viewed as a summary of model

performance across all possible thresholds. The rank metrics

we use are area under the ROC curve (AUC-ROC) and area

under Precision-Recall curve (AUC-PR).

The ROC curve depicts the true positive rate as the

function of the false positive rate, while the Precision-Recall

curve shows the precision as the function of recall. Recall is

the same as TPR, whereas Precision measures that fraction

of examples classified as positive that are truly positive.

C. Skew Normalization using Random Sampling

Different forms of re-sampling such as random over- and

under-sampling can be used to balance the skewed distribu-

tion of the test partitions of the dataset before calculating

the performance metrics.

Random under-sampling tries to balance the class dis-

tribution through the random elimination of majority class

examples. The major drawback of random under-sampling

is that this method can discard examples that could be

important for the performance metric.

In this paper we used random under-sampling with av-

eraging: first, we under-sample the majority class, then

calculate the performance metrics. We repeat the process

in the function of the skew present in the data.

IV. EXPERIMENTS

We executed a number of evaluations to judge the in-

fluence of the skewed distributions on the performance

metrics. Studies concern (i) simulated classifiers with given

relative misclassification rates, (ii) the effect of the skewed

distributions on performance scores using different databases

for AU classification.

A. Experiments on Simulated Classifiers

In this experiment we simulated binary classifiers with

different properties to understand the effect of the skew on

the performance metrics better. The classifiers were different

in the relative misclassification rate: a fixed percentage of the

positive (and negative) examples were misclassified in pro-

portion to the number of positive (and negative) examples.

For example, in the ”5% case” 5% of the positive examples

were labelled as false negatives (FN), and 5% of the negative

examples were labelled as false positives (FP).

In the case of the threshold metrics, the score was

calculated from confusion matrices, while the rank metrics

were calculated by drawing random samples from Gaussian

distribution representing the decision values of the classi-

fiers.

Fig. 1 depicts the different metric scores in the function

of the skew ratio. Skew = 1 represents a fully balanced

dataset, Skew > 1 shows that the negative samples are the

majority, and the Skew < 1 values represent positive sample

dominance in the distribution.

With the exception of area under the ROC curve, all

metrics are attenuated by skewed distributions. Alpha and

kappa are affected by skew in either direction; whereas F1-

score is affected by skew in one direction only. Random

performance in the alpha and kappa spaces is equivalent with

the 0 value, but in the F1-space it changes as a function of

skew: in the balanced case (Skew = 1) is associated with

0.5 score and drops exponentially as skew increases.

It is important to note, that even the best (1% error rate)

classifier’s performance drops significantly in the high skew

ratio part of the graph (Skew = 50). This imbalance range
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Figure 1. The behaviour of different metrics using simulated classifiers. The horizontal axis depicts the skew ratio (Skew =
Negative examples

Positive examples
, while

the vertical axis shows the given metric score. The metrics are (a): Accuracy, (b): Cohen’s kappa, (c) Area Under ROC, (d) F1 score, (e) Krippendorff’s
alpha, (f) Area Under PR Curve. The different lines show the relative misclassification rates of the simulated classifiers.

is equal or even below the skew ratio present in spontaneous

facial behaviour datasets (see Table I).

B. Experiments on Real data

In this experiment we studied the effect of skewed AU

distributions on the CK+, McMaster Pain Archive and RU-

FACS.

In the case of CK+ dataset we used leave-one-subject-

out cross-validation to maximize the data available in the

database. In the RU-FACS and Pain dataset for each AU we

divided the data into a training and testing set in a way that

the skew ratio of the two sets was similar.

We calculated F1 score, kappa, alpha measures and area

under ROC and PR curves. Tables II - III show these

measures in the columns labelled ’original’.

To proceed, we repeated the same procedure, but this

time we balanced the distribution of the classes in the

testing set using random under-sampling and averaging. The

performance scores are depicted in the ’normalized’ columns

of Tables II - III. From the results, we can draw several

observations as follows.

First of all, by examining the scores in the imbalanced

case of the CK+ dataset, we found that these performances

are similar to other shape based methods in the literature

[5], [17].

Second, by comparing the skew normalized results to the

imbalanced ones, we noticed that (except the area under

ROC curve) all scores improved. The average F1 score

increased from 0.45 to 0.77 in the case of CK+, from 0.23 to

0.68 in the case of RU-FACS and from 0.17 to 0.65 on the

Pain data. The difference between the scores is the smallest

in the case of the CK+ data, because this is the smallest

dataset with the smallest skew ratio (around 20) among the

three. The improvement is smaller in kappa and alpha: these

measures are somewhat more strict and a bit tolerant to the

prior distributions of the classes. The differences in the case

of the area under PR curve are comparable to the F1 score

improvements.

Third, while ROC was unaffected by skew, the precision-

recall curves suggest that ROC may mask poor performance

in some cases.

V. DISCUSSION AND SUMMARY

In the present work, we addressed the question how

do imbalanced datasets influence performance metrics. We

conducted studies using three major databases that include

both posed and spontaneous facial expression and differ

in database size, type of FACS coding, and degree of

imbalance. The databases were Cohn-Kanade, RU-FACS,

and McMaster Pain Archive. We included metrics used in



facial behaviour analysis plus some others: we included both

threshold metrics (Accuracy, F1-score, Cohen’s kappa, and

Krippendorf’s alpha) and rank metrics (area under the ROC

curve and precision-recall curve).

We used a variety of evaluations to study the influence of

imbalanced distribution on performance metrics. We used

simulated classifiers and binary SVMs trained on expert

annotated datasets as well.

We discovered that with exception of area under the

ROC curve, all performance metrics were attenuated by

imbalanced distributions; in many cases, dramatically so.

Alpha and kappa measures were affected by skew in either

direction; whereas F1-score was affected by skew only

in one direction. While ROC was unaffected by skew,

precision-recall curves suggest that ROC may mask poor

performance.

Metrics of classifier performance may reveal more about

skew than they do about actual performance. Databases that

are otherwise identical with respect to intensity of action

units, head pose, and so on may give rise to very different

metric values depending only on differences in skew. To

avoid or minimize biased estimates of performance metrics,

we recommend that investigators report both obtained per-

formance metrics and skew-normalized scores. Alternatively,

report both the obtained scores and the degree of skew in

databases1. In these ways, classifiers can be compared across

1Code to compute skew-normalized scores for all of the
metrics considered above and visualizations is available from
http://www.pitt.edu/∼jeffcohn/skew/

Table III
PERFORMANCE SCORES ON COHN-KANADE EXTENDED.

Table II
PERFORMANCE SCORES FOR THE ORIGINAL AND THE Skew = 1 NORMALIZED VERSION OF UNBC-MCMASTER PAIN ARCHIVE AND RU-FACS.

http://www.pitt.edu/~jeffcohn/skew/


databases free of confounds introduced by skew.
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