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Abstract. Subspace methods have been extensively used to solve a va-
riety of problems in computer vision including object detection, recogni-
tion, and tracking. Typically, subspaces are learned from a training set
that contains different configurations of a particular object (e.g., vari-
ations on shape or appearance). However, in some situations it is not
possible to have access to data with multiple configurations of an object.
For instance, consider the problem of predicting a person-specific sub-
space of the pose variation from only a frontal face image, by learning a
mapping between frontal images and the corresponding pose subspaces
in training samples. We refer to this problem as subspace regression.

Subspace regression is a challenging problem for two main reasons: (i)
it involves a mapping between high-dimensional spaces, (ii) it is unclear
how to parameterize the mapping between one sample and a subspace.
We propose four methods to learn a mapping from one sample to a
subspace: Individual Mapping on Images, Direct Mapping to Subspaces,
Regression on Subspaces, and Direct Subspace Alignment. We show the
validity of our approaches to build a person-specific face subspace of pose
or illumination, and its applications to face tracking and recognition.

1 Introduction

Since the early work of Sirovich and Kirby [1] parameterizing the human face
using Principal Component Analysis (PCA) [2] and the successful eigenfaces of
Turk and Pentland [3], many computer vision researchers have used subspace
techniques to construct linear models of optical flow, shape or gray level for
tracking [4,5], detection [3] and recognition [6]. The modeling power of subspace
techniques is especially useful when applied to visual data, because there is a
need for dimensionality reduction given the increase in the number of features.
Typically, subspaces are learned from a set of registered training samples. For
instance, consider the problem of building a person-specific image subspace that
models the variation across pose. Building this subspace often requires a large
number of training images sampled from the underlying person manifold across
viewpoints, typically a set of images of all possible pose variations. Once the
data are collected we can compute PCA (Fig. 1 (Left)) to learn a person-specific
pose subspace. However, in general this procedure typically incurs a costly data
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Fig. 1. Illustration of the proposed subspace regression approach. (Left) Tradi-
tional subspace learning. A person-specific pose subspace is learned by perform-
ing PCA on a set of training samples. (Right) Subspace regression can predict
a person-specific pose subspace from only one sample (e.g., frontal image).

collection step: for every new test subject, one has to gather images of that same
subject for all possible poses (often, illuminations and expressions).

A relatively unexplored problem in computer vision is how to learn a sub-
space from a single sample (i.e., one image). We refer to this problem as subspace
regression. Fig. 1 (Right) illustrates the main goal of subspace regression. Pre-
dicting a subspace from only one sample is a challenging problem mainly due
to the high dimensionality of the data, typically with fewer training samples
than the number of features. Moreover, it is unclear which is the best way to
effectively and efficiently parameterize the mapping and the subspace. We first
suggest two relatively straightforward solutions which are based on learning re-
gressors from a query sample (e.g., a frontal image) to samples of all other states1

or the subspace itself. Despite their conceptual simplicity, these approaches have
a potential problem of unreliable function estimation originated from very high-
dimensional input/output space (e.g., image dimension of several thousands).

To address the issue of estimating a large number of parameters, we next pro-
pose Regression on Subspaces (ROS), a novel generative-discriminative approach
that performs regression on the subspace coordinates. ROS can yield a reliable
estimator with a significantly reduced number of parameters. We show that ROS
can be seen as a tri-factor reduced-rank regression which aggressively reduces
the number of parameters in a sensible manner. Additionally, using ROS pa-
rameterization we propose Direct Subspace Alignment (DSA), that directly finds
mappings between the tri-factor parameterization of the subspace and the train-
ing subspaces. We demonstrate the validity of the four approaches to predict
a person-specific subspace of pose or illumination, and its applications to face
tracking and recognition.

The rest of the paper is organized as follows. After briefly reviewing the
background on ridge regression and reduced-rank regression in Sec. 2, we propose
the four subspace regression approaches in Sec. 3. We discuss prior work related
to ours in Sec. 4, and demonstrate the efficacy of the proposed approaches in
the experiments in Sec. 5.

1 The state is defined as a possible mode of variation (e.g., pose).
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2 Background

2.1 Ridge Regression

Let {(xi,yi)}ni=1 be n training samples, xi ∈ <p×1 being a p-dimensional input
sample and yi ∈ <d×1 a d-dimensional output sample. In the linear2 regression
the prediction function has a linear form, f(x) = W>x, where W ∈ <p×d is the
matrix to be learned. We use the matrix notation for input, X = [x1, . . . ,xn],
which is of dimension (p×n). Similarly, Y = [y1, . . . ,yn] is of dimension (d×n).
Following the regularized empirical risk minimization framework, we minimize:

min
w
||Y −W>X||2F + λ||W||2F , (1)

where λ controls the degree of regularization. (1) is often called the ridge regres-
sion, which admits a closed-form solution: W = (XX> + λI)−1XY>.

2.2 Reduced-Rank Regression

Since its introduction in the early 1950s by Anderson [7], the reduced-rank re-
gression (RRR) model has inspired a wealth of diverse applications in several
fields including computer vision [8]. The RRR learns a mapping between input
x and output y by minimizing:

min
A,C

n∑
i=1

||yi −AC>xi||22, (2)

where A ∈ <d×q and C ∈ <p×q. One may guess that A and C can be obtained
from the singular value decomposition (SVD) of the learned W from (1). How-
ever, as shown in [9], this often yields results inferior results to simultaneously
optimizing A and C from the least square optimization. And, it is known that
the least square solution has no local minima as it reduces to learning the canon-
ical correlation analysis (CCA) [10] embedding on x (to learn C) followed by
the least square regression estimation for A from the embedding of x, i.e., C>x,
to y.

3 Subspace Regression

This section describes four methods that learn mappings between one sample and
a subspace: Individual Mapping on Images (IMI), Direct Mapping to Subspaces
(DMS), Regression on Subspaces (ROS), and Direct Subspace Alignment (DSA).
Throughout the paper we assume that there are n instances (i.e. subjects) (i =
1, . . . , n), where for each instance i, there are (K + 1) samples (denoted by xs

i )
of different states (e.g. pose) s ∈ {0, 1, . . . ,K}. These samples can be regarded
as the (K+1) realizable variations for the instance i. The state s = 0 is reserved

2 The nonlinear extension is straightforward via the kernel tricks.
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for indicating the reference state. Hence, the reference sample for i is x0
i . For

instance, in the problem of predicting the person-specific subspace from a frontal
image, the training data consist of n subjects, where for each subject i, we have
(K + 1) images of different states (e.g., facial poses, illuminations, expressions).
When the pose is only the state we consider (i.e., the person-specific subspace
accounting for only the pose variability), one can let s = 0 correspond to a frontal
pose. We presume that each training image xs

i is labeled with the subject identity
i and the state s. In the testing phase, our goal is to predict the subspace of a
new subject from a given frontal image.

3.1 Individual Mapping on Images (IMI)

In IMI, we learn for each state s = 1, . . . ,K, a regression function that maps the
reference sample x0 to the s-state sample xs. This enables us to estimate the
subspace for a new instance (or subject) using PCA with the generated images
from the learned regressors. Formally, we form the training data for regression
as: {(x0

i ,x
s
i )}ni=1, for s = 1, . . . ,K. In the reduced-rank model we solve:

min
{As},{Cs}

K∑
s=1

n∑
i=1

||xs
i −AsC

>
s x

0
i ||22. (3)

Here, As ∈ <p×l and Cs ∈ <p×l for s = 1, . . . ,K are the parameters of the
model, where l(� p) is the reduced-rank dimension. Once we solve (3), given a
query x0

∗ of an unseen subject ∗, the synthesized sample at state s becomes:

xs
∗ = AsC

>
s x

0
∗. (4)

In this way, we generate samples for all possible states, xs
∗ for s = 1, . . . ,K, from

which we can build a person-specific subspace for the subject ∗ via PCA.

3.2 Direct Mapping to Subspaces (DMS)

DMS learns a direct regression between the reference sample (x0) and the sub-
space built with all other samples at different states (xs, for s = 1, ..K). In this
setting, the training data can be formed as {(x0

i , (µi,Bi))}ni=1, where the out-
put point (µi,Bi) is the subspace of the instance (subject) i, typically learned
via PCA from the training samples {xs

i}Ks=0. We regard the output as the con-
catenated vector of the mean µi and the vectorized basis matrix Bi. Similar
to the IMI approach, as the output consists of many variables (e.g., mean and
eigenvectors), we consider reduced-rank regression.

3.3 Regression on Subspaces (ROS)

The above two approaches tend to perform poorly due to the high dimensionality
of the output space (either images or subspaces). The reduced-rank regression
has been adopted, but it still requires many parameters to achieve the desired
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Algorithm 1 Regression on Subspace (Training)

Input: Samples {xs
i} for i = 1, . . . , n, s = 0, . . . ,K.

Output: Learned gs ∈ <r×r for s = 1, . . . ,K.
1) For s = 0, . . . ,K, PCA-learn a state subspace Ss = (ms,As) with data {xs

i}ni=1.
2) Project {xs

i} onto the state subspace Ss (5).
3) Learn a regressor for each state s = 1, . . . ,K: mings

∑n
i=1 ||z

s
i − g>s z0i ||22

Algorithm 2 Regression on Subspace (Testing)

Input: Test reference sample x0
∗ and the learned {gs}Ks=1.

Output: Learned person subspace for ∗, (µ∗,B∗).
1) Project x0

∗ onto the 0-state subspace: z0∗ = A>0 (x0
∗ −m0).

2) Apply regression on subspace for s = 1, . . . ,K: zs∗ = g>s z0∗
3) Synthesize a sample for each state s = 1, . . . ,K: xs

∗ = Asz
s
∗ + ms

4) PCA-learn a person-specific subspace (µ∗,B∗) with {xs
∗}Ks=1 and x0

∗.

accuracy. In this section we propose a new method called Regression on Sub-
spaces (ROS) that learns a high-dimensional mapping with significantly fewer
parameters.

The overall concept of ROS is illustrated in Fig. 2. We first learn the state-
specific PCA subspaces, each of which is learned from samples (images) of the
same state across different instances (subjects). For the state s, we denote the
r-dim state-specific subspace by Ss = (ms,As), where ms ∈ <p is the mean and
As ∈ <p×r contains the basis vectors in its columns. As is learned via PCA3.
Notice that Ss captures the variability solely in the styles (i.e., subjects), not
in the contents (i.e., states). Once we have learned the state-specific subspaces,
one can project xs

i , the image of subject i in the state s, onto Ss, yielding the
subspace coordinate zsi ∈ <r derived as:

zsi = A>s (xs
i −ms) (5)

Although the state-specific subspaces are learned individually and independently,
one can relate them to one another by introducing certain restrictions to the
subspaces. Here we implicitly impose such constraints by considering mappings
from one subspace to another. More specifically, we presume that there exists a
regression matrix gs ∈ <r×r for each state s (= 1, . . . ,K) that maps the 0-state
coordinate z0 to the subspace-s coordinate zs. That is,

zs = g>s z
0. (6)

One can naturally treat gs as a subspace morphing function from S0 to Ss,
accounting for how a frontal image representation can be transformed into the
representation of the state s in a subject-generic manner. Even though either

3 Ideally CCA can be optimal, however, in our experiments due to the small number
of training data points, PCA often outperformed CCA.
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IMI or DMS explicitly aims at such a goal, it suffers from the high dimensionality
of both input and output.

On the other hand, ROS operates on the coordinates of the subspaces, being
more robust to noise with significantly fewer parameters to be learned. By re-
garding the pairs {(z0i , zsi )}ni=1 as samples independently and identically drawn
from an underlying probability distribution on the joint subspace (S0,Ss), one
can learn gs using the regression algorithms we discussed before.

Once we obtain the mappings among the state subspaces, we can synthesize
out-of-state images {xs

∗}Ks=1 for a new subject ∗, given its 0-state image x0
∗.

Finally, with the synthesized images {xs
∗}Ks=1, one can learn a subspace for ∗ with

the data {xs
∗}Ks=1 ∪{x0

∗} using PCA. The overall training/testing algorithms are
shown in Alg. 1 and 2.

Fig. 2. Regression on Subspace (ROS) approach.

ROS as Tri-Factor Reduced-Rank Regression Recall from Sec 3.1 that
the IMI solves the following reduced-rank regression:

min
{Rs}

K∑
s=1

n∑
i=1

||xs
i −Rsx

0
i ||22, where Rs = AsC

>
s , (7)

which can be seen as a two-factor parametrization of the regression coefficient Rs.
Although the reduced-rank regressor results in a smaller number of parameters
by dyadic factorization, the ROS can be seen as a more aggressive factorization
with significantly fewer parameters. To see this, we rewrite the ROS objective in
a more general perspective. The optimization problem we impose for the ROS
can be expressed as:

min
{As},{gs}

[
K∑
s=0

n∑
i=1

||xs
i −AsA

>
s x

s
i ||22 + η

K∑
s=1

n∑
i=1

||A>s xs
i − g>s A

>
0 x

0
i ||22

]
. (8)
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Here, for expositional simplicity, we dropped the subspace means ms, assuming
that the data points are centered.

The first term of (8) is responsible for the state-wise PCA subspace learning
(i.e., As for s = 0, 1, . . . ,K), while the second term corresponds to the subspace
regression from 0-state subspace (S0) to s-state subspace (Ss). The two terms
are balanced by the positive constant η. The way we solved this problem earlier
can be seen as coordinate descent optimization: we first learn As while ignoring
the second term, then we fix the learned As’s, and optimize the second term
with respect to {gs} alone.

Now we replace A>s x
s
i in the first term by g>s A

>
0 x

0
i in the second term, as

we try to make the second term become 0. This then leads to:

min
{As},{gs}

K∑
s=1

n∑
i=1

||xs
i −Asg

>
s A
>
0 x

0
i ||22. (9)

Note that (9) can be seen as a noise-free version of (8) by forcing the subspace
regression error (i.e., the second term in (8)) to be 0. Compared to the reduced-
rank regression, (9) further factorizes the post-multiplying matrix Cs as:

Cs → A0gs, (10)

which yields the tri-factor reduced-rank regression:

xs
i = Asg

>
s A
>
0 x

0
i . (11)

This results in an important consequence in that one can fix As and A0, which
causes otherwise a large number of parameters to be estimated. In fact, as there
could always be a rotation matrix between As and gs, and another between
gs and A0 that can make the final mapping invariant, we let As and A0 be
rather fixed. Our ROS forces that these matrices come from the state-wise PCA
learning, which is quite intuitive as well. All we need to estimate are gs, hence
the number of parameters becomes K × r2.

3.4 Direct Subspace Alignment (DSA)

In the previous sections we have considered different ways of learning the map-
pings between the reference image and the subspaces or other images. In this
section we propose another new method called Direct Subspace Alignment (DSA).
The main idea is to directly maximize the alignment score between the predicted
subject subspace and the ground-truth subspace. To formulate the optimization
problem, we need to parameterize the predicted subject subspace. DSA uses the
tri-factor RRR ROS’ parametrization, that is, xs

i = Asg
>
s A
>
0 x

0
i . DSA builds

a parameterized subspace with the matrix Qi. Qi is composed of the reference
sample x0

i and the K-state samples that are generated by the tri-factor RRR.
That is:

Qi = [x0
i , A1g

>
1 A0x

0
i , . . . , AKg>KA0x

0
i ]. (12)
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Note that Qi ∈ <p×(K+1) is a function of the parameters {gs}Ks=1 which will
be estimated DSA optimizes {gs}Ks=1 such that the eigenvector of QiQ

>
i are

maximally correlated with the eigenvectors of the ground truth bases Bi =

[b
(i)
1 , . . . ,b

(i)
q ]. DSA optimizes:

max
g1,··· ,gK

E(g1, · · · ,gK) =

n∑
i=1

q∑
j=1

{
b
(i)
j

>
eigj(QiQ

>
i )
}2

. (13)

We assume that the basis vectors are always sorted in decreasing eigenvalue
order. The operator eigj(A) returns A’s eigenvector corresponding to the jth

largest eigenvalue. Thus eigj(QiQ
>
i ) indicates the jth eigenvector of QiQ

>
i .

Notice that (13) is the sum of the squared cosine angles between the basis
vectors of the target subject subspace and the parameterized subject subspace.
Hence (13) explicitly maximizes the alignment between the principal directions
on the training set and the eigenvectors of QiQ

>
i that are parameterized by low-

dimensional matrices g1, ...,gK . Optimizing (13) with respect to g1, ...,gK is a
non-convex optimization problem. In this paper, we used a numerical gradient
optimization using Matlab’s fminunc() function.

4 Related Work

Although to the best of our knowledge there exists little prior work that tackles
the subspace regression problem framed as ours, in the face recognition literature
there has been a similar line of research that aims at predicting images at unseen
poses from a frontal-pose image. In this section we will briefly review some recent
work closely related to ours, and contrast them with our approaches.

Recently in [11,12], a learning-based face synthesis approach was proposed,
which aimed to discover the correspondences between facial features of frontal
and non-frontal poses via regression estimation. From the learned regressors,
they can synthesize features of non-frontal poses. For instance, the authors in
[12] considered the correspondence between facial landmark points (e.g., AAM
shapes). Non-frontal images can be synthesized by warping the texture to a
canonical shape by mapping triangles. Suppressing the difference in image fea-
tures used (landmark points vs. PCA subspace), this approach is similar in spirit
to IMI or ROS algorithms. However, a crucial advantage of our proposed ROS is
that we can explicitly capture the intrinsic low-dimensional relationship between
different poses, potentially leading to more robust solutions. Moreover, ROS has
less number of parameters which makes it less prone to overfitting.

The relationship between frontal and non-frontal images has been often en-
coded using generative probabilistic models. In [13], a joint Gaussian proba-
bilistic model was formed on the pair of images at different views (e.g., frontal
and left-45-deg). Given a new test image, they treated the new pose as miss-
ing data and marginalized the Gaussian distribution to reconstruct the unseen
pose. Alternatively, the authors in [14] proposed a generative model that cre-
ates a one-to-many mapping from an idealized identity space to the observed
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data space, where the identity space is the latent space in the factor analysis
framework representing each individual invariant with poses. These approaches
are intuitively appealing, not contingent on 3D modeling, and computationally
efficient. However, compared to our subspace regression methods, their approach
is based on the generative modeling and learning of pairs of poses, which can
often be outperformed by our discriminative regression-based approaches.

Some other approaches are based on the 3D representation of faces. In [15]
they estimated the 3D shape of faces from the non-frontal input images, and
generate frontal views of the reconstructed faces using 3D computer graphics.
Despite their good performance in face recognition tasks, it is unclear how it can
work in our scenario of having low quality and low resolution video.

5 Experimental Results

We conducted experiments on predicting a person-specific facial pose subspace
from a frontal image, predicting a subspace for illumination from only one illu-
mination, and applications to subspace-based face recognition and face tracking.

5.1 Predicting a Subspace for Pose

We consider the CMU PIE data set [16] composed of about 41,368 images of 68
people. The face of each person is taken under 13 different poses, 43 different
illumination conditions, and 4 different expressions. The images are labeled with
these states. We used a subset of these images by taking 720 images of 60 subjects
with 12 different poses with the same expression and illumination conditions.
Each face image is cropped into a tight bounding box using the ground-truth
facial landmark points which are also provided by the data set. The images of all
poses for some five subjects are shown in Fig. 3. All the images are under the same
expression and illumination. We normalized the images into a same size (48×48).
For each subject, we estimate a PCA subspace for a fixed dimension. Then we
split the data randomly into 50/10 training/testing subjects. By revealing only
a single frontal image for each subject in the test fold, we predict the subspaces
of the test subjects.

To measure the goodness of subspace alignment (between the estimated sub-
space and the ground-truth subspace obtained from real samples), we use three
quantitative error metrics: (i) the smallest principal angle [10] that can also be
computed by the subspace() function in Matlab, (ii) the sum of the squared co-
sine angles between basis vectors, and (iii) the subspace distance defined in [17].

In the squared cosine angle metric, for two subspaces B1 = [b
(1)
1 , . . . ,b

(1)
q ]

and B2 = [b
(2)
1 , . . . ,b

(2)
q ], we do the SVD decomposition: B1 = U1Σ1V

>
1 and

B2 = U2Σ2V
>
2 . Then the sum of the squared cosine angle errors between two

subspaces can be defined as (in fact, we take an average, and subtract it from
1):

d1(B1,B2) = 1− 1

q

q∑
j=1

(
u
(1)
j

>
u
(2)
j

)2
, (14)
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Fig. 3. Different pose images for the first five subjects in the CMU PIE data
set [16]. The images are arranged in a way that each row corresponds to a
particular subject while each column represents a specific state (pose in this
case).

where u
(m)
j is the jth column of Um for m = 1, 2. The recent subspace distance

of [17]is defined as follows:

d2(B1,B2) =

√
1

2

∣∣∣∣tr(B1B>1 −B2B>2

)∣∣∣∣. (15)

Note that for all these three measures, the smaller numbers indicate better per-
formance. We performed our four subspace regression approaches. The test errors
are shown in Table 1 (Left). In this experiment, we set the subject subspace di-
mension q = 4, the state (pose) subspace dimension r = 5. As shown in the
table, the more sophisticated ROS and DSA approaches outperform the fairly
straightforward IMI and DMS approaches most of the time.

Table 1. Subspace prediction errors for pose (Left) and illumination (Right).
The best ones are boldfaced. PA=principal angle, d1=cosine angle, d2=subspace
distance.

Pose IMI DMS ROS DSA

PA 0.4740 0.9940 0.4542 0.4542

d1 0.2514 0.5854 0.1284 0.2582

d2 0.5902 0.8784 0.5635 0.5635

Illum. IMI DMS ROS DSA

PA 0.2172 0.4484 0.1808 0.2021

d1 0.2090 0.3192 0.2068 0.1741

d2 0.2434 0.7101 0.2025 0.2272

5.2 Predicting a Subspace for Illumination

We next illustrate the capability of subspace regression to learn a person-specific
illumination subspace. We used the frontal faces of 60 subjects under 19 different
illumination conditions from the CMU PIE data set [16]. The 19 illumination
states are selected so that they are roughly uniformly spread along the horizon.
The reference state s = 0 corresponds to frontal lighting (e.g., the leftmost im-
age in Fig. 4(c)). The subject subspace dimension is set to q = 4 (whereas the
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ideal Lambertian surfaces should be three). From the 60 subjects, 50 subjects
are selected for training, and the rest as testing. For ROS, the state subspace di-
mension is chosen as r = 10. All images are manually labeled with 66 landmarks,
and warped to a canonical shape representation using triangulation.

Table 1 (Right) shows the test errors indicating the goodness of alignment
with respect to the ground-truth subspace in terms of three error measures de-
scribed in Sec. 5.1. Again ROS and DSA continue to outperform the straightfor-
ward regression approaches IMI and DMS. Fig. 4 depicts the learned subspace
by ROS for some test subjects as well as the images generated from the predicted
subspace. As shown, the mean and basis of the predicted subspace appear to be
very similar to those of the ground-truth subspace. Also, the synthesized images
sampled from the learned subspace look quite realistic.

(a) Subspace for subject A (b) Subspace for subject B

(c) Synthesized images from the ROS-learned subspace

Fig. 4. (a), (b) Subject subspaces for illumination variation. For two subjects
(A and B), where (top) = the ground-truth subspaces, (bottom) = the pre-
dicted subject subspace by ROS. (c) Synthesized images from the ROS-learned
subspace.

5.3 Face Tracking Across Pose

In this section we show how effectively the person-specific subspaces built from
one sample can be applied to the problem of face tracking across pose. The face
tracking scenario is within a vehicle with a camera mounted at a fixed position.
We recorded videos that lasted for about 2 minutes yielding about 3000-frame
long videos at 25 fps rates. Tracking in these videos is quite challenging because
there are large variations in illumination and pose changes, since it is taken
outdoors. One of the major challenges of this problem is that the driver’s facial
pose varies abruptly and dramatically. Moreover, the videos are noisy with low
resolution and contrast. See Fig. 5 for few frames of the video.

In this context, we used subspace-based trackers [4,18] that can effectively
deal with noise and large variation in appearance. In these approaches, the ap-
pearance model of the tracker is a subspace that can capture the variability of
the target appearance, which is combined with efficient searching strategies, typ-
ically the sampling-based particle filtering [19]. To handle the appearance change
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during tracking, the recent Incremental Visual Tracker (IVT) [18] updates the
subspace model using the previously tracked images. However, as the training
images are collected from the decision made by the current tracker, IVT’s sub-
space learning can be seen as self-training or unsupervised learning. Although
it is a reasonable approach to pursue given restricted information of a single
image at the first frame, IVT is potentially unable to judge whether the current
decision is correct or not in a principled manner, which is indeed the main cause
of tracking drift.

On the other hand, the way we learn a person-specific subspace (i.e., the
subspace regression) is highly advantageous as we directly predict a subspace
from a single image given in the first frame of the video. Not only addressing the
above-mentioned issues of the IVT, our approaches also avoid the computational
overhead of updating the subspace at every frame since the subspace model is
determined and fixed at the first frame. We design a tracker system that incor-
porates the subspace estimated by our subspace regression approaches into the
particle filtering framework. The training data used for the subspace regression
are obtained from the CMU PIE data set [16], where we use 50 subjects with
12 different poses (other conditions such as illumination and expression are not
considered here).

In addition to comparing our approaches with IVT, we also present the per-
formance of a fairly basic template matching tracker as a baseline comparison.
We maintain a template image model for the face target, while similar to IVT,
the template model is updated at every frame by computing a weighted average
of current template and the tracked images, hence named as Adaptive Template
Matching (ATM). The ATM is essentially identical to the IVT except that it
maintains only the mean of the subspace.

We enforce the same settings for all competing methods for fair comparison.
The initial location of a face is obtained from a face detector. For the tracking
states, we used the axis-aligned bounding box representation, meaning that we
keep track of three parameters: center position and scale. To provide quantitative
tracking results, we manually labeled the face location for every 10th frame to
form the ground-truth. The average root-mean-square (RMS) errors (in pixels)
are shown in Table 2 (Left). Our IMI, DSA and ROS approaches achieved slightly
better performance than the IVT even though we only take into account the pose
variation in the subspace learning. Fig. 5 also depicts some selected frames that
compare our approaches with the IVT.

5.4 Face Recognition from Arbitrary Pose

This section describes experiments on using subspace regression for face recogni-
tion across pose, and we compare it with previous work [13]. We used the CMU
PIE data set [16], where 50 subjects are selected to train our methods for sub-
space regression, while we use the rest of 10 subjects for testing. The frontal-pose
images for these 10 subjects serve as the gallery images, and the probe set is
comprised of their images in 4 different poses: left/right 45/90-degree views.
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Fig. 5. Selected frames illustrating tracking performance of IVT (top row), DMS
(middle), and ROS (bottom). Yellow bounding box represents the tracked face.

Table 2. Results of (a) face tracking and (b) face recognition from arbitrary
poses.

(a) Tracking RMS Errors

ATM 42.99

IVT [18] 38.41

IMI 38.16

DMS 40.04

ROS 37.98

DSA 37.95

(b) Face Recognition Errors

Test Pose L-45 R-45 L-90 R-90 Average

[13]’s Approach 0.20 0.40 0.40 0.30 0.325

IMI 0.20 0.30 0.40 0.50 0.350

DMS 0.30 0.40 0.30 0.50 0.375

ROS 0.10 0.20 0.30 0.30 0.225

DSA 0.20 0.20 0.30 0.30 0.250

We first apply the subspace regression approaches to each frontal image in the
gallery set to predict the person-specific pose subspace. Given a new test image
(i.e. non-frontal image) in the probe set, we project it onto each of the learned
subspaces in the gallery images and compute the distance to the subspaces. This
avoids the pose prediction step for test images. The test recognition errors for
four different test poses are shown in Table 2 (Right).

The similar problem of face recognition from arbitrary poses has been studied
previously (See the brief summary in the related work in Sec. 4). In the table, we
also compared our methods with the recent approach of [13] that builds a proba-
bilistic model for a pair of images at different poses, and predicts the latent test
images based on the probability maximization. As shown in the result, the ROS
and DSA approaches outperform [13]’s probabilistic method, which substanti-
ates that our discriminative regression algorithm built on the low-dimensional
intrinsic subspaces can be superior to the generative modeling approaches.

6 Concluding Remarks

This paper has addressed the novel problem of predicting a subspace from one
sample, and we have illustrated its benefits in predicting person-specific pose
and illumination subspaces. We have also successfully applied it to the prob-
lem of face recognition and tracking. By casting the problem as the subspace
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regression, we have proposed four approaches, where we have observed that our
approaches, especially the ROS and the DSA, are promising and perform well
with a significantly reduced number of parameters. Interestingly, DSA is the op-
timal error function to optimize because it directly regresses on the subspace.
However, it did not always achieve the best performance. Some drawbacks are
that the optimization procedure is complex and prone to be trapped into local
minima. Developing efficient optimization methods is left as future work.
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