
Aligned Cluster Analysis for Temporal Segmentation of Human Motion

Feng Zhou, Fernando De la Torre, Jessica K. Hodgins
Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213
zhfe99@gmail.com ftorre@cs.cmu.edu jkh@cs.cmu.edu

Abstract

Temporal segmentation of human motion into actions is a

crucial step for understanding and building computational

models of human motion. Several issues contribute to the

challenge of this task. These include the large variability in

the temporal scale and periodicity of human actions, as well

as the exponential nature of all possible movement combi-

nations. We formulate the temporal segmentation problem

as an extension of standard clustering algorithms. In partic-

ular, this paper proposes Aligned Cluster Analysis (ACA),

a robust method to temporally segment streams of motion

capture data into actions. ACA extends standard kernel k-

means clustering in two ways: (1) the cluster means contain

a variable number of features, and (2) a dynamic time warp-

ing (DTW) kernel is used to achieve temporal invariance.

Experimental results, reported on synthetic data and the

Carnegie Mellon Motion Capture database, demonstrate its

effectiveness.

1. Introduction
In the past two decades, motion capture systems were

able to track and record human motion with high spatial and
temporal resolution. The extensive proliferation of motion
databases urges the development of efficient techniques to
index and build models of human motion. One key aspect to
understand and build better models of human motion is to
develop unsupervised algorithms for decomposing human
motion into a set of actions. The problem of factorizing
human motion into actions, and more generally the tempo-
ral segmentation of human motion, is an unsolved problem
in human motion analysis. The inherent difficulty of hu-
man motion segmentation stems from the large intra-person
physical variability, wide range of temporal scales, irregu-
larity in the periodicity of human actions, and the exponen-
tial nature of possible movement combinations. To partially
address these problems, we formulate the temporal segmen-
tation of human behavior as a temporal clustering problem.

Fig. 1 illustrates the main goal of this paper: given a

Figure 1. Segmentation of motion capture data into actions.

sequence of motion capture data, we are able to find tem-
porally coherent clusters of actions (e.g. walking, rotating,
jumping). We propose Aligned Cluster Analysis (ACA),
an extension of kernel k-means clustering that allows unsu-
pervised clustering of temporal patterns. Compared to pre-
vious literature, our approach has multiple advantages: (1)
The temporal granularity of the human action can be con-
trolled by the user. (2) A robust temporal matching metric
is defined by means of the Dynamic Time Alignment Ker-
nel (DTAK) [19]. (3) The temporal segmentation problem
is posed as a versatile energy minimization problem. An
efficient coordinate descent algorithm solves ACA.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews previous work on temporal segmentation of
motion capture data. Section 3 introduces theoretical foun-
dations for ACA. Section 4 presents the details of prepro-
cessing and initializing stages for human motion segmenta-
tion. Section 5 demonstrates experimental results on syn-
thetic and motion captured data. Finally, Section 6 con-
cludes the paper and outlines future work.

2. Previous work

This section describes previous work on temporal seg-
mentation of human motion and standard clustering tech-
niques.

1

2.1. Segmenting motion capture data

Temporal segmentation of human actions is an emerg-
ing topic in the field of computer vision. Zhong et al. [21]
use a bipartite graph co-clustering algorithm to segment and
detect unusual activities in video. Zelnik and Irani [20] de-
fine a flow based matching between actions. De la Torre et

al. [7] propose a geometric-invariant clustering algorithm to
decompose a stream of facial behavior into facial gestures.
Unusual facial expressions can be detected through compar-
isons with clusters of facial gestures.

In the graphics literature, Barbic et al. [2] proposed an
algorithm to decompose human motion into distinct actions
by detecting sudden changes in the intrinsic dimensionality
of the Principal Component Analysis (PCA) model. Jenk-
ins et al. [8] [11] use the zero-velocity crossing points of the
angular velocity to segment the stream of motion capture
data. Li et al. [16] fit a mixture of linear dynamical sys-
tems to a sequence using maximum likelihood approach.
Each of the linear systems considers a motion texton that
can be used to synthesize new motion sequences. Recently,
Beaudoin et al. [3] developed a string-based motif-finding
algorithm which allows for a user-controlled compromise
between motif length and the number of motions in a motif.

In the field of data-mining, the problem of segmentation
of time series is well known [13]. Dynamic Time Warping
(DTW) is one of the most popular measures between tem-
poral sequences. The idea of dynamic warping has been
successfully used in motion blending [6] and clip locat-
ing [15] to overcome high fluctuations of articulated move-
ments. Due to the high cost of exact DTW matching, ap-
proximate distances, such as the Minimum Bounding Rect-
angles (MBR) [1], are applied to segment the trajectories.

This paper differs from previous work in the vision,
graphics and data-mining literature in the way in which the
temporal segmentation problem is formulated. We propose
to frame the temporal segmentation problem as an energy-
based temporal clustering, providing an elegant mathemati-
cal solution via Dynamic Programming (DP).

2.2. k-means clustering and kernel extensions

Clustering refers to the partition of n data points into k
disjointed clusters. Among various approaches to unsuper-
vised clustering, k-means [10] is favored for its simplicity.
k-means clustering splits a set of n objects into k groups by
minimizing the within-cluster variation. That is, k-means
clustering finds the partition of the data that is a local opti-
mum of the energy function [7]:

Jkm(M,G) =
k∑

c=1

n∑
i=1

gci||di −mc||22 = ||D−MG||F (1)

s.t. GT 1k = 1n and gij ∈ {0, 1}

where di ∈ �d×1 (see notation1) is a vector representing
the i-th data point and mc is the geometric centroid of the
data points for class c. G ∈ �k×n is a binary indicator
matrix, such that gci = 1 if sample di belongs to cluster c,
and zero otherwise.

A major limitation of the k-means algorithm is that it is
optimal only when applied to spherical clusters. To over-
come this limitation, kernel k-means [18] implicitly maps
the data to a higher dimensional space using kernels. The
kernel k-means minimizes:

Jkkm(G) =
k∑

c=1

n∑
i=1

gci ||φ(di)− φ(mc)||22︸ ︷︷ ︸
distc(di)

(2)

where φ(·) is the mapping, distc(di) is the distance be-
tween ith point and the center of class c, i.e.

distc(di) = κii − 2
nc

n∑
j=1

gcjκij

︸ ︷︷ ︸
fci

+
1
n2

c

n∑
j1,j2=1

gcj1gcj2κj1j2

︸ ︷︷ ︸
hc

(3)

where nc is the number of samples that belong to class c.
The kernel function κ is defined as κij � φ(di)T φ(dj).

Similar to the first step in the k-means algorithm, the
kernel k-means assigns the sample to the closest cluster:

gĉi = 1, ĉ =
k

arg min
c=1

distc(di) (4)

It is worth noting that in kernel k-means there is no need to
explicitly recompute the mean for each cluster.

3. Temporal segmentation
In this section, we formulate the temporal segmentation

problem as a clustering one.

3.1. Temporal segmentation with ACA

Given a sequence X ∈ �d×n of motion capture data
with n frames, we want to decompose X into m disjointed
segments, each of which corresponds to one of k actions
(i.e. classes). The segment itself, Yi � X[si,si+1), is com-
posed by the frames that begin at position si and end2 at
si+1 − 1. We constrain the length of the segment to the
range wi ∈ [wmin, wmax], in order to control the temporal
granularity of actions. A k-by-1 indicator vector gi is used
to assign each segment to an action. gci = 1 if Yi belongs
to class c, otherwise gci = 0.

1Bold capital letters denote a matrix D, bold lower-case letters a col-
umn vector d. di represents the ith column of the matrix D. dij denotes
the scalar in the ith row and jth column of the matrix D. All non-bold
letters represent scalars. ||x||2 =

√
xT x denotes the Euclidean distance.

2There is a dummy position sm+1 = n + 1 kept for the last segment.

3.2. Energy function for ACA

There are two major challenges in framing temporal seg-
mentation as a clustering problem: (1) modeling the tem-
poral variability of human actions, and (2) defining a ro-
bust metric between temporal actions. To address these
problems, ACA extends previous work on kernel k-means
(eq. 2) by minimizing:

JACA(G, s) =
k∑

c=1

m∑
i=1

gci distc(X[si,si+1)︸ ︷︷ ︸
distc(Yi)

) (5)

It is worth pointing out the differences between ACA, eq. 5
and kernel k-means eq. 2: (1) ACA clusters variable fea-
tures, that is, each segment Yi might have a different num-
ber of frames, whereas standard kernel k-means has fixed
number of features (rows of di). (2) The kernel used in
ACA, distc(Yi), uses DTW that is robust to noise and
invariant to the speed of the action. DTW is not a prop-
erly defined metric because it does not satisfy the triangu-
lar inequality [12]. This limitation has lead to substantial
efforts to seek other distances that satisfy the metric re-
quirements. Recently Shimodaira et al. [19] proposed the
Dynamic Time Alignment Kernel (DTAK), which satisfies
the Cauchy-Schwartz inequality, which effectively makes
DTAK a metric between time sequences.

DTAK, κdtak(X̂, X̃), is defined between two time series
X̂ = (x̂1, · · · , x̂n1) and X̃ = (x̃1, · · · , x̃n2):

κdtak(X̂, X̃) =
pn1,n2

n1 + n2
(6)

pi,j = max

⎧⎨
⎩

pi−1,j + κij

pi−1,j−1 + 2κij

pi,j−1 + κij

(7)

where κij is κij = e−
1

2σ2 ||x̂i−x̃j ||2 , and p0,0 = 0.
For instance, let us consider two short sequences, X̂ =

[1, 2, 1, 2] and X̃ = [1, 1, 2, 2]. The kernel with σ = ∞ is
used for simplicity, i.e. κ(1, 1) = κ(2, 2) = 1, κ(1, 2) =
κ(2, 1) = 0. To construct P (tab. 1), we start from the
upper-left corner, where p1,1 = p0,0 + 2κ(1, 1) = 2. The
remaining entries are gradually filled by increasing the sub-
scripts of pi,j along the rows and columns. Finally, the
value of DTAK is calculated by dividing the bottom-right
p4,4 by the sum of the sequence lengths, κdtak(X̂, X̃) = 7

8 .

3.3. Coordinate descent optimization

In this section, we describe a Dynamic Programming
(DP)-based algorithm to perform coordinate descent to
solve for ACA (i.e. G, s).

To optimize over s and G with DP, we introduce an
auxiliary function, L(u, v) � minG,s:X[u,v] JACA, to store

Table 1. Example to calculate P with DTAK
P 1 1 2 2
1 2 3 3 3
2 2 3 5 6
1 3 4 5 6
2 3 4 6 7

the minimum cost JACA to all segmentations on the sub-
sequence (xu,xu+1, · · · ,xv). Observe, that L(u, v) con-
tains the minimum JACA for the best s,G within the (u, v)
range. Note that the function L depends on the range of
segmentation in the sequence X, allowing us to use the tra-
ditional DP divide-and-conquer paradigm:

L(u, v) = min
u<i≤v

L(u, i− 1) + L(i, v). (8)

The above equation implies that the optimal decompo-
sition of the subsequence X[u,v] is achieved only when the
segmentations on both sides X[u,i−1] and X[i,v] are optimal
and their sum is minimal. Moreover, this recursive decom-
position could be repeated until encountering the granular

segment (i.e. w is in the range w ∈ [wmin, wmax]). In fact,
previous decomposition (eq. 8) is equivalent to:

L(v) = min
wv∈[wmin,wmax]

(
L(i−1)+min

g

k∑
c=1

gcdistc(X[i,v])
)

(9)
in this case, L(v) = L(1, v), and i = v−wv +1 is the head
position of the granular segment X[i,v]. When v = n, the
L(n) is actually the optimal cost of the segmentation that
we seek. The inner values i and g that lead to the min-
ima are the head position and label for the last segment
respectively. Eq. 9 unifies both point-based k-means and
segment-based ACA clustering by the constraint of length
[wmin, wmax]. If wmin = wmax = 1, where each segment
consists of one single frame, this is equivalent to kernel k-
means. Based on the recursive equation (eq. 9), we compute
our algorithm with a forward and backward step to obtain
Gnew, snew based on Gold, sold:

1. Forward step: Scan from the beginning (v = 1) of
the sequence to its end (v = n), see fig. 2. L(v) is
assigned as L(v) = minwv∈[wmin,wmax](L(i − 1) +
distĉ(X[i,v])), where ĉ is the closest cluster of the pre-
vious segmentation (Gold, sold) for the segment X[i,v].
A record is kept of the optimal head position i and la-
bel ĉ for each v.

2. Backward step: Trace back from the end of sequence
v = n. Cutting off the segment whose head position
snew and the label gnew could be indexed from the
stored values in the step 1. Repeat this operation on
the left part of the sequence.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

v L S C
· · · · · · · · · · · ·
24 .254 19
· · · · · · · · · · · ·
32 .362 25
· · · · · · · · · · · ·

wmin
wmax

minc distc(X[i,v])

Figure 2. Forward ACA step. To construct L(v) (v = 32), the
starting position (i = 25) of the best segment (bold) is selected
from the pool of candidates in the shadow area. The label for
the segment is determined to be the closest model (triangle). The
segments of three classes, which are marked in triangle, square
and circle respectively, are the segmentation of the sequence in the
last step.

3.4. The Algorithm

In this section, we give further details on an efficient im-
plementation of the DP algorithm.

The calculation of distc(Yi) in eq. 9 involves three com-
ponents: κii, hc, fci. The term κii is a constant term and
it does not affect the optimization of G, s. The latter two
terms depend on DTAKs. However, storing all possible ker-
nel pairs between segment is prohibitive in space O(n2w2)
and time O(n2w4).

To make the algorithm efficient in practice, we need to
reduce the computational cost of hc and fci . First, it is pos-
sible to directly calculate the DTAK used for hc. Given
a segmentation (Gold, sold), the number of segments are
O(n

m), where the space and time needed for hcs is O(n2

m2)
and O(n2) respectively. For fcis, we instead maintain a
relatively smaller active kernel matrix, A, to reuse the pre-
vious calculations of DTAK (eq. 6) during the optimization.

The optimization process mainly consists of two algo-
rithms, DPSearch (alg. 1) and ActiveUpdate (alg. 2).
DPsearch starts by forward constructing L storing in each
position the minimum value, C and S for labels and posi-
tion respectively. The components of the updated parame-
ter will be obtained by back-tracking. During the process-
ing, A(v, wv, j, wj), which stores the kernel between the
segments X(v−wv,v] and X[sold

j ,sold
j+1)

, is updated from its
neighbors according to the definition in eq. 6. In order to
reuse the space, a circularly-linked list of wmax length is
implemented to index the position of segment X(v−wv,v],
i.e. posv = v mod wmax.

3.5. Complexity analysis

Given a sequence with n frames and an average segment
width w, we need O(n2) space to store the kernel matrix of
frames. At the beginning of each step in the iterative proce-
dure, hcs and the active A are created as a block of O(n2

w2)

Algorithm 1: Gnew, snew = DPSearch(Gold, sold)

Obtain the hcs from Gold, sold;
Initialize all L(v) ←∞ except L(0) ← 0;
for v ← 1 to n do

for wv ← 1 to min(wmax, v) do
ActiveUpdate(A, v, wv,Gold, sold);
if wv ≥ wmin then

Head position i ← v − wv + 1;
ĉ ← arg minc distc(X[i,v]);
l̂ ← L(i− 1) + distĉ(X[i,v]);
if l̂ < L(v) then

L(v), C(v), S(v) ← l̂, ĉ, i;
end

end
end

end
while v > 0 do

Insert C(v), S(v) into the top of Gnew, snew;
v ← S(v)− 1;

end

Algorithm 2: ActiveUpdate(A, v, wv,Gold, sold)

posv � v mod wmax;
for j = 1 to m do

for w = 1 to wj do
Update A(posv, wv, j, w) from
A(posv, wv, j, w − 1),
A(posv−1, wv − 1, j, w) and
A(posv−1, wv − 1, j, w − 1);

end
end
fvc ←

∑m
j=1 gold

jc A(posv, wv, j, wj);

and O(nw2) respectively. As v increases, each evaluation
takes O(nw) to calculate the distance from Gold, sold, and
therefore it takes O(n2w) to scan through the whole se-
quence. To sum up, the space complexity is O(n2), which
makes it possible to process sequences with thousands of
frames. The overall time complexity is O(n2wt), where t
is the number of iterative steps.

4. Segmentation on motion capture data

This section describes two strategies to scale ACA to
segment large collections of motion capture data: (1) tem-
poral reduction, and (2) good initialization.

200 400 600

100

200

300

400

500

600
200 400 600

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

0 100 200 300 400 500 600
0

10

20

0 100 200 300 400 500 600
0

10

20

0 100 200 300 400 500 600
0

10

20

Figure 3. Temporal reduction and initialization. (a) Label indexes
for 10078 frames after k-means. (b) Temporal reduction (608
frames). (c) Initialized segmentation. (d) Final segmentation after
running ACA. (e) Similarity matrix computed from (b). (f) Im-
proved similarity matrix.

4.1. Temporal reduction

It is not computationally practical to run ACA on large
amounts of motion capture data. Because human motion is
typically smooth, and recent work [4,9] has shown evidence
that human motion is locally linear, it is possible to tempo-
rally reduce the number of frames without losing important
information relevant for temporal segmentation. Following
previous work on temporal segmentation [7], we first apply
a clustering step to group frames into kreduce classes, and
remove irrelevant consecutive frames within the same class.

We use the Carnegie Mellon Motion Capture database,
which contains 149 subjects performing several activities.
The motion capture system uses 41 markers per subject.
Similar to the method of Barbic et al. [2], we only con-
sider the 14 most informative joints out of 29. The 3-D
Euler angles are transformed to 4-D quaternions to pro-
vide a smoother and continuous representation of motion.
We apply the k-means [10] algorithm to cluster the frames
into kreduce classes. A large kreduce is usually preferred to
capture subtle human behavior. Fig. 3(a) shows the labels
(kreduce = 20) of a 10078-frame sequence (subject 86, trial
4), which contains seven distinct actions. Every 20 consec-
utive frames that belong to the same class are reduced to
one frame (fig. 3(b)).

4.2. ACA initialization

Minimizing ACA is a non-convex optimization problem,
and the quality of the solution is highly sensitive to initial
conditions [5]. In this section, we describe a coarse seg-
mentation process based on spectral clustering methods that
provides a good initialization for ACA.

Generally speaking, many human actions, such as walk-
ing or running, are periodic movements. This periodicity
can be observed in the block structure of the similarity ma-
trix between all the frames. Fig. 3(e) shows the similarity
matrix of the 608 frames (after temporal reduction). The
similarity matrix is computed by assigning 1 if the two
frames belong to the same class given by k-means. To
emphasize the frames that might belong to the same type
of actions, we modified the similarity matrix by propagat-
ing the similarity between two temporally close frames that
share the same cluster. More specifically, given two pairs of
frames, xi1 ,xj1 vs xi2 ,xj2 , we define the new similarity κ′

as

κ′i1j1

κ′i2j2

κ′i1j2

κ′j1i2

⎫⎪⎪⎬
⎪⎪⎭ ← 1, if

⎧⎪⎪⎨
⎪⎪⎩

κi1i2 = 1
κj1j2 = 1

i1 − j1 = i2 − j2
|i1 − j1| ≤ wmax

(10)

Fig. 3(f) shows the frames lying in the similar actions are
linked together after the propagation.

We use spectral clustering algorithms [7, 17] to find an
embedding where samples are easier to cluster. Notice that
long (short) segments will be divided (merged) to satisfy
the predefined length constraint [wmin, wmax] for each of
the actions. Fig. 3 (c) shows that this coarse initialization
(fig. 3 (d)) identifies meaningful segments.

5. Experimental results
In this section, several experiments on synthetic and real

dat evaluate the segmentation performance of ACA.

5.1. Synthetic data

In the first experiment, we synthetically generate a ran-
dom 1-D sequence (fig. 4(a)) with four temporal clusters.
The length of each segment is restricted to be between 10
and 15 samples (frames), and the value of each sample
is a uniform random integer between in the range [1, 20].
Several artificial frames are randomly inserted (temporal
noise) into the sequence. The parameter, pnoise, controls
the amount of noise. For instance, pnoise = 0.2 indicates
that one noise frame might be inserted every 5 frames.

The ACA algorithm runs 10 times with random initial-
ization, and the solution with minimum JACA is selected.
DTAK is constructed based on an exponential kernel κ with
σ = ∞ (fig. 4(c)). Observe that in this case, no temporal
reduction or good initialization is used.

To quantify the segmentation accuracy, we need to com-
pare the segmentation provided by ACA and the ground-
truth3. To compute the accuracy we use a confusion matrix
(fig. 4(e)) between the ACA and ground-truth. The confu-
sion matrix is calculated as follows:

C(c1, c2) =
mACA∑

i=1

mtruth∑
j=1

gACA
c1i gtruth

c2j |YACA
i ∩Ytruth

j |

(11)
where YACA

i and Ytruth
j are two segments given by the

ACA algorithm and ground-truth data respectively, and
|YACA

i ∩Ytruth
j | denotes the number of frames they share.

Fig. 4(e) illustrates the confusion matrix for the synthetic
problem. The classical Hungarian algorithm [14] is applied
in order to find the optimum solution for the cluster corre-
spondence problem.

Fig. 4(d) depicts the DTAK matrix for the segments
given by the ACA algorithm. Good segmentations tend to
have large within-class and low between-class connectivity.
Fig. 4(f) shows the accuracy results of our algorithm for dif-
ferent levels of noise (pnoise = 0.0-0.3). For each pnoise,
we repeated the above generation of data 10 times to aver-
age the results.

5.2. Motion capture data

In the second experiment, we choose the 15 sequences
performed by subject 86, each of which is a combination of
10 natural actions (e.g. walking, punching, drinking, run-
ning). Typically each sequence contains 8000 frames (70
secs). Quaternions are used as features to group the frames
into 20 clusters, and reduce the length of the sequence as
explained in section 4.1. The length for each activity ranges
from 50 to 200 frames. After initializing with the algorithm
described in section 4.2, ACA is optimized until conver-
gence. For each sequence, ACA would usually converge in
3-5 iterations. Each iteration took average 30 seconds in an
unoptimized Matlab code with Intel Core 2 Duo 2.4 GHz
and 2 GB memory.

Fig. 5 shows the segmentation obtained through ACA,
manual labeling, and the method proposed by Barbic et al.
method [2] respectively, in four sequences. Different ac-
tions are marked with different colors. The black stripes in
the human label sequences indicate areas where the judg-
ments vary among labelers, while areas in the PCA bars in-
dicate the 2-sec preparation period used for estimating the
underlying quaternion distribution [2]. We should mention
that the PCA approach works in an on-line procedure, while
ACA is an off-line approach. Moreover, ACA identifies the
distinct actions by providing a segmentation closer to the
one provided by the human observer. In fact, the motions
that are almost cyclic were more clearly detected (dark lines

3Recall that for the synthetic data, the ground-truth segmentation is
known in advance.

0 20 40 60 80 100 120 140
0

10

20

0 20 40 60 80 100 120 140
0

10

20

20 40 60 80 100 120

20

40

60

80

100

120

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

Figure 4. A synthetic example: (a) ground-truth segmentation, (b)
segmentation given ACA, (c) similarity matrix, (d) similarity ma-
trix computed on segments given by ACA (the segments are re-
ordered according to their labels), (e) confusion matrix, and (f)
clustering accuracy versus temporal noise.

whose both sides have the same color) by ACA than PCA-
based approaches or human labeling.

6. Conclusions
In this paper, we have presented ACA, an extension of

kernel k-means for temporal segmentation. ACA combines
standard vector-space approaches for clustering with Dy-
namic Time Alignment Kernel (DTAK) and Dynamic Pro-
gramming (DP). The main contributions of our paper are:
(1) formulation of temporal segmentation with ACA, (2)
temporal reduction and initialization strategies for ACA,
and (3) efficient computation of ACA. ACA has been ap-
plied to temporal decomposition of motion capture data into
a set of actions, but it is a generic algorithm and can be
applied to other data (e.g. facial expression, speech). Al-
though ACA has shown promising preliminary results, there
is still the need for algorithms to automatically select the
optimal number of actions and avoid local minima in the
optimization.

Acknowledgements This work was partially supported
by the National Science Foundation under Grant No.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 110000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Figure 5. Motion segmentation provided by human observers, PCA and ACA. Black lines indicate the boundaries of actions. The different
colors used in HUMAN and ACA correspond to distinct actions. For ACA, the black lines within the area of same color show the
composition of cyclic movements.

EEEC-0540865. The data used in this project was obtained
from mocap.cs.cmu.edu. The database was created with fund-
ing from NSF EIA-0196217. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References
[1] A. Anagnostopoulos, M. Vlachos, M. Hadjieleftheriou, E. J.

Keogh, and P. S. Yu. Global distance-based segmentation of
trajectories. In KDD, pages 34–43, 2006.

[2] J. Barbic, A. Safonova, J.-Y. Pan, C. Faloutsos, J. K. Hod-
gins, and N. S. Pollard. Segmenting motion capture data into
distinct behaviors. In Graphics Interface, pages 185–194,
2004.

[3] P. Beaudoin, S. Coros, M. van de Panne, and P. Poulin.
Motion-motif graphs. In ACM SIGGRAPH / Eurographics

Symposium on Computer Animation, 2008.
[4] R. Bowden. Learning statistical models of human motion.

IEEE Workshop on Human Modeling, Analysis and Synthe-

sis, CVPR, 2000.
[5] P. S. Bradley and U. M. Fayyad. Refining initial points for

k-means clustering. In ICML, pages 91–99, 1998.
[6] A. Bruderlin and L. Williams. Motion signal processing. In

ACM SIGGRAPH, pages 97–104, 1995.
[7] F. De la Torre, J. Campoy, Z. Ambadar, and J. F. Cohn. Tem-

poral segmentation of facial behavior. In ICCV, pages 1–8,
2007.

[8] A. Fod, M. J. Matarić, and O. C. Jenkins. Automated
derivation of primitives for movement classification. Auton.

Robots, 12(1):39–54, 2002.
[9] K. Forbes and E. Fiume. An efficient search algorithm for

motion data using weighted PCA. In ACM SIGGRAPH / Eu-

rographics Symposium on Computer Animation, pages 67–
76, 2005.

[10] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A
review. ACM Comput. Surv., 31(3):264–323, 1999.

[11] O. C. Jenkins and M. J. Matarić. Deriving action and behav-
ior primitives from human motion data. In IROS, volume 3,
pages 2551–2556, 2002.

[12] E. J. Keogh. Exact indexing of dynamic time warping. In
VLDB, pages 406–417, 2002.

[13] E. J. Keogh and S. Kasetty. On the need for time series data
mining benchmarks: A survey and empirical demonstration.
Data Min. Knowl. Discov., 7(4):349–371, 2003.

[14] D. E. Knuth. The Stanford GraphBase. Addison-Wesley
Publishing Company, 1993.

[15] L. Kovar and M. Gleicher. Automated extraction and param-
eterization of motions in large data sets. ACM Trans. Graph.,
23(3):559–568, 2004.

[16] Y. Li, T.-S. Wang, and H.-Y. Shum. Motion texture: a two-
level statistical model for character motion synthesis. ACM

Trans. Graph., 21(3):465–472, 2002.
[17] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:

Analysis and an algorithm. In NIPS, pages 849–856, 2001.
[18] B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear com-

ponent analysis as a kernel eigenvalue problem. Neural Com-

putation, 10(5):1299–1319, 1998.
[19] H. Shimodaira, K.-I. Noma, M. Nakai, and S. Sagayama.

Dynamic time-alignment kernel in support vector machine.
In NIPS, pages 921–928, 2001.

[20] L. Zelnik-Manor and M. Irani. Event-based analysis of
video. In CVPR, pages 123–130, 2001.

[21] H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity
in video. In CVPR, pages 819–826, 2004.

