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Spatio-temporal Matching for
Human Pose Estimation in Video

Feng Zhou and Fernando De la Torre

Abstract—Detection and tracking humans in videos have been long-standing problems in computer vision. Most successful
approaches (e.g., deformable parts models) heavily rely on discriminative models to build appearance detectors for body joints and
generative models to constrain possible body configurations (e.g., trees). While these 2D models have been successfully applied to
images (and with less success to videos), a major challenge is to generalize these models to cope with camera views. In order to
achieve view-invariance, these 2D models typically require a large amount of training data across views that is difficult to gather and
time-consuming to label. Unlike existing 2D models, this paper formulates the problem of human detection in videos as spatio-temporal
matching (STM) between a 3D motion capture model and trajectories in videos. Our algorithm estimates the camera view and selects
a subset of tracked trajectories that matches the motion of the 3D model. The STM is efficiently solved with linear programming,
and it is robust to tracking mismatches, occlusions and outliers. To the best of our knowledge this is the first paper that solves the
correspondence between video and 3D motion capture data for human pose detection. Experiments on the CMU motion capture,
Human3.6M, Berkeley MHAD and CMU MAD databases illustrate the benefits of our method over state-of-the-art approaches.

Index Terms—Human pose estimation, Dense trajectories, Spatio-temporal bilinear model, Trajectory matching
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1 INTRODUCTION

HUMAN pose detection and tracking in videos have
received significant attention in the last few years

due to the success of Kinect cameras and applications
in human computer interaction (e.g., [1]), surveillance
(e.g., [2]) and marker-less motion capture (e.g., [3]). While
there have been successful methods that estimate 2D
body pose from a single image [4]–[8], detecting and
tracking body configurations in unconstrained video is
still a challenging problem. The main challenges stem
from the large variability of people’s clothes, articulated
motions, occlusions, outliers and changes in illumina-
tion. More importantly, existing extensions of 2D meth-
ods [4], [5] cannot cope with large pose changes due
to camera view change. A common strategy to make
these 2D models view-invariant is to gather and label
human poses across all possible viewpoints. However,
this is impractical, time consuming, and it is unclear how
the space of 3D poses can be uniformly sampled. To ad-
dress these issues, this paper proposes to formulate the
problem of human body detection and tracking as one
of spatio-temporal matching (STM) between 3D models
and video. Our method solves for the correspondence
between a 3D motion capture model and trajectories in
video. The main idea of our approach is illustrated in
Fig. 1.

Our STM algorithm has two main components: (1) a
spatio-temporal motion capture model that can model
the configuration of several 3D joints for a variety of
actions, and (2) an efficient algorithm that solves the
correspondence between image trajectories and the 3D
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spatio-temporal motion capture model. Fig. 1 illustrates
examples of how we can rotate our motion capture data
model to match the trajectories of humans in video
across several views. Moreover, our method selects a
subset of trajectories that corresponds to 3D joints in the
motion capture data model (about 2−4% of the trajecto-
ries are selected). As we will illustrate with the Berkeley
MHAD database [9], the Human3.6M database [10] and
Multi-modal action dataset [11], the main advantage
of our approach is that it is able to cope with large
variations in viewpoint and speed of the action. This
property stems from the fact that we use 3D models.

2 RELATED WORK

This section reviews related works in human detection
in video and 3D human pose estimation.

2.1 Human detection in video
A review of the literature on people tracking is well
beyond the scope of this paper. We focus our attention
here on the work most similar in spirit to ours. Many
early approaches [12]–[18] were based on simple appear-
ance models (e.g., silhouettes) and performed tracking
using stochastic search with kinematic constraints. How-
ever, silhouette extraction becomes unreliable because of
complex backgrounds, occlusions, and moving cameras.
Moreover, stochastic search in these high-dimensional
spaces is notoriously difficult.

Facilitated by the advances in human detection meth-
ods [4]–[7], [19], tracking by detection has been a focus
of recent work. For instance, Andriluka et al. [20], [21]
combined the initial estimate of the human pose across
frames in a tracking-by-detection framework. Sapp et
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Fig. 1. Detection and tracking of humans in three videos using spatio-temporal matching (STM). STM extracts
trajectories in video (gray lines) and selects a subset of trajectories (a) that match with the 3D motion capture model
(b) learned from the CMU motion capture data set. Better viewed in color.

al. [22] coupled locations of body joints within and across
frames from an ensemble of tractable sub-models. Wu
and Nevatia [23] propose an approach for detecting and
tracking partially occluded people using an assembly of
body parts. Such tracking-by-detection approaches are
attractive because they can avoid drift and recover from
errors. The most similar work to ours are the recent
fusion method by stitching together N-best hypothe-
ses from frames of a video. Burgos et al. [24] merged
multiple independent pose estimates across space and
time using a non-maximum suppression. Park and Ra-
manan [25] generated multiple diverse high-scoring pose
proposals from a tree-structured model and used a chain
CRF to track the pose through the sequence. Inspired
by the recent success on using convolutional neural
network (CNN) [26] for the task of human body pose
detection, Jain et al.. [27] proposed MoDeep for artic-
ulated human pose estimation in videos using a CNN
architecture, which incorporates both color and motion
features. Compared to these methods, our work enforces
temporal consistency by matching video trajectories to
a spatio-temporal 3D model, and provide robustness to
view-point changes.

2.2 3D human pose estimation
Our method is also related to the work on 3D human
pose estimation. Conventional methods rely on discrim-
inative techniques that learn mappings from image fea-
tures (e.g., silhouettes [28]) to 3D pose with different
priors [29], [30]. However, many of them require an
accurate image segmentation to extract shape features or
precise initialization to achieve good performance in the
optimization. Inspired by recent advances in 2D human
pose estimation, current works focus on retrieving 3D
poses from 2D body part positions estimated by the
off-the-shelf detectors [4], [5], [19]. For instance, Sigal
and Black [31] learned a mixture of experts model to
infer 3D poses conditioned on 2D poses. Simo-Serra et
al. [32] retrieved 3D poses from the output of 2D body
part detectors by a robust sampling strategy. Ionescu
et al. [7] reconstructed 3D human pose by inferring
over multiple human localization hypotheses on images.

Inspired by [33], Yu et al. [34] recently combined human
action detection and a deformable part model to estimate
3D poses. Compared to our approach, however, these
methods typically require large training sets to model
the large variability of appearance of different people
and viewpoints.

3 SYSTEM OVERVIEW

This section describes an overview of our proposed
spatial-temporal matching (STM) method. The overview
of the method is illustrated in Fig. 2. The STM algorithm
has three main components. Section. 4: Given an input
video, STM extracts 2D feature trajectories and evalu-
ates the pseudo-likelihood of each pixel belonging to
different body parts. Section. 5: During training, STM
learns a bilinear spatio-temporal 3D model from motion
capture data that will be used to constraint possible
video trajectories. Section. 6: During testing, STM finds
a subset of trajectories that correspond to 3D joints in
the spatio-temporal model, and compute the extrinsic
camera parameters.

3-D
Mocap

Video Dense
Trajectories

Bilinear
Constraint

Clustering

Fig. 2. Overview of the STM method. Given a video, STM
extracts video features and selects a subset of video
features that match a 3D motion capture model.

4 TRAJECTORY-BASED VIDEO REPRESENTA-
TION

In order to generate candidate positions for human body
parts, we used a trajectory-based representation of the
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input video. To be robust to large camera motion and
viewpoint changes, we extracted trajectories from short
video segments. The input video is temporally split into
overlapped video segments of length n frames (e.g., n =
15 in all our experiments).

For each video segment, we used [35] to extract
trajectories by densely sampling feature points in the
first frame and track them using a dense optical flow
algorithm [36]. The output of the tracker for each video
segment is a set of mp trajectories (see notation1),

P =

 p1
1 · · · p1

mp

...
. . .

...
pn1 · · · pnmp

 ∈ R2n×mp ,

where each pij ∈ R2 denotes the 2D coordinates of the
jth trajectory in the ith frame. Notice that the number
of trajectories (mp) can be different between segments.
Fig. 3b illustrates a video segment with densely extracted
feature trajectories.

Compared to the sparser KLT-based trackers [37], [38],
densely tracking the feature points guarantees a good
coverage of foreground motion and improves the quality
of the trajectories in the presence of fast irregular mo-
tions. Compared to the various spatio-temporal descrip-
tors (e.g., STIP [39], Cuboids [40]), trajectories capture
more local motion information of the video. see [41] for
a review.

To evaluate a pseudo-likelihood of each trajectory
belonging to a 3D joint, we applied a state-of-the-art
body part detector [5] independently on each frame. We
selected a subset of mq = 14 body joints (Fig. 3a) that
are common across several datasets including the PARSE
human body model [5], CMU [42], Berkeley MHAD [9],
Human3.6M [10] motion capture datasets and CMU
MAD Kinect dataset [11].

For each joint c = 1 · · ·mq in the ith frame, we com-
puted the SVM score aicj for each trajectory j = 1 · · ·mp

by performing an efficient two-pass dynamic program-
ming inference [25]. Fig. 3c shows the response maps as-
sociated with four different joints. The head can be easily
detected, while other joints are more ambiguous. Given
a video segment containing mp trajectories, we then
computed a trajectory response matrix, A ∈ Rmq×mp ,
whose element acj =

∑n
i=1 a

i
cj encodes the cumulative

cost of assigning the jth trajectory to the cth joint over
the n frames.

1. Bold capital letters denote a matrix X, bold lower-case letters a
column vector x. All non-bold letters represent scalars. xi represents
the ith column of the matrix X. xij denotes the scalar in the ith row
and jth column of the matrix X. [X1; · · · ;Xn] and [⇒

i
Xi] denote

vertical and diagonal concatenation of sub-matrices Xi respectively.
1m×n,0m×n ∈ Rm×n are matrices of ones and zeros. In ∈ Rn×n is
an identity matrix. ‖X‖p = p

√∑
|xij |p and ‖X‖F =

√
tr(XTX) des-

ignate the p-norm and Frobenius norm of X respectively. X† denotes
the Moore-Penrose pseudo-inverse. vec(X) denotes the vectorization
of matrix X. X ◦ Y and X ⊗ Y are the Hadamard and Kronecker
products of matrices.
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Fig. 3. Example of feature trajectories and their re-
sponses. (a) Geometrical configuration of 14 body joints
shared across 3D datasets. (b) Dense trajectories ex-
tracted from a video segment. (c) Feature response maps
for 4 joints (see bottom-right corner).

5 LEARNING SPATIO-TEMPORAL BILINEAR
BASES

There exists a large body of work that addresses the
representation of time-varying spatial data in several
computer vision problems (e.g., non-rigid structure from
motion, face animation), see [43]. Common models in-
clude learning linear basis vectors independently for
each frame [44] or discrete cosine transform bases in-
dependently for each joint trajectory [45]. Despite its
simplicity, using a shape basis or a trajectory basis inde-
pendently fails to exploit spatio-temporal regularities. To
have a low-dimensional model that exploits correlations
in space and time, we parameterize the 3D joints in
motion capture data using a bilinear spatio-temporal
model [46].

Given a set of 3D motion capture sequences of differ-
ent lengths, we randomly select a large number (> 200)
of temporal segments of the same length, where each
segment denoted by Q,

Q =

 q1
1 · · · q1

mq

...
. . .

...
qn1 · · · qnmq

 ∈ R3n×mq ,

contains n frames and mq joints. For instance, Fig. 4a
shows a set of motion capture segments randomly se-
lected from several kicking sequences.

To align the segments, we apply Procrustes anal-
ysis [47] to remove the 3D rigid transformations. In
order to build local models, we cluster all segments
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into k groups using spectral clustering [48]. The affinity
between each pair of segments is computed as,

κij = exp
(
− 1

σ2
(‖Qi − τij(Qj)‖2F + ‖Qj − τji(Qi)‖2F )

)
,

where τij(·) denotes the similarity transformation found
by Procrustes analysis when aligning Qj towards Qi.
The kernel bandwidth σ is set to be the average distance
from the 50% closest neighbors for all Qi and Qj pairs.
As shown in the experiments, this clustering step im-
proves the generalization of the learned shape models.
For instance, each of the 4 segment clusters shown in
Fig. 4b corresponds to a different temporal stage of
kicking a ball. Please refer Fig. 5 for more examples of
temporal clusters.

Given a set of l segments2, {Qi}li=1, belonging to each
cluster, we learn a bilinear model [46] such that each
segment Qi can be reconstructed using a set of weights
Wi ∈ Rkt×ks minimizing,

min
T,S,{Wi}i

l∑
i=1

‖Q(TWiS
T )−Qi‖2F , (1)

where the columns of T ∈ Rn×kt and S ∈ R3mq×ks

contain kt trajectories and ks shape bases respectively. In
the experiment, we found kt = 10 and ks = 15 produced
consistently good results. Q(·) is a linear operator3 that
reshapes any n-by-3mq matrix to a 3n-by-mq one, i.e.,

Q
( q1T

1 · · · q1T
mq

...
. . .

...
qnT1 · · · qnTmq

) =

 q1
1 · · · q1

mq

...
. . .

...
qn1 · · · qnmq

 , ∀ qij ∈ R3.

Unfortunately, optimizing Eq. 1 jointly over the bilin-
ear bases T, S and their weights {Wi}i is a non-convex
problem. To reduce the complexity and make the prob-
lem more trackable, we fix T to be the discrete cosine
transform (DCT) bases (Top of Fig. 4c). Following [46],
the shape bases S can then be computed in closed-form
using the SVD as,

[TT†Q−1(Q1); · · · ; TT†Q−1(Ql)] = UΣST . (2)

For example, the left part of Fig. 4c plots the first two
shape bases si learned from the 3rd cluster of segments
shown in Fig. 4b, which mainly capture the deformation
of the movements of the arms and legs.

6 SPATIO-TEMPORAL MATCHING (STM)

This section describes the objective function and the
optimization strategy for the STM algorithm.

2. To simplify the notation, we do not explicitly specify the cluster
membership of the motion capture segment (Qi) and the bilinear bases
(T and S).

3. Q(Q) can be written in matrix form as
(
(1n×mq ⊗ I3) ◦ (Q ⊗

13)
)
(Imq ⊗ 13) for any Q ∈ Rn×3mq .

6.1 STM’s Objective
Given the mp trajectories P ∈ R2n×mp extracted from
an n-length video segment, STM aims to select a sub-
set of mq trajectories that best fits the learned spatio-
temporal 3D shape structure (T and S) projected in 2D.
More specifically, the problem of STM consists in finding
three variables: (1) a binary correspondence matrix X ∈
{0, 1}mp×mq under the many-to-one constraint XT1 = 1;
(2) the weights W ∈ Rkt×ks of the bilinear 3D model;
and (3) a set of 3D-2D weak perspective projections4

R ∈ R2n×3n, b ∈ R2n, where the rotation needs to satisfy
the orthogonal constraints,

Ψ =
{

R =

 θ1R1 · · · 0
...

. . .
...

0 · · · θnRn

 ∣∣∣ RT
i Ri = I2 ∀ i

}
. (3)

In a nutshell, STM aims to solve the following problem

min
X,W,R,b

‖RQ(TWST ) + b1T −PX‖1 + λa tr(AX)

+ λs‖TWΣ−1‖1 + λo‖GPX−G′P′X′‖1, (4)

s. t. X ∈{0, 1}mp×mq , XT1 = 1,R ∈ Ψ,

where the objective is composed by four terms. (1)
The first term measures the error between the selected
trajectories PX ∈ R2n×mq and the bilinear reconstruction
Q(TWST ) projected in 2D using R and b. The error is
computed using the l1 norm instead of the Frobenious
norm, because of its efficiency and robustness. (2) Given
the trajectory response A ∈ Rmq×mp , the second term
measures the appearance cost of the trajectories selected
by X and weighted by λa. (3) The third term weighted
by λs penalizes large weights TW ∈ Rn×ks of the shape
bases, where the singular value Σ ∈ Rks×ks computed
in Eq. 2 is used to normalize the contribution of each
basis. (4) To impose temporal continuity on the solution,
the fourth term weighted by λo penalizes the l1 distance
between the reconstruction for the current segment PX
and the previous one P′X′, where G ∈ {0, 1}2no×2n and
G′ ∈ {0, 1}2no×2n′ are two selection matrices that select
the overlapped no frames between PX and P′X′ respec-
tively. In our experiment, the regularization weights λa,
λs and λo are estimated using cross-validation.

Optimizing Eq. 4 is a challenging problem, in the
following sections we describe an efficient coordinate-
descent algorithm that alternates between solving X,W
and R,b until convergence. The algorithm is initialized
by computing X that minimizes the appearance cost
tr(AX) in Eq. 4 and setting Q(TWST ) to be the mean
of the motion capture segments.

6.2 Optimizing STM over X and W

Due to the combinatorial constraint on X, optimizing
Eq. 4 over X and W given R and b is a NP-hard mixed-
integer problem. To approximate the problem, we relax

4. R = [⇒
i
θiRi] ∈ R2n×3n is a block-diagonal matrix, where each

block contains the rotation Ri ∈ R2×3 and scaling θi for each frame.
Similarly, b = [b1; · · · ;bn] ∈ R2n is a concatenation of the translation
bi ∈ R2 for each frame.
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Fig. 4. Spatio-temporal bilinear model learned from the CMU motion capture dataset. (a) Top: All the motion
capture segments randomly selected from a set of kicking sequences. Bottom: The segments are spatially aligned
via Procrustes alignment. (b) Clustering motion capture segments into 4 temporal clusters. (c) The bilinear bases
estimated from the 3rd cluster. Left: top-2 shape bases (si) where the shape deformation is visualized by black arrows.
Top: top-3 DCT trajectory bases (tj). Bottom-right: bilinear reconstruction by combining each pair of shape and DCT
bases (tjsTi ).

Cluster 1 Cluster 4Cluster 2 Cluster 3Cluster 1 Cluster 3 Cluster 4

G
re

et
in

g

W
al

k 
P

ai
r

(c)

(b)

Ju
m

p

S
it

(a)

W
al

k

S
w

in
g

All Segments Cluster 2

L 
A

rm
 S

w
ip

e 
to

 R

(d)B
as

ke
tb

al
l S

ho
ot

All Segments

Fig. 5. Clustering motion capture segments into four clusters for different datasets. (a) CMU motion capture
dataset [42]. (b) Berkeley MHAD dataset [9]. (c) Human3.6M dataset [10]. (d) CMU MAD dataset [11].
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the binary X to be a continuous one and reformulate the
problem using the LP trick5 [49] as,

min
X,W,U,V

Us,Vs,Uo,Vo

1T (U + V)1 + λa tr(AX)

+ λs1
T (Us + Vs)1 + λo1

T (Uo + Vo)1, (5)

s. t. X ∈ [0, 1]mp×mq ,XT1 = 1,

RQ(TWST ) + b1T −PX = U−V, U,V ≥ 0,

TWΣ−1 = Us −Vs, Us,Vs ≥ 0,

GPX−G′P′X′ = Uo −Vo, Uo,Vo ≥ 0,

where U,V ∈ R2n×mq and Us,Vs ∈ Rn×ks are four
auxiliary variables used to formulate the l1 problem as
linear programming. The term RQ(TWST ) is linear in
W and we can conveniently re-write this expression
using the following equality as:

vec
(
RQ(TWST )

)
= (Imq ⊗R) vec

(
Q(TWST )

)
= (Imq ⊗R)ΠQ vec(TWST ) = (Imq ⊗R)ΠQ(S⊗T)︸ ︷︷ ︸

Constant

vec(W),

where ΠQ ∈ {0, 1}3nmq×3nmq is a permutation matrix
that re-orders the elements of a 3nmq-D vector as,

ΠQ vec
( q1

1 · · · q1
mq

...
. . .

...
qn1 · · · qnmq

) = vec
( q1T

1 · · · q1T
mq

...
. . .

...
qnT1 · · · qnTmq

).
After solving the linear program, we gradually dis-

cretized X by taking successive refinements based on
trust-region shrinking [49]. More specifically, we first
initialized a candidate trajectory set for each joint c ∈
1 · · ·mq as well as all of the original trajectories P =
[pi]

mp
i=1. After computing X in the first iteration, we

calculated the distance between each candidate trajectory
pi and the reconstructed trajectory Pxc. We then shrink
the candidate set by discarding those trajectories with
larger distance. During the second iteration to compute
X, we added a new linear constraint to enforce that
the non-zero elements in X can only correspond to the
trajectories remaining in the candidate set. After each
iteration, we shrink the candidate trajectory set by half
until we have only one candidate trajectory for each
joint.

6.3 Optimizing STM over R and b

If X and W are fixed, optimizing Eq. 4 with respect to
R and b becomes an l1 Procrustes problem [50],

min
R,b

‖RQ + b1T −PX‖1, s. t. R ∈ Ψ, (6)

where Q = Q(TWST ). Inspired by the recent advances
in compressed sensing, we approximate Eq. 6 using
the augmented Lagrange multipliers method [51] that
minimizes the following augmented Lagrange function:

min
L,E,µ,R,b

‖E−PX‖1 + tr
(
LT (RQ + b1T −E)

)
+
µ

2
‖RQ + b1T −E‖2F , s. t. R ∈ Ψ, (7)

5. Given an LP problem with absolute value in the objective, e.g.,
minx |x|, we can equivalently solve, minx,u,v u + v, by introducing
two positive auxiliary variables u, v ≥ 0 with the constraint x = u−v.

where L is the Lagrange multiplier, E is an auxiliary
variable, and µ is the penalty parameter. Eq. 7 can be
efficiently approximated in a coordinate-descent manner.
First, optimizing Eq. 7 with respect to R and b is a
standard orthogonal Procrustes problem,

min
R,b

‖RQ + b1T − (E− L

µ
)‖2F , s. t. R ∈ Ψ, (8)

which has a close-form solution using the SVD. Second,
optimizing Eq. 7 with respect to E can be efficiently
found using absolute value shrinkage [51] as,

E = PX− S 1
µ

(PX−RQ− b1T − L

µ
), (9)

where Sσ(p) = max(|p| − σ, 0) sign(p) is a soft-
thresholding operator [51]. Third, we gradually update
L and µ as,

L← L + µ(RQ + b1T −E), (10)
µ← ρµ, (11)

where we set the incremental ratio to ρ = 1.05 in all our
experiments.

Overall, the algorithm is summarized in Algorithm. 1.

Algorithm 1: l1 Procrustes analysis
parameter: ρ = 1.05
input : PX ∈ R2n×mq , Q ∈ R3n×mq

output : R ∈ R2n×3n, b ∈ R2n

1 begin
2 Initialize E = 02n×mq , L = 02n×mq , µ = 1e− 6

;
3 while not converged do Outer Iteration
4 while not converged do Inner Iteration
5 Updating R and b by optimizing Eq. 8

using SVD;
6 Updating E using Eq. 9;

7 Updating L using Eq. 10;
8 Updating µ using Eq. 11;

6.4 Fusion

Given a video containing an arbitrary number of frames,
we solved STM independently for each segment of n
frames (n = 15 in our experiments). Recall that we
learned k bilinear models (T and S) from different
clusters of motion capture segments (e.g., Fig. 4b) in the
training step. To find the best model for each segment,
we optimize Eq. 4 using each model and select the one
with the smallest objective.

After solving STM for each segment, we need to aggre-
gate the local solutions for each segment to generate the
global one for the entire sequence. Specifically, how to
generate the coordinate P̄i ∈ R2×mq at ith frame from the
selected trajectories {PcXc}c of lc segments overlapped
at ith frame. In the following, we explore two ways to
compute P̄i.
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Averaging. The first solution is to average the coordi-
nates of the selected trajectories {PcXc}c overlapped at
i,

P̄i =
1

lc

∑
c

Pic
c Xc, (12)

where Pic
c ∈ R2×mp encodes the trajectory coordinates

at the ithc frame within the cth segment and ic the local
index of the ith frame in the original video.

Winner-Take-All. In the second way, we evaluate the
objective value (Eq. 4) of each local solution {PcXc}c
marginalized at the overlapped frame i, i.e.,

Jc = ‖
[
RQ(TWST ) + b1T −PX

]
ic
‖1 + λa‖

[
AX

]
ic
‖1

+ λs‖
[
TWΣ−1]

ic
‖1, (13)

where the operator [·]ic is to take the rows of a matrix
associated to ithc frame. Once the Jcs for each segment
are computed, we pick the one c∗ = arg minc Jc with
the minimum objective value as the final solution P̄i =

P
i∗c
c∗Xc∗ .

7 EXPERIMENTS

This section compares STM against several state-of-the-
art algorithms for body part detection in synthetic ex-
periments on the CMU motion capture dataset [42], and
real experiments on the MHAD [9], the Human3.6M [10]
and the MAD [11] datasets.

For each dataset, the 3D motion capture model
was trained from its associated motion capture se-
quences. The 3D motion capture training data is person-
independent, and it does not contains samples of the
testing subject. Notice that the annotation scheme is
different across datasets (Fig. 3a). We investigated four
different types of 3D models for STM: (1) Generic
models: STM-G1 and STM-G4 were trained using all
sequences of different actions with k = 1 and k = 4
clusters respectively. (2) Action-specific models: STM-
A1 and STM-A4 were trained independently for each
action from each dataset. In testing, we assumed we
know what action the subject was performing. As before,
STM-A1 and STM-A4 were trained with k = 1 and
k = 4 clusters respectively. In addition to the different
choices of 3D models, we also testified the effect of using
different fusion methods. The postfix notations, -AVE
and -WTA stand for using the averaging and winner-
take-all methods in the fusion step respectively.

To evaluate the performance of different methods,
we adopted the PCK [5] criteria, a popular criteria
for evaluating pose estimation accuracy. PCK measures
the percentage of correctly localized body parts. More
specifically, PCK defines a candidate key-point p to be
correct if it falls within a small range of the ground-truth
keypoint p̄, i.e.,

‖p− p̄‖2 ≤ αmax(h,w), (14)

where h and w are the height and width of the bounding
box respectively, and α controls the relative threshold
for considering correctness. Similar to the full-body case
in [5], we choose α = 0.2 in the experiments. For each

frame, we generated the bounding box as the tightest
one to cover the set of ground truth key-points.

7.1 CMU motion capture dataset

The first experiment validated our approach on the CMU
motion capture dataset [42], from which we selected 5
actions including walking, running, jumping, kicking,
golf swing. For each action, we picked 8 sequences
performed by different subjects. For each sequence, we
synthetically generated 0 ∼ 200 random trajectories as
outliers in 3D. The first 3D point in each trajectory
was generated randomly, and the subsequent 3D points
are shifted with a random vector δp ∼ βN (µ, I) at
each frame, where µ ∈ R3 denotes the size of the
3D bounding box of the person and β = [0.01, 0.05]
controls the velocity of random translation. Then we
projected each sequence (with outliers included) onto 4
different 2D views. See Fig. 6a for examples of the 3D
sequences as well as the camera positions. To reproduce
the response of a body part detector at each frame, we
synthetically generate a constant-value response region
centered at the ground-truth location with the radius
being the maximum limb length over the sequence. The
response value of the jth feature trajectory for the cth

body part at ith frame is considered to be aicj = −1 if it
falls in the region or 0 otherwise. Our goal is to detect
the original trajectories and recover the body structure.

We quantitatively evaluated our method with a leave-
one-out scheme, i.e., each testing sequence was taken out
for testing, and the remaining data was used for training
the bilinear model. For each sequence, we computed
the error of each method as the percentage of incor-
rect detections of the feature points compared with the
ground-truth position averaged over frames. To the best
of our knowledge, there is no previous work on STM in
computer vision. Therefore, we implemented a greedy
baseline that selects the optimal feature points with the
lowest response cost without geometrical constraints.

Fig. 6b shows some key-frames for the greedy ap-
proach, our method and the ground truth using the STM-
A4-AVE for detecting the kicking actions across four
views. As can be observed, STM is able to select the
trajectories more precisely and it is more robust than the
greedy approach. Fig. 7a-d quantitatively compare our
methods with the greedy approach on each action and
viewpoint respectively. Our method consistently outper-
forms the greedy approach for detection and tracking
in presence of outliers. In addition, the STM-A1-AVE
model obtains lower error rates than STM-G1-AVE be-
cause STM-A1-AVE is an action-specific model, unlike
STM-G1-AVE which is a generic one. By increasing the
number of clusters from one to four, the performance of
STM-G4-AVE and STM-A4-AVE clearly improves from
STM-G1-AVE and STM-A1-AVE respectively. This not
surprising because the bilinear models trained on a
group of similar segments can be represented more
compactly (fewer number of parameters) and generalize
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Fig. 6. Comparison of human pose estimation on the CMU motion capture dataset. (a) Original motion capture key-
frames in 3D with 50 (β = 0.04) outliers that were synthetically generated. (b) Results of the greedy approach and our
method on four 2D projections.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2015 9

Walkerror

#outliers

Camera 1error

#outliers

Runerror

#outliers

Camera 2error

#outliers

(a)

Jump

#outliers

error

Camera 3error

#outliers
(b)

Kickerror

#outliers

Camera 4error

#outliers

Swing

All

error

#outliers

error

#outliers
(c)

Greedy
STM-G1-AVE
STM-G4-AVE
STM-A1-AVE
STM-A4-AVE
STM-A1-WTA
STM-A4-WTA

0.01 0.02 0.03 0.04 0.050

0.2

0.4

0.6

0.8

1

All

0 50 100 150 200 0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 0 50 100 150 200

0 50 100 150 2000

0.2

0.4

0.6

0.8

1

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0 50 100 150 200

(d)

error

#outliers =50
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 7. Comparison of human pose estimation on the CMU motion capture dataset. (a) Mean error and std. for each
method and each action as a function of the number of outliers when β = 0.04. (b) Mean error and std for each camera
view when β = 0.04. (c) Mean error and std for all actions and cameras when β = 0.04. (d) Mean error and std for all
actions and cameras as a function of the velocity (β) of 50 random outliers.

better in testing. In addition, using the winner-take-all
method (STM-A1-WTA and STM-A4-WTA) in the fusion
step can further improve the performance compared to
the averaging approaches (STM-A1-AVE and STM-A4-
AVE). This is because the winner-take-all method picks
the best local solution at the overlapped region, yielding
more robust solution in the case when a large number
of outliers exist.

7.2 Berkeley multi-modal human action dataset
(MHAD)
In the second experiment, we tested the ability of STM
to detect humans on the Berkeley multi-modal human
action database (MHAD) [9]. The MHAD database con-
tains 11 actions performed by 12 subjects. For each
sequence, we took the videos captured by 2 different
cameras as shown in Fig. 8a. To extract the trajectories
from each video, we used [35] in sliding-window manner
to extract dense trajectories from each 15 frames seg-
ment. The response for each trajectory was computed
using the SVM detector score [5]. The bilinear models
were trained from the motion capture data associated
with this dataset.

To quantitatively evaluate the performance, we com-
pared our method with two baselines: the state-of-the-art
image-based pose estimation method proposed by Yang
and Ramanan [5], and the two recent video-based meth-
ods designed by Park and Ramanan [25] and Burgos et
al. [24] that merge multiple independent pose estimates
across frames. We evaluated all methods with a leave-
one-out scheme. The error for each method is computed
as the pixel distance between the estimated and ground-
truth part locations. Notice that a portion of the error is

due to the inconsistency in labeling protocol between the
PARSE model [5] and the MHAD dataset.

Fig. 8b-d compare the PCK accuracy score [5] to local-
ize body parts of our method against [5], [24], [25]. The
PCK score is computed by setting the threshold α = 0.2
in Eq. 14. Our method largely improves the image-based
baseline [5] for all actions and viewpoints. Compared
to the video-based method [24], STM achieves higher
accuracy for most actions except for “jump jacking”,
“bending”, “one-hand waving” and “two-hand waving”,
where the fast movement of the body joints cause much
larger error in tracking feature trajectories over time.
Among the four STM models, STM-A4-AVE performs
the best because the clustering step improves the gen-
eralization of the bilinear model. In this experiment,
however, we found taking the average coordinates of the
local solutions in fusion steps (STM-A1-AVE and STM-
A4-AVE) yielded higher accuracy than the ones (STM-
A1-WTA and STM-A4-WTA) using the winner-take-all
mechanism. This is because the noise (e.g., drifting and
missing point) generated in the dense tracking step can
be mitigated by the averaging step. As shown in Fig. 8d,
the hands are the most difficult to accurately detect
because of their fast movements and frequent occlusions.
Fig. 8e compares the PCK scores by adjusting the thresh-
old parameter α in Eq. 14 from 0.1 to 1. Our method
consistently out-performed the baselines [5], [24], [25].

Fig. 9 investigates the three main parameters of our
system, segment length (n), number of bases (ks and kt)
and the regularization weights (λa and λs). According to
Fig. 9a, a smaller segment length is beneficial for “jump
jacking” because the performance of the tracker [35]
is less stable for fast-speed action. In contrast, using
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Fig. 8. Comparison of human pose estimation on the Berkeley MHAD dataset. (a) Result of [5] and our
method on three actions of two views, where the 3D reconstruction estimated by our method is plotted on the
right. Videos are available at www.f-zhou.com/hpe/fig8a_vdo1.avi, www.f-zhou.com/hpe/fig8a_vdo2.avi and
www.f-zhou.com/hpe/fig8a_vdo3.avi. (b) PCK accuracy for each action. (c) PCK accuracy for each camera view.
(d) PCK accuracy of each joint. (e) PCK as a function of threshold α

a larger window improves the temporal consistency in
actions such as “throwing” and “standing up”. Fig. 9b
shows the detection error (pixel distance) of STM using
different number of shape (ks) and trajectories (kt) bases
for the first subject. Overall, we found the performance
of STM is not very sensitive to small change in the num-
ber of shape bases because the contribution of each shape
basis in STM (Eq. 4) is normalized by their energies (Σ).
In addition, using a small number (e.g., 5) of trajectory
bases can lower the performance of STM. This result

demonstrates the effectiveness of using dynamic models
over the static ones (e.g., a PCA-based model can be
considered as a special case of the bilinear model when
kt = 1). Fig. 8c plots the cross-validation error for the
first subject, from which we pick the optimal λa and λs.
Our system was implemented in Matlab on a PC with
2GHz Intel CPU and 8GB memory. The codes of [5], [24]
were downloaded from authors’ webpages. The linear
programming in Eq. 5 was optimized using the Mosek
LP solver [52]. Fig. 9d analyzes the computational cost
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(in seconds) for tracking the human pose in a sequence
containing 126 frames. The most computationally inten-
sive part of the method is calculating the response for
each joint and each frame using [5]. Despite a large num-
ber of candidate trajectories (mp ≈ 700) per segment,
STM can be computing in about 8 minutes.

7.3 Human3.6M dataset

In this experiment, we selected 15 actions performed by 5
subjects from the Human3.6M dataset [10]. Compared to
the Berkeley MHAD dataset, the motions in Human3.6M
were performed by professional actors, that wear regular
clothing to maintain as much realism as possible. See
Fig. 10a for example frames.

As in the previous experiment, our methods were
compared with three baselines [5], [24], [25] in a leave-
one-out scheme. The bilinear models were trained from
the motion capture data associated with this dataset.
Fig. 8b-c show the performance of each method on
localizing body part for each action and viewpoint re-
spectively. Due to the larger appearance variation and
more complex motion performance, the overall PCK
accuracy of each method is lower than the one achieved
on the previous Berkeley MHAD dataset. However, STM
still outperforms both the baselines [5], [24], [25] for
most actions and viewpoints. If the action label is known
a priori, training action-specific models (STM-A1 and
STM-A4) achieves better performance than the ones
trained on all actions (STM-G1 and STM-G4). Fig. 8d
shows the PCK score for each joint. Among the 14
joints, hands and elbows are the most difficult to track
accurately because of their large movement relative to
the body. Fig. 8e compares the overall PCK scores using
different threshold value α. The proposed STM-A4-AVE

consistently achieved the best performance.

7.4 CMU multi-modal action dataset (MAD)
In the last experiment, we tested our method on the
CMU multi-modal action detection (MAD) dataset [11].
Unlike MHAD and H3M datasets where each sequence
contains only one action, MAD contains 40 sequences
of 20 subjects (2 sequences per subject) performing 35
activities in each of the sequences. Therefore, this ex-
periment can evaluate more accurately the performance
of different human pose estimation methods in real
applications. The length of each sequence is around 2−4
minutes (4000−7000 frames). The 2D and 3D coordinates
of 14 joints for each frame was recorded using the
Microsoft Kinect sensor in an indoor environment. The
35 actions include full-body motion (e.g., run, crouch,
jump), upper-body motion (e.g., throw, basketball drib-
ble, baseball swing), and lower-body motion (e.g., kick).
Each subject performs all the 35 activities continuously,
and the segments between two actions are considered
the null class (i.e., the subject is standing). Fig. 11a show
some example frames (bottom) and frame labels (top) for
two sequences.

As in the previous experiment, our methods were
compared with three baselines [5], [24], [25] in a
leave-one-subject-out scheme. The bilinear models were
trained from the Kinect data associated with this dataset.
The middle line of Fig. 11a compares the PCK score
between the baseline [5] and the proposed STM-A4-AVE
for each frame. STM-A4-AVE is able to locate the body
parts more smoothly and accurately over time. Fig. 11b
shows the performance of each method in the task of
localizing body parts. Fig. 11c shows the PCK accuracy
of each joint. Compared to the baselines [5], [24], [25],
STM achieved higher accuracy in most joints, especially
the hand and elbow which had larger movements. If the
action label is known a priori, training action-specific
models (STM-A1-AVE and STM-A4-AVE) achieves better
performance than the ones trained on all actions (STM-
G1-AVE and STM-G4-AVE). Similar to previous results,
the averaging fusion step (STM-A1-AVE and STM-A4-
AVE) performed better than the winner-take-all (STM-
A1-WTA and STM-A4-WTA). Fig. 11d evaluates the PCK
scores at different levels of α. Our methods (STM-A1-
AVE and STM-A4-AVE) out-performed the baselines [5],
[24], [25] by a large margin..

8 CONCLUSION

This paper presents STM, a robust method for detection
and tracking human poses in videos by matching video
trajectories to a 3D motion capture model. STM matches
trajectories to a 3D model, and hence it provides intrinsic
view-invariance. The main novelty of the work resides in
computing the correspondence between video and mo-
tion capture data. Although it might seem computation-
ally expensive and difficult to optimize at first, using an
l1-formulation to solve for correspondence results in an
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Fig. 10. Comparison of human pose estimation on the Human 3.6M dataset. (a) Result of [5] and our method on three
actions of two views, where the 3D reconstruction estimated by our method is plotted on the right. (b) PCK accuracy
for each action. (c) PCK accuracy for each camera view. (d) PCK accuracy of each joint. (e) PCK as a function of
threshold α

algorithm that is efficient and robust to outliers, missing
data and mismatches. We showed how STM outperforms
state-of-the-art approaches to object detection based on
deformable parts models in the Berkeley MHAD [9], the
Human3.6M [10] and the CMU MAD [11] dataset.

A major limitation of our current approach is the high
computational cost for calculating the joints’ response,
which is computed independently for each frame. In
future work, we plan to incorporate richer temporal
features [35] to improve the speed and accuracy of the
trajectory response.
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