
Noname manuscript No.
(will be inserted by the editor)

Metric Learning for Image Alignment

Minh Hoai Nguyen · Fernando de la Torre

Received: date / Accepted: date

Abstract Image alignment has been a long standing prob-

lem in computer vision. Parameterized Appearance Mod-

els (PAMs) such as the Lucas-Kanade method, Eigentrack-

ing, and Active Appearance Models are commonly used to

align images with respect to a template or to a previously

learned model. While PAMs have numerous advantages rel-

ative to alternate approaches, they have at least two draw-

backs. First, they are especially prone to local minima in the

registration process. Second, often few, if any, of the local

minima of the cost function correspond to acceptable so-

lutions. To overcome these problems, this paper proposes

a method to learn a metric for PAMs that explicitly opti-

mizes that local minima occur at and only at the places cor-

responding to the correct fitting parameters. To the best of

our knowledge, this is the first paper to address the problem

of learning a metric to explicitly model local properties of

the PAMs’ error surface. Synthetic and real examples show

improvement in alignment performance in comparison with

traditional approaches. In addition, we show how the pro-

posed criteria for a good metric can be used to select good

features to track.

Keywords Image alignment · Metric learning · Template

matching · Active Appearance Models

1 Introduction

Image alignment is a fundamental building block of many

computer vision based systems ranging from robotics ap-

plications to medical diagnosis. Because of its importance,

image alignment has long been an important research topic

M.H. Nguyen · F. de la Torre

Robotics Institute, Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213, U.S.A.

E-mail: minhhoai@cmu.edu, ftorre@cs.cmu.edu

Tel. +1 412-268-1858, Fax: +1 412-268-5571

Fig. 1 Learning a metric for image alignment. (d,f): surface and con-

tour plot of the PCA model. It has many local minima; (e, g): Our

method learns a better error surface to fit PAMs. It has a global min-

imum in the expected location and no local minima in a given neigh-

borhood. This figure is best seen in color.

in computer vision. In particular, Parameterized Appearance

Models (PAMs) such as the Lucas-Kanade method (Lucas

and Kanade 1981), Eigentracking (Black and Jepson 1998),

Active Appearance Models (Cootes et al 2001; de la Torre

et al 2000; Matthews and Baker 2004; de la Torre et al 2007;

Gong et al 2000), and Morphable Models (Blanz and Vetter

1999; Jones and Poggio 1998) are among the most popu-

2

lar methods for aligning a new image w.r.t. another image

or a previously learned model. Typically, appearance and/or

shape variation of a class of objects are modeled by perform-

ing Principal Component Analysis (PCA) on training sam-

ples. In the Lucas-Kanade tracker, the model is typically the

first or the previous image. Once the model has been built,

finding the correspondence between the model and an image

containing the object of interest is achieved by minimizing

a cost function w.r.t. some geometric transformation param-

eters; this is referred to as the fitting, registration, or align-

ment process.

Although widely used, PAMs suffer from two major prob-

lems. First, they are especially prone to local minima. Sec-

ond, often few, if any, of the local minima of the cost func-

tion correspond to acceptable solutions. Figures 1a,d,f illus-

trate these problems in the case of Active Appearance Mod-

els (AAMs). Figure 1d plots the error surface constructed by

translating the testing image (Figure 1c) around the ground

truth landmarks (Figure 1c) and computing the values of the

cost function. The cost function is based on a PCA model

constructed from labeled training data (Figure 1a). Figure 1f

shows the contour plot of this error surface. As can be ob-

served, any gradient-based optimization method is likely to

get stuck in local minima and will not converge to the global

minimum. Moreover, the global minimum of this cost func-

tion is not at the desired position, the black dot of Figure 1d,

which corresponds to the correct landmarks’ locations. In

the case of AAMs, these problems occur mainly because the

PCA model is constructed without considering the neigh-

borhoods of the correct motion parameters (parameters that

correspond to ground truth landmarks of training data). The

neighborhoods determine the local minima properties of the

error surface, and they should be taken into account while

constructing the models.

On the other hand, in recent years distance metric learn-

ing techniques (see Yang (2006) for a review) have demon-

strated both empirically and theoretically that a learned met-

ric can significantly improve the performance in classifica-

tion, clustering, and retrieval tasks. The aim of this paper is

to define and learn a metric for image alignment. We pro-

pose to learn a distance metric (i.e., parameters of a cost

function) that has a local minimum at the “expected” loca-

tion and no other local minima in a defined neighborhood.

Figure 1e,g plot the error surface and the contours of the

learned cost function. This cost function has a local mini-

mum at the expected place (black dot of Figure 1e) and no

other local minima near by. Moreover, we will show how the

proposed criteria for an optimal metric can be used to select

good features or pixels to track.

The rest of the paper is organized as follows. The next

section reviews the previous work on image alignment espe-

cially PAMs. Section 3 discusses two desired properties of

an optimal metric for image alignment and proposes a data

driven approach for learning such a metric. Experiments on

synthetic and Multi-PIE database (Gross et al 2007) are pro-

vided in Section 4. Section 5 shows how the proposed cri-

teria also can be used to select good features to track. Sec-

tion 6 summarizes our findings and discusses several direc-

tions for future work. Appendix A states and proves a theo-

rem that lays theoretical foundations for the learning formu-

lation proposed in Section 3. Strictly speaking, our method

learns a pseudometric rather than a metric. The difference

between pseudometrics and metrics is subtle, and it is dis-

cussed in Appendix B.

2 Previous work

Over the last decade, image alignment algorithms have be-

come increasingly important in computer vision and graph-

ics. In particular, PAMs have proven useful for image align-

ment, detection, tracking, and face synthesis (Lucas and Kanade

1981; Blanz and Vetter 1999; Black and Jepson 1998; de la

Torre et al 2000; Cootes et al 2001; Matthews and Baker

2004; Nayar and Poggio 1996; Jones and Poggio 1998; Gong

et al 2000; Vetter 1997; de la Torre and Nguyen 2008). This

section reviews PAMs and gradient-based methods for effi-

cient alignment of high dimensional deformation models.

2.1 PAMs

PAMs (Lucas and Kanade 1981; Black and Jepson 1998;

de la Torre et al 2000; Cootes et al 2001; Nayar and Pog-

gio 1996; Jones and Poggio 1998; Blanz and Vetter 1999;

Vetter 1997; de la Torre and Nguyen 2008) build object ap-

pearance and shape representation from the principal com-

ponents of training data. Let di ∈ ℜm×1 (see Footnote 1

for an explanation of the notation1) be the ith sample of a

training set D ∈ ℜm×n and U ∈ ℜm×k the first k principal

components (Jolliffe 1986). Once the appearance model has

been constructed (i.e., U is known), alignment is achieved

by finding the motion parameter p that best aligns the image

w.r.t. the subspace U, i.e.,

min.
c,p

||d(f(x,p)) − Uc||22, (1)

1 Bold uppercase letters denote matrices (e.g., D), bold lowercase

letters denote column vectors (e.g., d). dj represents the jth column

of the matrix D. dij denotes the scalar in the row ith and column jth of

the matrix D. Non-bold letters represent scalar variables. 1k ∈ ℜk×1

is a column vector of ones. 0k ∈ ℜk×1 is a column vector of zeros.

Ik ∈ ℜk×k is the identity matrix. tr(D) =
P

i dii is the trace of

square matrix D. ||d||2 =
√

dT d designates Euclidean norm of d.

||D||F =
p

tr(DT D) is the Frobenious norm of D. diag(·) is the

operator that extracts the diagonal of a square matrix or constructs a

diagonal matrix from a vector.

3

where c is the vector for the appearance coefficients that

also are optimized. x = [x1, y1, ...xl, yl]
T is the vector con-

taining the coordinates of the pixels to track. f(x,p) is the

function for geometric transformation; the value of f(x,p)

is a vector denoted by [u1, v1, ..., ul, vl]
T . d is the image

frame in consideration, and d(f(x,p)) is the appearance

vector of which the ith entry is the intensity of image d

at pixel (ui, vi). For affine and non-rigid transformations,

(ui, vi) relates to (xi, yi) by:

[

ui

vi

]

=

[

a1 a2

a4 a5

] [

xs
i

ys
i

]

+

[

a3

a6

]

. (2)

Here [xs
1, y

s
1, ...x

s
l , y

s
l]

T = x + Uscs, where Us is the non-

rigid shape model learned by performing PCA on a set of

registered shapes (Cootes and Taylor 2001). a, cs are affine

and non-rigid motion parameters respectively and p = [a; cs],

a combination of both affine and non-rigid motion parame-

ters.

In the case of the Lucas and Kanade (1981) tracker, c is

fixed to be one and U is the subspace that contains a sin-

gle vector, the reference template is the appearance of the

tracked object in the initial/previous frame.

2.2 Optimization for PAMs

Given an image d, PAM alignment algorithms optimize (1).

Due to the high dimensionality of the motion space, a stan-

dard approach to efficiently search over the parameter space

is to use gradient-based methods (Bergen et al 1992; Black

and Jepson 1998; Baker and Matthews 2004; Cootes and

Taylor 2001; Matthews and Baker 2004; de la Torre and

Black 2003). To compute the gradient of the cost function

given in (1), it is common to use Taylor series expansion to

approximate:

d(f(x,p + δp)) ≈ d(f(x,p)) + Jd(p)δp, (3)

where Jd(p) = ∂d(f(x,p))
∂p

is the Jacobian of the image d

w.r.t. to the motion parameter p (Lucas and Kanade 1981).

There also exist other approximations that take into account

more general noise models (Matei and Meer 2006; Kanatani

1996). Once linearized, a standard approach is to use the

Gauss-Newton method for optimization (Bergen et al 1992;

Black and Jepson 1998). Other approaches learn an approxi-

mation of the Jacobian matrix with linear (Cootes and Taylor

2001) or non-linear (Saragih and Goecke 2007; Liu 2007)

regression.

Over the last few years, several strategies to avoid lo-

cal minima in the fitting process have been proposed. For

example, Black and Jepson (1998) and Cootes and Taylor

(2001) used multi-resolution schemes, Xiao et al (2004) pro-

posed to constrain the 2D shape with a 3D model, de la Torre

et al (2007) learned a multi-band representation robust to

local minima, de la Torre and Black (2003) and Baker and

Matthews (2004) learned a better PCA model invariant to

rigid and non-rigid transformations. Recently, de la Torre

and Nguyen (2008) proposed a kernel extension of AAMs,

and showed some improved generalization in the fitting pro-

cess. Although these methods show significant performance

improvement, they do not directly address the problem of

learning a metric for image alignment to explicitly minimize

the number of local minima. In this paper, we deliberately

learn a cost function which has local minima at and only at

the desired places.

Recently and independently, there have been a couple

of papers that pursue a goal similar to ours. Wimmer et al

(2006) proposed to improve Active Shape Models by learn-

ing separate one dimensional convex cost functions for indi-

vidual landmark points. Wu et al (2008) proposed a method

to learn a discriminative appearance model for alignment us-

ing rank constraints. Our work differs from these methods

in several aspects. We directly learn a metric for PAMs us-

ing convex quadratic programming. Our method jointly op-

timizes over rigid and non-rigid motion parameters. Further-

more, the proposed criteria for an optimal metric also can be

used to select good features to track in feature-based track-

ing. Preliminary versions of this work have been presented

in Nguyen and de la Torre (2008a,b).

3 Learning parameters of the cost function

Gradient-based algorithms, such as the ones discussed in the

previous section, might not converge to the correct location

(i.e., correct motion parameters) for several reasons. First,

gradient-based methods are susceptible to being stuck at lo-

cal minima. Second, even when the optimizer converges to a

global minimum, the global minimum might not correspond

to the correct motion parameters. These two problems occur

primarily because PCA has limited generalization capabili-

ties to model appearance variation. This section proposes a

method to learn cost functions that do not exhibit these two

problems in training data.

3.1 A generic cost function for alignment

This section proposes a generic quadratic error function to

which many PAMs can be cast. The quadratic error function

has the form:

E(d,p) = d(f(x,p))T Ad(f(x,p))+2bT d(f(x,p)). (4)

Here A ∈ ℜm×m and b ∈ ℜm×1 are the fixed parame-

ters of the function, and A is symmetric. This function is

the general form of many cost functions used in the liter-

ature that include Active Appearance Models (Cootes et al

2001), Eigentracking (Black and Jepson 1998), and template

4

tracking (Lucas and Kanade 1981; Matthews et al 2004).

For instance, consider the cost function given in (1). If p is

fixed, the optimal c that minimizes (1) can be obtained us-

ing c = UT d(f(x,p)). Substituting this back into (1) and

performing some basic algebra, (1) is equivalent to:

min.
p

d(f(x,p))T (Im − UUT)d(f(x,p)). (5)

Thus (1) is a special case of (4), with A = Im − UUT and

b = 0m. Here, Im denotes the m × m identity matrix.

For template alignment, the cost function is typically the

Sum of Squared Differences (SSD):

||d(f(x,p)) − dref ||
2
2, (6)

where dref is the reference template. This cost function is

equivalent to:

d(f(x,p))T d(f(x,p)) − 2dT
refd(f(x,p)). (7)

Thus the cost function used in template tracking is also a

special case of (4) with A = Im and b = −dref .

3.2 Desired properties of optimal cost functions

In this section we show how to learn the parameters of the

cost function (A and b) to have minima at and only at the

‘right’ places.

Let {di}
n

1 be a set of training images containing the ob-

ject of interest (e.g., faces), and assume the landmarks for

the object shapes are available (e.g., manually labeled fa-

cial landmarks as in Figure 5a). Let si be the vector con-

taining the landmark coordinates of image di. Given {si}n
1 ,

we perform Procrustes analysis (Cootes and Taylor 2001)

and build the shape model as follows. First, the mean shape

s̄ = 1
n

∑

i si is calculated. Second, we compute ai the affine

parameter that best transforms s̄ to si, and let a−1
i be the in-

verse affine transformation of ai. Third, ŝi is obtained by

applying the inverse affine transformation a−1
i on si (warp-

ing towards the mean shape). Next, we perform PCA on

{ŝi − s̄}n
i=1 to construct Us, a basis for non-rigid shape

variation. We then compute cs
i , the coefficients of ŝi − s̄

w.r.t. the the basis Us. Finally, let pi = [ai; c
s
i]; pi is the

parameter for the image di w.r.t. to our shape model. No-

tably, the shape model and {pi}n
1 are derived independently

of the appearance model. The appearance model (i.e., the

cost function E(d,p)) is what needs to be learned.

For E(di,p) to have a local minimum at the right place,

pi must be a local minimum of E(di,p). Theoretically, this

requires
∂E(di,p)

∂p

∣

∣

∣

p=pi

to vanish, i.e.,

∂E(di,p)

∂p

∣

∣

∣

∣

p=pi

= 0 ∀i. (8)

Fig. 2 Neighborhoods around the ground truth motion parameter pi

(red dot). N−

i : region inside the orange circle; it is satisfactory for

alignment algorithms to converge to this region. N+

i : region outside

the blue circle; alignment algorithm will not be initialized in this re-

gion. Ni: shaded region, region to enforce constraints on gradient di-

rections.

To learn a cost function that has no local minima, it is

necessary to consider pi’s neighborhoods. Let Ni = {p :

lb ≤ ||p − pi||2 ≤ ub}, N−
i = {p : ||p − pi||2 < lb},

N+
i = {p : ||p − pi||2 > ub}. Here lb is chosen such

that N−
i is a set of neighbor parameters that are very close

to pi; it is satisfactory for a fitting algorithm to converge to

a point in N−
i . ub is chosen so that the fitting algorithm is

guaranteed to be initialized at a point in Ni or N−
i . In most

applications, such ub exists. For example, for tracking prob-

lems, ub can be set to the maximum movement of the object

being tracked between two consecutive frames. Figure 2 de-

picts the relationship between N−
i ,Ni, and N+

i .

Fig. 3 pi: desired convergence location. Blue arrows: gradient vectors,

red arrows: walking directions of gradient descent algorithm, orange

arrows: optimal directions to the desired location. Performing gradient

descent at p advances closer to pi while performing gradient descent

at p′ moves away from pi.

For a gradient descent algorithm to converge to pi or a

point close enough to pi, it is necessary that E(di, .) have

no local minima in Ni. This implies that
∂E(di,p)

∂p
does not

vanish for p ∈ Ni. Notably, it is not necessary to enforce

similar constraints for p ∈ N−
i ∪N+

i because of the way lb

and ub are chosen. Another desirable property is that each

5

iteration of gradient descent advances closer to the correct

position. Because gradient descent walks against the gradi-

ent direction at every iteration, we would like the opposite

direction of the gradient at point p ∈ Ni to be similar to

the optimal walking direction pi − p. This quantity can be

measured as the projection of the walking direction onto the

optimal direction. Figure 3 illustrates the rationale of this

requirement, which leads to:
〈

−

(

∂E(di,p)

∂p

)T

,
pi − p

||pi − p||2

〉

> 0 ∀p ∈ Ni. (9)

Equations (8) and (9) specify the constraints for the ideal

cost function. This cost function can be obtained if its pa-

rameters can be chosen to satisfy these constraints. How-

ever, these inequalities might be too stringent to provide any

feasible set of parameters; therefore, we focus on minimiz-

ing the constraint violation.

Eq. 8 is equivalent to:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂E(di,p)

∂p

∣

∣

∣

∣

p=pi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

= 0 ∀i, (10)

which can be relaxed by requiring the left hand side of (10)

to be small instead of strictly zero. The constraint violation

can be penalized by minimizing:

min.
A,b

1

2

∑

i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂E(di,p)

∂p

∣

∣

∣

∣

p=pi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. (11)

The set of constraints (9) can be handled similarly to

the case of support vector machines (Vapnik 1998). First,

instead of requiring the left hand side of (9) to be strictly

positive, we will require it to be greater than or equal to a

positive user-defined margin, µ:
〈

−

(

∂E(di,p)

∂p

)T

,
pi − p

||pi − p||2

〉

≥ µ ∀p ∈ Ni. (12)

The idea of requiring the constraints to be well satisfied by

a margin was introduced previously, see Taskar et al (2003)

for an example. Unfortunately, the family of parameters for

the cost function often are not rich enough to satisfy all con-

straints. In such cases, we need to introduce slack variables,

ξi’s, to allow for some constraints to be violated.

Combining the relaxation of both sets of constraints (8)

and (9), we obtain the following optimization problem:

min.
A,b,ξ

1

2

∑

i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂E(di,p)

∂p

∣

∣

∣

∣

p=pi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

+ C
∑

i

ξi, (13)

s.t.

〈

−

(

∂E(di,p)

∂p

)T

,
pi − p

||pi − p||2

〉

≥ µ − ξi
∀i,p∈Ni

,

ξi ≥ 0 ∀i.

C is the parameter controlling the trade-off between two

types of constraint violation: (8) versus (9). It is the trade-off

between having fewer local minima and having local min-

ima at the right places.

The gradient of the function E(d,p) plays a fundamen-

tal role in the above optimization problem. To compute the

gradient
∂E(d,p)

∂p
, it is common to use the first order Taylor

series expansion to approximate:

d(f(x,p + δp)) ≈ d(f(x,p)) + Jd(p)δp, (14)

where Jd(p) = ∂d(f(x,p))
∂p

is the spatial intensity gradient

of the image d w.r.t. to the motion parameter p (Lucas and

Kanade 1981). This yields:

(

∂E(d,p)

∂p

)T

≈ 2(Jd(p))T (Ad(f(x,p)) + b), (15)

Substituting (15) into (13), we obtain a quadratic program

with linear constraints over A and b.

3.3 Practical issues and alternative fitting methods

In practice, there is an issue regarding the optimization of (13):

the small components of
∂E(d,p)

∂p
tend to be neglected when

optimizing (13). This occurs due to the magnitude differ-

ence between some columns of Jd(p). For example, in (2),

the magnitudes of the Jacobian of d(f(x,p)) w.r.t. a1, a2,

a4, a5 can be much larger than the magnitudes of the Jaco-

bian of d(f(x,p)) w.r.t. a3, a6.

To address this concern, we consider an alternative opti-

mization strategy where the update rule at iteration k is:

pk+1 = pk + ∆d(pk), (16)

with ∆d(pk) = −
1

2
Hd(pk)−1

(

∂E(d,p)

∂p

∣

∣

∣

∣

p=pk

)T

,

Hd(pk) = Jd(pk)TJd(pk).

The update rule of the above algorithm is a variant of New-

ton iteration. Intuitively, Hd(pk) is similar to the Hessian of

E(d,p) at pk, and it acts as a normalization matrix for the

gradient. This algorithm is especially well suited to optimize

a cost function in which A is symmetric positive semidef-

inite with all eigenvalues less than or equal to one. Under

these assumptions, the above optimization scheme is guar-

anteed to converge to a local minimum. This is proved in

Appendix A.

Similar to the case of gradient descent, requiring the in-

cremental updates to vanish at and only at the places corre-

sponding to acceptable solutions yields the following opti-

6

mization problem:

min.
A,b,ξ

1

2

∑

i

∣

∣

∣

∣∆di(pi)
∣

∣

∣

∣

2

2
+ C

∑

i

ξi, (17)

s.t.

〈

∆di(p),
pi − p

||pi − p||2

〉

≥ µ − ξi ∀i, ∀p ∈ Ni,

ξi ≥ 0 ∀i.

For the cost function to be a metric and for the theo-

retical guarantee of the above optimization scheme, A is

constrained to be a symmetric positive semidefinite matrix

where eigenvalues are less than or equal to one. Let Hm de-

note the set of all m × m symmetric matrices of which all

eigenvalues are non-negative and less than or equal to one.

The learning formulation becomes:

min.
A,b,ξ

1

2

∑

i

∣

∣

∣

∣∆di(pi)
∣

∣

∣

∣

2

2
+ C

∑

i

ξi, (18)

s.t.

〈

∆di(p),
pi − p

||pi − p||2

〉

≥ µ − ξi ∀i, ∀p ∈ Ni,

ξi ≥ 0 ∀i & A ∈ Hm.

Since ∆di(pi) is linear in terms of A and b, this is a quadratic

program with linear constraints, provided the requirement

A ∈ Hm can be expressed by a set of linear constraints.

One can derive a similar learning formulation for A and

b where Newton’s method is the optimizer of choice for (4).

The update rule for iteration k of Newton’s method is:

pk+1 = pk + ∆d
nt(p

k), (19)

∆d
nt(p

k) = −
1

2
Hd

nt(p
k)−1

(

∂E(d,p)

∂p

∣

∣

∣

∣

p=pk

)T

with Hd
nt(p

k) = Jd(pk)TAJd(pk).

Similar to the case of gradient descent and the optimization

scheme in (16), reasoning about the incremental update of

Newton’s method leads to the following learning formula-

tion for A and b:

min.
A,b,ξ

1

2

∑

i

∣

∣

∣

∣

∣

∣
∆di

nt(pi)
∣

∣

∣

∣

∣

∣

2

2
+ C

∑

i

ξi, (20)

s.t.

〈

∆di

nt(p),
pi − p

||pi − p||2

〉

≥ µ − ξi ∀i, ∀p ∈ Ni,

ξi ≥ 0 ∀i.

Eq. 20 is very similar to Eq. 17; the only difference is that

Eq. 17 uses the incremental update ∆di(p) while Eq. 20

uses ∆di

nt(p). Compare ∆di(p) and ∆di

nt(p), the former is

linear in terms of A and b while the latter is not. ∆di

nt(p) is

not linear in terms of A and b because it involves the inver-

sion of Hdi

nt(p) = Jdi(p)T AJdi(p) which depends on A.

Meanwhile, the normalization matrix of ∆di(p), Hdi(p) =

Jdi(p)T Jdi(p), does not depend on A.

Because ∆di

nt(p) is not linear in terms of A and b, (20)

is not a quadratic program. As a result, learning A and b

would be harder if the learning formulation was derived from

the incremental update of Newton’s method.

It is necessary to distinguish between two different op-

timization problems. One problem is to optimize the learn-

ing formulations (Eq. 13, 18, or 20) to learn A and b, the

parameters of the cost function. Another problem is to opti-

mize the learned cost function E(d,p) w.r.t. to the motion

parameter p for image alignment. The latter problem, once

the cost function has been learned, can be optimized using

any gradient-based algorithms including gradient descent,

the optimization scheme in (16), and Newton’s method. The

connection between a learning formulation and an optimiza-

tion scheme is considered from a different perspective. The

learning formulation is derived by reasoning about the walk-

ing direction of an optimization scheme. Different optimiza-

tion schemes lead to different learning formulations (c.f.,

(13), (17), and (20)). In theory, one also can reason about

the Newton direction to derive a similar learning formula-

tion for the cost function. However, as shown above, the an-

alytic formulae for Newton iteration includes the inversion

of Jdi(p)T AJdi(p). This will introduce non-linear con-

straints (in terms of A) into the learning formulation if it

is derived using Newton’s method. This would make the

learning formulation a much harder problem to optimize. In

short, although Newton’s method can be used for alignment

(i.e., minimizing E(d,p)), it is not preferable to be used

for deriving the learning formulation. This is why we intro-

duce (16), a novel optimization scheme that addresses the

issues of gradient descent and Newton’s method.

4 Special cases and experiments

Section 3.3 proposes a method for learning a generic A and

b. However, in many cases of interest, A and b can be

further parameterized. The benefits of further parameteriza-

tion are fourfold. First, the number of parameters to learn

can be reduced. Second, the relationship between A and

b can be established. Third, the constraint that A ∈ Hm

can be replaced by a set of linear constraints. Fourth, the

metric property of the obtained cost function can be guaran-

teed. This section provides the formulation for two special

cases, namely weighted template alignment and weighted-

basis AAM alignment. Experimental results on synthetic and

real data are included.

4.1 Weighted template alignment

As shown in Section 3.1, template alignment is a special

case of (4) in which A = Im and b = −dref . In template

7

Fig. 4 Learning to weight template’s pixels. (a) an isotropic Gaus-

sian. (b) a synthetic template of which the 3D representation is given

in (a). (c) an image containing the template. (d) SSD error surface. (e)

weighted SSD error surface, and learned weights are given in (f).

alignment, pixels of the template are weighed equally; how-

ever, there is no reason to believe that all pixels should con-

tribute equally to construct optimal fitting surfaces. Here,

we propose learning the weights of template pixels to avoid

local minima in template matching.

Consider the weighted SSD:

(d(f(x,p)) − dref)T diag(w)(d(f(x,p)) − dref), (21)

where w is the weight vector for the template’s pixels. This

cost function is equivalent to (4) with A = diag(w) and

b = −diag(w)dref . The constraint A ∈ Hm can be im-

posed by requiring 0 ≤ wi ≤ 1. Furthermore, if the template

dref is part of the images di’s, then
∣

∣

∣

∣∆di(pi)
∣

∣

∣

∣

2

2
= 0 ∀i.

In this case, (18) becomes a linear program with linear con-

straints on w.

4.1.1 Experiments on synthetic data

To demonstrate this idea, we create a synthetic template of

an isotropic Gaussian (Figure 4b). Suppose that the task is

to locate the template inside an image containing the tem-

plate (Figure 4c), starting at an arbitrary location. Figure 4d

plots the error surface of the naive cost function SSD. The

a b c d

Fig. 5 (a) example of hand labeled landmarks associated with each

face (red dots), (b) example of shape distortion (yellow pluses), (c)

location of pixels for appearance modeling for the experiment in Sec-

tion 4.1.2 , (d) example of patches for appearance modeling for the

experiment in Section 4.2.

value of this error surface at a particular pixel (x, y) is cal-

culated by computing the SSD between the template and the

circular patch centered at (x, y). Similarly, the error surface

of the learned cost function (weighted SSD) is calculated

and displayed in Figure 4e. The learned template weights are

shown in Figure 4f; brighter pixels mean higher weights. As

can be seen, the naive cost function has a fence of local max-

ima surrounding the template location. This prevents align-

ment algorithms from converging to the desired location.

The learned cost function is quasi-convex, and therefore, is

more suitable for this particular template.

The template’s weights given in Figure 4f are learned by

optimizing (18) with µ = 0.01 and C = 1. The linear con-

straints are reduced to a set of 5000 constraints obtained by

random sampling. How to deal with large or even infinitely

many constraints is discussed in more detail in Section 4.2.

4.1.2 Experiments on the Multi-PIE database

The second experiment is on the Multi-PIE database (Gross

et al 2007). This database contains the face images of 337

subjects taken under different illuminations, expressions, and

poses. Each face is manually labeled with 68 landmarks, as

shown in Figure 5a. Images are down-sampled to 120× 160

pixels

For this experiment, we only use directly-illuminated

frontal neutral faces. Each subject in the Multi-PIE database

might have more than one image. To ensure the testing data

is completely independent of the training data, we restrict

our attention to at most one image per subject. Our dataset

contains 217 images, 10 are selected for training, 65 are used

for validation (parameter tuning), and the rest are reserved

for testing.

The shape model is built by aligning the training im-

ages using Procrustes analysis, as explained in Section 3.2.

In this experiment we only consider affine transformation

(six parameters). For the object appearance, we extract in-

tensity values of pixels inside the region formed by the land-

marks (Figure 5c).

8

a b

Fig. 6 (a) the template (mean image) used in weighted template ex-

periment. (b) the learned weights, brighter pixels mean higher weights.

Interestingly, the eye and mouth regions do not receive high weights.

Table 1 Template alignment experiments: results of different methods

for three different difficulty levels of testing data (PerMag). Initial is

the initial amount of perturbation before running any alignment algo-

rithm. SSD is the method which gives uniform weights for the pixels.

Weighted SSD is the cost function learned by our method. The table

shows the means and standard errors of misalignment (average over 68

landmarks and over testing data). The unit for measurement is pixel.

PerMag 0.75 1.25 1.75

Initial 0.99±0.02 1.37±0.04 1.93±0.06

SSD 1.13±0.11 1.22±0.15 1.38±0.23

Weighted SSD 0.98±0.05 1.05±0.06 1.20±0.07

The template is the mean image of all aligned training

images (Figure 6a). Thus the task is to do template align-

ment between an arbitrary image with the mean image. The

template’s weights are learned by optimizing (18) with µ =
0.01 and C = 1. To avoid Ni being of infinite size, we

restrict our attention to a set of 150 random samples from

Ni. The random samples are drawn by introducing random

Gaussian perturbation to the correct shape parameter pi.

Figure 6b displays the learned weights; brighter pixels mean

higher weights. Notably, the pixels in the eye and mouth re-

gions do not receive high weights. This is consistent with

the intuition that a cost function using high weights in areas

with high variability are more susceptible to local minima.

Testing data are generated by randomly perturbing the

components of pi, the correct shape parameters of test im-

age di. Perturbation amounts are generated from a zero mean

Gaussian distribution with standard deviation PerMag ×
[0.05 0.05 1 0.05 0.05 1]T . PerMag controls the over-

all difficulty of the testing data. The relative perturbation

amounts of shape coefficients are determined to simulate

possible motion in tracking. Figure 5b shows an example of

shape perturbation, the ground truth landmarks are marked

in red (circles), while the perturbed shape is shown in yel-

low (pluses).

Table 1 shows the experimental results with three diffi-

culty levels of testing data (controlled by PerMag). The

performance of the learned cost function, weighted SSD,

is compared with SSD, the cost function giving uniform

weights for all the template’s pixels. The learned cost func-

tion outperforms SSD in all levels of perturbation.

4.2 Weighted-basis for AAM alignment

As shown in Section 3.1, AAM alignment is a special case

of (4) in which A = Im − UUT = Im −
∑k

1 uiu
T
i and

b = 0. U is the set of k first eigenvectors from the total of K

PCA basis of the training data subspace. k (≤ K) is usually

chosen experimentally. In this section we propose to use all

K eigenvectors, but weigh them differently. Specifically, we

learn A which has the form: A = Im −
∑K

1 λiuiu
T
i . To

ensure that A ∈ Hm, we require 0 ≤ λi ≤ 1. To ensure the

resulted cost function is a metric, we also enforce b = 0.

From the Multi-PIE database, we only make use of the

directly-illuminated frontal face images under five expres-

sions: smile, disgust, squint, surprise, and scream. Our dataset

contains 1100 images, 400 are selected for training, 200 are

used for validation (parameter tuning), and the rest are re-

served for testing.

The shape model is built as described in Section 3.2. The

final shape model requires 10 coefficients (6 affine + 4 non-

rigid) to describe a shape. For the object appearance, we ex-

tract intensity values of pixels inside the patches located at

the landmarks (Figure 5d).

The training data is further divided into two subsets, one

contains 300 images and the other contains 100 images. U

is obtained by performing PCA on the subset of 300 im-

ages. The second subset is used to set up the optimization

problem (18). For better generalization, (18) is constructed

without using images in the first training subset. To avoid

Ni being of infinite size, we restrict our attention to a set

of 1000 random samples from Ni. The random samples are

drawn by introducing random Gaussian perturbation to the

correct shape parameter pi.

Following the approach by Tsochantaridis et al (2005)

for minimizing a quadratic function with an exponentially

large number of linear constraints, we maintain a smaller

subset of active constraints S and optimize (18) iteratively.

We repeat the following steps for 50 iterations: (i) empty S;

(ii) for each training image di, find 25 most violated con-

straints from Ni and include them in S; (iii) run quadratic

programming with the reduced set of constraints.

Similar to the case of weighted template alignment, test-

ing data are generated by randomly perturbing the compo-

nents of pi, the correct shape parameters of test image di.

Perturbation amounts are generated from a zero mean Gaus-

sian distribution with standard deviation PerMag × [0.05

0.05 1 0.05 0.05 1 2 2 2 2]T .

Table 2 describes the experimental results with four dif-

ficulty levels of testing data (controlled by PerMag). The

performance of the learned cost function is compared with

three other cost functions constructed using PCA with pop-

ular energy settings (70%, 80%, and 90%). As can be ob-

served, when the amount of perturbation is small, PCA mod-

els with higher energy levels perform better. However, as the

9

Table 2 AAM alignment experiments: results of different methods for

four different difficulty levels of testing data (PerMag). Initial is the

initial amount of perturbation before running any alignment algorithm.

PCA e% is the cost function constructed using PCA preserving e% of

energy. The table shows the means and standard errors of misalign-

ment (average over 68 landmarks and over testing data). The unit for

measurement is pixel.

PerMag 0.75 1.00 1.25 1.5 1.75

Initial 0.78±.01 1.06±.02 1.31±.02 1.61±.02 1.82±.03

PCA 90% 0.40±.01 0.45±.01 0.48±.02 0.61±.02 0.66±.03

PCA 80% 0.42±.01 0.44±.01 0.48±.02 0.59±.02 0.66±.03

PCA 70% 0.45±.01 0.48±.01 0.51±.02 0.57±.02 0.63±.03

Ours 0.40±.01 0.42±.01 0.45±.01 0.52±.02 0.58±.03

amount of pertubation increases, PCA models with lower

energy levels perform better. This suggests that cost func-

tions using fewer basis vectors have less local minima while

cost functions using more basis vectors are more likely to

have local minima at the ‘right’ places. Thus it is unclear

what the energy for the PCA model should be. On the other

hand, the learned cost function performs significantly better

than the PCA models for most difficulty levels. To some ex-

tent, our method learns a Pareto optimal tradeoff between

having less local minima and having local minima at the

right places. In this experiment we used µ = 0.01 and C =

0.5 . The parameters were tuned using the validation set.

4.3 More implementation details and discussion

This section describes several implementation details includ-

ing parameter tuning. Learning and alignment speeds also

are r eported and discussed.

Section 3.2 defines N−
i and N+

i as spherical neighbor-

hoods around pi to simplify the presentation. However, in

our implementation, N−
i and N+

i are ellipsoid neighbor-

hoods instead of being spherical. Mathematically,N−
i , N+

i ,

and Ni are defined as follows:

N−
i = {p : (p − pi)

T diag(ω)(p − pi) < lb}, (22)

N+
i = {p : (p − pi)

T diag(ω)(p − pi) > ub}, (23)

Ni = {p : lb ≤ (p − pi)
T diag(ω)(p − pi) ≤ ub}. (24)

This modification is necessary because the shape model is

more sensitive to some parameters than it is to others. In our

experiments, a reasonable setting is determined by examin-

ing the training data. In particular, we set ωi = 0.05 for

the parameters corresponding to rotation, scale, and shear

(a1, a2, a4, a5 in Eq. 2), ωi = 1 for the translational param-

eters (a3, a6 in Eq. 2), and ωi = 2 for non-rigid parameters.

The parameter lb is needed in the definition of Ni for a

practical purpose. It is to prevent two desired criteria from

contradicting each other. The first criterion expects the gra-

dient at the ground truth position pi to vanish, while the

other criterion requires the gradients at other locations not to

vanish. In practice, to prevent these two types of constraints

from contradicting each other, the latter set of constraints

should not be enforced at locations that are too close to the

ground truth pi. In other words, the second set of constraints

should not be enforced on N−
i . The parameter lb can be

determined empirically by experimenting with the training

data. In our experiments, this value is not too sensitive and

can be set to any small positive value. This value is 0.2 in all

of our experiments.

Other tunable parameters of our method are C and µ.

These parameters can be picked using validation data or by

cross validation. In our experiments, we found that the per-

formance of our method is not too sensitive to the choice

of µ. Usually, µ simply can be set to a small positive num-

ber (0.01 in our experiments).

The training phase of our algorithm takes several hours.

For example, on a 2.4Ghz Pentium Core 2 Duo machine

with 4GB of RAM, it took almost two hours to learn a cost

function for the experiment in Section 4.2. This amount of

training time is high because producing efficient code was

not the main focus of the paper. Our main programing lan-

guage was MATLAB. For optimization, we used CVX, a

package for specifying and solving convex programs (Grant

and Boyd 2008a,b). This is a generic convex program solver

which does not have special support for constraint addition

and for iterative procedures.

Regarding the alignment speed for AAMs (Section 4.2),

fitting the AAM with the learned cost function tends to be

slower than PCA-based cost functions. This is because the

learned cost function involves many more principal compo-

nents (ui’s). In the experiment in Section 4.2, the average

alignment time for an image when using our learned cost

function is 5.3 seconds. The average alignment time when

using PCA 90%, PCA 80%, and PCA 70% are 3.6, 2.5, and

2.0 seconds respectively. Though the learned cost function

does not take too much longer than PCA-based cost func-

tions do, one interesting possible direction for future work

would be to investigate a compromise between computa-

tional complexity and performance. This possibly can be

done by adding a L1 regularization term on λ to encourage

the sparsity of λ, the weight vector for the principal compo-

nents.

5 Good features to track

Previous sections have addressed the problem of learning

a metric for alignment given a fixed template. In this sec-

tion we address the reverse question: which templates can be

aligned well using a given fixed metric? We will show how

the criteria for an optimal metric can be used to select good

templates/features to track. In particular, we will use SSD

as the cost function and find the templates based on which

10

the criteria of an optimal metric are satisfied. This leads to

a novel method for selecting good features to track. Experi-

mental comparison with Shi and Tomasi (1994) shows that

our method extracts more reliable features to track.

5.1 Selection criterion for feature points

Feature-based tracking (Tomasi and Kanade 1991) is a key

component of many vision systems. Some systems identify

a set of feature points once and track them through an entire

video sequence. Some redraw a new set of feature points at

every frame. Some others replace lost features by new ones.

In any situation, the ability to select feature points that can

be tracked reliably between consecutive frames is critical to

the success of the tracker.

Typically, a feature point can be tracked by finding the

displacement between consecutive frames. Because of im-

age noise, the displacement of the feature point is taken to

be the displacement of a small window around the feature

point. Therefore, feature point tracking from one frame to

the next is essentially template alignment. Here, the tem-

plate is the window around the feature point in the current

frame, and the successive frame is the image that needs to

be aligned with the template.

Consider a particular feature point at a given frame, let

x be the set of pixels that corresponds to the window around

the feature point. Let d and ds denote the current frame and

the successive frame respectively. In this case, the reference

template is dref = d(x). Suppose the correct displacement

is p̂. As in Section 3.1, the displacement p̂ of the feature

point is estimated by optimizing:

minimize
p

||ds(f(x,p)) − d(x)||22. (25)

Here, f is the function for geometric warping. For feature-

based tracking, it is generally good enough to just consider

translational or affine motions. In both cases, there exists

a geometric transformation function f that is additive in pa-

rameter p (e.g., see Learned-Miller (2006) for derivation), i.e.,

f(f(x,p1),p2) = f(x,p1 + p2). (26)

For the sake of clear presentation and a computational effi-

ciency reason that will become clearer later on, let us as-

sume (26) and consider the inverse additive image align-

ment (Hager and Belhumeur 1998; Baker and Matthews 2001).

The idea is to switch the role of the image and the template.

Let z = f(x,p), then x = f(f(x,p),−p) = f(z,−p),

Eq. 25 is equivalent to:

minimize
p

||ds(z) − d(f(z,−p))||22. (27)

Our cost function now is E(d,p) = ||ds(z)−d(f(z,−p))||22.

Let us now revisit the two desired criteria (8) and (9) for an

optimal cost function E(d,p):

∂E(d,p)

∂p

∣

∣

∣

∣

p=p̂

= 0, (28)

〈

−

(

∂E(d,p)

∂p

)T

,
p̂− p

||p̂ − p||2

〉

> 0 (29)

∀p : lb ≤ ||p − p̂||2 ≤ ub.

Here lb, ub are the lower bound and upper bound of the mo-

tion which are defined in Section 3.2. As in (14) and (15),

using Taylor series approximation, we have:

(

∂E(d,p)

∂p

)T

≈ 2

(

∂d(f(z,−p))

∂p

)T

(d(f(z,−p)) − ds(z))

≈ 2

(

∂d(f(z,−p))

∂p

)T

(d(x) − ds(z)).

(30)

where
∂d(f(z,−p))

∂p
= −

∂d(f(z,−p + ǫ))

∂ǫ

∣

∣

∣

∣

ǫ=0

(31)

= −
∂d(f(f(z,−p), ǫ))

∂ǫ

∣

∣

∣

∣

ǫ=0

= −
∂d(f(x, ǫ))

∂ǫ

∣

∣

∣

∣

ǫ=0

. (32)

The quantity
∂d(f(x,ǫ))

∂ǫ

∣

∣

∣

ǫ=0
does not depend on p. Let us

denote it by Jd(x). On the other side, using the brightness

conservation assumption, we have ds(f(x, p̂)) = d(x). Ap-

plying the transformation f with the amount p − p̂ on both

sides of the above equation, we get:

ds(f(f(x, p̂),p− p̂)) = d(f(x,p − p̂)) (33)

⇒ ds(f(x,p)) = d(f(x,p − p̂)) (34)

⇒ ds(z) = d(f(x,p − p̂)). (35)

From (30), (32) & (35) we get:

(

∂E(d,p)

∂p

)T

≈ 2
(

Jd(x)
)T

(d(f(x,p − p̂)) − d(x)) .

(36)

Eq. (36) leads to
∂E(d,p)

∂p

∣

∣

∣

p=p̂
≈ 0; therefore, the con-

straint (28) is always satisfied. Let q = p − p̂, the con-

straint (29) becomes:
〈

(

Jd(x)
)T

(d(f(x,q)) − d(x)),
q

||q||2

〉

> 0 (37)

∀q : lb ≤ ||q||2 ≤ ub.

In short, (37) is the criterion for the template defined by x to

combine well with the SSD cost function. As a result, (37)

establishes a criterion for good features to track.

In many situations, it is desirable to extract a certain

number of feature points. The number of required feature

11

points might be more or less than the number of feature

points that satisfy (37). Thus, it is necessary to provide a

ranking for feature points. Let us consider a ranking score

which is based on how much the constraint (37) is satisfied

or violated, i.e.,

min
lb≤||q||2≤ub

〈

(

Jd(x)
)T

(d(f(x,q)) − d(x)),
q

||q||2

〉

(38)

In the next section we will describe experimental results

of using (38) as the selection criterion for good features to

track. A nice property of (38) is that Jd(x) does not depend

on q; this makes the method computationally efficient. If ef-

ficiency is not a concern, there is no need to consider the

inverse additive image alignment. Using forward additive

image alignment instead, one can derive a similar criterion

to (38). In this case, the assumption (26) is not necessary.

5.2 Experiments

This section describes an experiment to compare several se-

lection methods for feature tracking. We compare tracking

results of feature points selecting the criterion using (38)

and using the standard criterion proposed by Shi and Tomasi

(1994).

5.2.1 Software, data, and tuning

We use a public implementation2 of Lucas-Kanade-Tomasi

tracker. This software also includes an implementation of

Shi & Tomasi’s method for feature point selection. The soft-

ware comes with a sequence of ten video frames (Figure 7)

and demo code that tracks feature points detected using Shi

& Tomasi’s criteria. After tracking, it outputs the number

of feature points successfully tracked as an evaluation crite-

rion.

Fig. 7 Two frames from the data sequence. a) the first frame; b) the

10th frame. This figure shows the amount of motion between frames.

In our experiments, we use the sequence of video frames

that come with the software. We write our own code for se-

lecting feature points but use the provided Lucas-Kanade-

2 http://www.ces.clemson.edu/∼stb/klt/

Fig. 8 Selected feature points based on two different criteria. Cyan

circles: 100 points selected using Shi & Tomasi criterion. Red stars:

100 points selected using our criterion. Selected feature points of each

method are at least 10 pixels apart.

Tomasi tracker for evaluation. We accept all the default pa-

rameters of the software. These include the size of the square

templates for feature points, the number of feature points re-

tained, the minimum distance between feature points, how

the images are smoothed, and how the image gradients are

computed. Our method requires little tuning which involves

selecting the bounds (lb, ub) for the perturb parameter q

(see (38)). We set lb = 1 and ub to the size of the template.

Two frames from the image sequence bundled with the

software are given in Figure 7. The resolution is 240 × 320.

The size of the square templates is 7 × 7 pixels.

5.2.2 Experiments and results

The aforementioned software tracks feature points by recov-

ering translational displacements. Because of this reason,

and for consistency with the assumption of Shi and Tomasi

(1994), the geometric warp f is taken as the translation func-

tion.

Figure 8 displays two sets of selected features points.

The cyan circles are 100 points selected using Shi & Tomasi’s

method. The red stars are 100 points selected using our method.

The procedure of both methods for selecting feature points

is as follows. First, the goodness of each pixel is measured

using an appropriate criterion (Eq. (38) in the case of our

method). After all the pixels have been considered, they are

sorted in descending order according to goodness. Then, one

by one, the top pixel of the list is selected, ensuring that each

new feature point is at least 10 pixels away from all the other

features.

To quantitatively compare two methods, we performed

two types of experiments. In the first experiment, for each

frame in the image sequence, we detect 100 feature points

and count the number of points that are successfully tracked

in the successive frame. The means and standard deviations

of this statistic for Shi & Tomasi’s method and ours are:

93.22± 1.56 and 96.44 ± 2.07 respectively.

12

In the second experiment, we compare two sets of se-

lected feature points with increasing amounts of motion. We

align every frame in the image sequence with the first frame

(not between consecutive frames). The sets of 100 feature

points are detected from the first frame. Alignment between

the first frame and all other frames are performed, and the

numbers of successfully tracked points are recorded. The re-

sults are reported in Table 3. As can be observed, the set of

feature points extracted by our method is more reliable than

that of Shi & Tomasi’s method for all amounts of motion.

frame # 2 3 4 5 6 7 8 9 10

Shi&Tomasi 92 85 81 73 62 56 44 32 25

Ours 95 91 83 77 65 60 54 42 38

Table 3 Results of alignment between all frames with the first frame,

starting with a set of 100 feature points, either detected using Shi &

Tomasi’s method or our method. This table reports the numbers of

points that are successfully aligned. As the frame number increases,

the amount of motion between the frame and the first frame increases;

as a result, the alignment problem gets harder. The set of feature points

extracted by our method is more reliable than that of Shi & Tomasi’s

method for all levels of difficulty.

6 Conclusion

Gradient-based methods for image alignment such as Lucas-

Kanade, Eigentracking, and AAMs are a key component of

many computer vision systems. A major problem of current

gradient-based image alignment algorithms is the sensitivity

to local minima. Local minima in PAMs mainly occur be-

cause an appearance model (e.g. template or PCA subspace)

is constructed without considering the neighborhoods of the

correct motion parameters, the parameters corresponding to

ground truth annotation of training data. These neighbor-

hoods determine the local minima properties of the error

surface and should be taken into account while constructing

the model. In this paper, we have proposed a data driven ap-

proach to learn a metric for image alignment that reduces the

effect of local minima. Metric learning was posed as a con-

vex program optimizing the parameters of a quadratic cost

function. This cost function is very general; it subsumes the

cost functions of many image alignment algorithms includ-

ing template matching and AAMs. Given training samples,

the metric was learned by requiring: (i) there is a local mini-

mum in the expected location, and (ii) there are no local min-

ima in a specified neighborhood. However, it was typically

not possible to satisfy both criteria; therefore, our method

learned a Pareto optimal tradeoff between having fewer lo-

cal minima and having local minima at the desired places.

The advantages of the proposed method to template align-

ment and AAM fitting have been demonstrated with several

synthetic and real experiments. To the best of our knowl-

edge, this is the first paper that explicitly learns a metric with

no local minima for PAMs. In addition, we showed how the

proposed criteria to learn a metric can be used to select good

features to track in feature-based tracking.

The proposed criteria for an ideal error surface can be

used to learn a cost function that is more general than the

quadratic one used in this paper. The quadratic cost func-

tion was chosen because it has two major benefits: (i) the

cost functions used in many important alignment algorithms

can be cast in this form, and (ii) the metric learning formu-

lation is convex. Convexity of the learning formulation is

achieved thanks to a novel optimization scheme. In this pa-

per, we stated and proved the validity of this scheme as well

as its advantages over alternate optimization algorithms.

Although encouraging results have been achieved, there

are several issues that remain unsolved and can be consid-

ered in future work. A bottleneck of our algorithm is the

need to incorporate many constraints (theoretically infinite)

to satisfy the criterion that there are no local minima in a

specified neighborhood. Because it is computationally ex-

pensive to include many constraints in optimization, there is

a need for further research that addresses the question: what

are the most critical points for generating constraints and

how can they be sampled?

In this paper we have shown performance improvement

in the cases of template alignment and AAMs. In general,

however, it is unclear for which type of alignment prob-

lems a learned metric, using training data, would guarantee

improvement in registering unseen images. Unfortunately,

there is no mathematically grounded theory to answer this

question. In future work we plan to research and to develop

a general theory for learning image alignment.

Acknowledgments: This material is based upon work sup-

ported by the U.S. Naval Research Laboratory under Con-

tract No. N00173-07-C-2040 and National Institute of Health

Grant R01 MH 051435. Any opinions, findings and con-

clusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views

of the U.S. Naval Research Laboratory. The authors would

like to thank General Motors Corporation for their continued

support of this research.

Appendix A

This section states and proves a theorem used to justify the

optimization algorithm given in (16).

Theorem 1: Consider an m-dimensional function f(x) of

p-dimensional variable x, and suppose we have to minimize

the function: E(x) = f(x)T Af(x)+2bT f(x), where A ∈
Hm. Consider an iterative optimization method which has

13

the following update rule:

xnew = xold + δx

with δx = −H−1JT (Af(x) + b) (39)

and J =
∂f

∂x

∣

∣

∣

∣

xold

,H = JT J.

The above optimization method, when started sufficiently

close to a regular local minimum, will converge to that local

minimum. Here, a point x0 is said to be regular if H is not

singular and the Taylor series of f(·) converges for every

point in the neighborhood of x0.

Proving Theorem 1 requires two lemmas. We now state

and prove those two lemmas.

Lemma 1: A ∈ Hm if and only if Im − A ∈ Hm.

Proof: This lemma can be proven easily, based on:

0 ≤
uTAu

uT u
≤ 1 ⇔ 0 ≤

uT (Im − A)u

uTu
≤ 1 ∀u. (40)

Lemma 2: A ∈ Hm if and only if there exists a positive

integer k, scalars αi’s, and matrices Bi’s such that:

i. BT
i Bi is invertible ∀i = 1, k,

ii. αi ≥ 0 ∀i = 1, k, and
∑k

i=1 αi ≤ 1,

iii. A =
∑k

i=1 αiBi(B
T
i Bi)

−1BT
i .

Note: the number of rows of Bi’s must always be m but the

number of their columns can differ.

Proof for sufficiency conditions: Suppose there exist k,

αi’s, and Bi’s that satisfy all all three conditions above. Be-

cause A is a linear combination of symmetric matrices, A

is also symmetric. We only need to prove that A is positive

semidefinite of which all eigenvalues are less than or equal

to 1. Consider vT Av for an arbitrarily vector v ∈ ℜm:

vT Av =

k
∑

i=1

αiv
T Bi(B

T
i Bi)

−1BT
i v (41)

=

k
∑

i=1

αiv
T Bi(B

T
i Bi)

−1BT
i Bi(B

T
i Bi)

−1BT
i v

=

k
∑

i=1

αi||Bi(B
T
i Bi)

−1BT
i v||22.

We know that Bi(B
T
i Bi)

−1BT
i is a projection matrix and

Bi(B
T
i Bi)

−1BT
i v is the projection of v in the subspace Bi.

Thus we have ||Bi(B
T
i Bi)

−1BT
i v||22 ≤ ||v||22 ∀i. There-

fore:

vT Av ≤ (

k
∑

i=1

αi)||v||
2
2 ≤ ||v||22. (42)

Furthermore, because ||Bi(B
T
i Bi)

−1BT
i v||22 ≥ 0 and αi ≥

0 ∀i, we have vT Av ≥ 0. Combining this with the inequal-

ity in (42), we have:

0 ≤ vT Av ≤ vT v. (43)

Since these inequalities hold for arbitrary vector v ∈ ℜm,

A must be an element of Hm.

Proof for necessary conditions: Suppose A ∈ Hm. Con-

sider the singular value decomposition of A,A = UΛUT .

Here, the columns of U are orthonormal vectors. Λ is a di-

agonal matrix, Λ = diag([λ1, ..., λm]) with 0 ≤ λi ≤ 1∀i.

Without loss of generality, suppose λ1 ≥ λ2 ≥ ... ≥ λm.

We have:

A = UΛUT =

m
∑

i=1

λiuiu
T
i (44)

=

m−1
∑

i=1

(λi − λi+1)(

i
∑

j=1

uju
T
j) + λm(

m
∑

j=1

uju
T
j).

Let αi = λi −λi+1 for i = 1, ..., m− 1, and αm = λm.

Let Bi = [u1...ui] for i = 1, m. Since {ui}m
1 is a set of

orthonormal vectors, BT
i Bi = Ii an identity matrix. There-

fore, Bi(B
T
i Bi)

−1BT
i = BiB

T
i =

∑i
j=1 uju

T
j . Hence:

A =
m
∑

i=1

αiBi(B
T
i Bi)

−1BT
i . (45)

Finally, we have αi ≥ 0 ∀i and
∑m

i=1 αi = λ1 ≤ 1.

This completes our proof for Lemma 1 �.

Proof of Theorem 1: From Lemmas 1 and 2 we know that

∃αi ≥ 0, ∃Bi: Im − A =
∑k

i=1 αiBi(B
T
i Bi)

−1BT
i and

∑k

1 αi ≤ 1. To prove Theorem 1, let us first consider the

optimization of the following function:

E2(x, {ci}) =

k
∑

i=1

αi||f(x) − Bici||
2
2 (46)

+α0||f(x)||22 + 2bT f(x).

with α0 = 1 −
∑k

i=1 αi. One way to optimize this function

is using coordinate descent, alternating between:

i. minimizing E2 w.r.t. x while fixing {ci},

ii. minimizing E2 w.r.t. {ci} while fixing x.

To minimize E2 w.r.t. x while fixing {ci}, we can use New-

ton’s method:

xnew = xold −

(

∂2E2

∂x2

)−1(
∂E2

∂x

)T

. (47)

Using the first order Taylor approximation, we have

f(x + δx) ≈ f(x) + Jδx with J =
∂f

∂x
. (48)

Thus

E2(x + δx, {ci}) ≈ E2(x, {ci}) + δxTJT Jδx (49)

+ 2δxT JT

(

f(x) −
k
∑

i=1

αiBici + b

)

.

14

Hence
∂E2

∂x
≈ 2(f(x) −

k
∑

i=1

αiBici + b)TJ (50)

∂2E2

∂x2 ≈ 2JT J. (51)

Therefore, we have the Newton update rule:

xnew = xold − (JT J)−1JT (f(x)−
k
∑

i=1

αiBici + b). (52)

When x is fixed, {c∗i (x)} that globally minimize E2 are:

c∗i (x) = (BT
i Bi)

−1BT
i f(x). (53)

Combining (52) and (53), we have the update rule for mini-

mizing E2:

xnew = xold − (JT J)−1JT [Af(x) + b]. (54)

This update rule is exactly the same as the update rule given

in (39). As a result, (39) will always lead us to a local mini-

mum of E2.

We now prove that a local minimum of E2 obtained

by (39) will be a local minimum of E. Suppose (x0, {c∗i (x0)})
is a local minimum of E2, we have ∃ǫ1 > 0 such that:

E2(x0, {c
∗
i (x0)}) ≤ E2(x0 + δx, {c∗i (x0) + δci)}) (55)

for all δx, δci : ||δx||22 +
∑

i

||δci||
2
2 < ǫ1.

Because c∗i (x) is a continuous function in terms of x, we can

always find ǫ2 > 0 small enough such that ∀δx if ||δx||22 <

ǫ2 then ||δx||22 +
∑

i ||c
∗
i (x0 + δx) − c∗i (x0)||22 < ǫ1. Thus

∃ǫ2 such that

E2(x0, {c
∗
i (x0)}) ≤ E2(x0 + δx, {c∗i (x0 + δx)}) (56)

for all δx : ||δx||22 < ǫ2.

On the other hand, one can easily verify that:

E2(x, {c∗i (x)}) = E(x) ∀x. (57)

From (56) and (57), we have ∃ǫ2 > 0 such that

E(x0) ≤ E(x0 + δx) ∀δx : ||δx||22 < ǫ2. (58)

Hence, x0 must be a local minimum of E.

To summarize, we have shown that (39) will converge to

a local minimum of E2. Furthermore, a local minimum of

E2 found by (39) is also a local minimum of E. Thus the

update rule given in (39) is guaranteed to converge to a local

minimum of E. This concludes our proof for Theorem 1 �.

Appendix B

A metric is a function measuring distance between elements

of a set. But, what exactly is the distance that image align-

ment cost functions measure? This section explains the met-

ric properties of the learned cost functions. Strictly speak-

ing, these functions define a pseudometric rather than a met-

ric. The difference is very subtle. This section discusses this

difference and formally shows how a pseudometric can be

derived from the learned cost functions. First, we state the

definitions of metric and pseudometric.

Definition of metric (Rudin 1976):

A metric on a set X is a function (also called distance func-

tion or distance) D : X × X → ℜ that satisfies:

i. D(x,y) ≥ 0 (non-negativity)

ii. D(x,y) = 0 if and only if x = y

iii. D(x,y) = D(y,x) (symmetry)

iv. D(x,y) ≤ D(x, z) + D(z,y) (subadditivity)

Definition of pseudometric (Rudin 1976):

A pseudometric on a set X is a function D : X × X → ℜ
that satisfies:

i. D(x,y) ≥ 0 (non-negativity)

ii. D(x,x) = 0
iii. D(x,y) = D(y,x) (symmetry)

iv. D(x,y) ≤ D(x, z) + D(z,y) (subadditivity)

A pseudometric only differs from a metric in the second

requirement: a pseudometric does not require D(x,y) to be

strictly positive when x 6= y.

Consider the weighted SSD cost function in Section 4.1:

(d(f(x,p)) − dref)T diag(w)(d(f(x,p)) − dref), (59)

with 0 ≤ wi ≤ 1 ∀i. (60)

The above cost function clearly induces a pseudometric on

ℜl where l is the dimension of d(f(x,p)) and dref . Indeed,

it can be easily verified that the function D : ℜl × ℜl → ℜ
defined below is a pseudometric:

D(x,y) =
√

(x − y)T diag(w)(x − y). (61)

The weighted basis AAM cost function in Section 4.2

also induces a pseudometric. To see this, consider the func-

tion D : (ℜl ∪{U})× (ℜl ∪{U}) → ℜ defined as follows:

D(x,y) =















0 if x = U,y = U,

yT Ay if x = U,y 6= U,

xT Ax if x 6= U,y = U,

|xT Ax − yT Ay| if x 6= U,y 6= U.

(62)

Here, U = [u1 · · ·uK] are the eigenvectors of the training

data subspace and A = Im −
∑K

i=1 λiuiu
T
i with 0 ≤ λi ≤

1.

15

From the above definition, together with the positive semi-

definiteness of A, one can easily verify that:

D(x,y) = |D(x,U) −D(y,U)| ∀x,y. (63)

Based on this observation, it is obvious that D is nonnega-

tive, symmetric, and subadditive. Furthermore, D(x,x) =

|D(x,U) − D(x,U)| = 0. Thus D satisfies all the require-

ments of a pseudometric. This pseudometric defines a dis-

tance measurement between elements of ℜl ∪ {U}. In prac-

tice, the only type of distance measurement that matters for

AAM image alignment is the distance between an element

of ℜl and the training data subspace U. This distance is ex-

actly the value of the cost function learned in Section 4.2.

References

Baker S, Matthews I (2001) Equivalence and efficiency of image align-

ment algorithms. In: Proceedings of IEEE Conference on Com-

puter Vision and Pattern Recognition

Baker S, Matthews I (2004) Lucas-Kanade 20 years on: a unifying

framework. International Journal of Computer Vision 56(3):221–

255

Bergen JR, Anandan P, Hanna KJ, Hingorani R (1992) Hierarchical

model-based motion estimation. European Conference on Com-

puter Vision pp 237–252

Black MJ, Jepson AD (1998) Eigentracking: Robust matching and

tracking of objects using view-based representation. International

Journal of Computer Vision 26(1):63–84

Blanz V, Vetter T (1999) A morphable model for the synthesis of 3D

faces. In: ACM SIGGRAPH

Cootes T, Edwards G, Taylor C (2001) Active appearance models. Pat-

tern Analysis and Machine Intelligence 23(6)

Cootes TF, Taylor C (2001) Statistical models of appearance for com-

puter vision. Tech. rep., University of Manchester

Gong S, Mckenna S, Psarrou A (2000) Dynamic Vision: From Images

to Face Recognition. Imperial College Press

Grant M, Boyd S (2008a) CVX: Matlab software for dis-

ciplined convex programming (web page & software).

http://stanford.edu/∼boyd/cvx

Grant M, Boyd S (2008b) Graph implementations for nonsmooth con-

vex programs. In: Blondel V, Boyd S, Kimura H (eds) Recent

Advances in Learning and Control (a tribute to M. Vidyasagar),

Lecture Notes in Control and Information Sciences, Springer, pp

95–110

Gross R, Matthews I, Cohn J, Kanade T, Baker S (2007) The

CMU multi-pose, illumination, and expression (Multi-PIE) face

database. Tech. rep., Carnegie Mellon University, tR-07-08

Hager G, Belhumeur P (1998) Efficient region tracking with paramet-

ric models of geometry and illumination. Pattern Analysis and Ma-

chine Intelligence 20:1025–1039

Jolliffe I (1986) Principal Component Analysis. Springer-Verlag, New

York

Jones MJ, Poggio T (1998) Multidimensional morphable models. In:

International Conference on Computer Vision, pp 683–688

Kanatani K (1996) Statistical Optimization for Geometric Computa-

tions: Theory and Practice. Elsevier Science, New York, NY

Learned-Miller EG (2006) Data driven image models through contin-

uous joint alignment. IEEE Transactions on Pattern Analysis and

Machine Intelligence 28(2):236–250

Liu X (2007) Generic face alignment using boosted appearance model.

In: IEEE Conference on Computer Vision and Pattern Recognition

Lucas B, Kanade T (1981) An iterative image registration technique

with an application to stereo vision. In: Proceedings of Imaging

Understanding Workshop

Matei BC, Meer P (2006) Estimation of nonlinear errors-in-variables

models for computer vision applications. IEEE Transactions on

Pattern Analysis and Machine Intelligence 28(10):1537–1552

Matthews I, Baker S (2004) Active appearance models revisited. Inter-

national Journal of Computer Vision 60(2):135–164

Matthews I, Ishikawa T, Baker S (2004) The template update problem.

IEEE Transactions on Pattern Analysis and Machine Intelligence

26:810–815

Nayar SK, Poggio T (1996) Early Visual Learning. Oxford University

Press

Nguyen MH, de la Torre F (2008a) Learning image alignment without

local minima for face detection and tracking. In: 8th IEEE Inter-

national Conference on Automatic Face and Gesture Recognition

Nguyen MH, de la Torre F (2008b) Local minima free parameterized

appearance models. In: Proceedings of IEEE Conference on Com-

puter Vision and Pattern Recognition

Rudin W (1976) Principles of Mathematical Analysis, 3rd edn.

McGraw-Hill, New York, NY

Saragih J, Goecke R (2007) A nonlinear discriminative approach to

AAM fitting. In: International Conference on Computer Vision

Shi J, Tomasi C (1994) Good features to track. In: IEEE Conference

on Computer Vision and Pattern Recognition

Taskar B, Guestrin C, Koller D (2003) Max-margin markov networks.

In: Advances in Neural Information Processing Systems

Tomasi C, Kanade T (1991) Detection and tracking of point features.

Tech. Rep. CMU-CS-91-132, Carnegie Mellon University

de la Torre F, Black MJ (2003) Robust parameterized component anal-

ysis: theory and applications to 2D facial appearance models.

Computer Vision and Image Understanding 91:53 – 71

de la Torre F, Nguyen MH (2008) Parameterized kernel principal com-

ponent analysis: Theory and applications to supervised and unsu-

pervised image alignment. In: Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition

de la Torre F, Vitrià J, Radeva P, Melenchón J (2000) Eigenfiltering

for flexible eigentracking. In: International Conference on Pattern

Recognition, pp 1118–1121

de la Torre F, Collet A, Cohn J, Kanade T (2007) Filtered compo-

nent analysis to increase robustness to local minima in appear-

ance models. In: IEEE Conference on Computer Vision and Pat-

tern Recognition

Tsochantaridis I, Joachims T, Hofmann T, Altun Y (2005) Large mar-

gin methods for structured and interdependent output variables.

Journal of Machine Learning Research 6:1453–1484

Vapnik V (1998) Statistical Learning Theory. Wiley, New York, NY

Vetter T (1997) Learning novel views to a single face image. In: Inter-

national Conference on Automatic Face and Gesture Recognition

Wimmer M, Stulp F, Tschechne SJ, Radig B (2006) Learning robust

objective functions for model fitting in image understanding ap-

plications. In: Proceedings of British Machine Vision Conference

Wu H, Liu X, Doretto G (2008) Face alignment via boosted ranking

model. In: Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition

Xiao J, Baker S, Matthews I, Kanade T (2004) Real-time combined

2D+3D active appearance models. In: Conference on Computer

Vision and Pattern Recognition, vol II, pp 535–542

Yang L (2006) Distance metric learning: A comprehensive survey.

URL: http://www.cse.msu.edu/∼yangliu1/frame survey v2.pdf

