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Abstract

Automatic facial action unit (AU) detection from video is

a long-standing problem in computer vision. Two main ap-

proaches have been pursued: (1) static modeling—typically

posed as a discriminative classification problem in which

each video frame is evaluated independently; (2) tempo-

ral modeling—frames are segmented into sequences and

typically modeled with a variant of dynamic Bayesian net-

works. We propose a segment-based approach, kSeg-SVM,

that incorporates benefits of both approaches and avoids

their limitations. kSeg-SVM is a temporal extension of the

spatial bag-of-words. kSeg-SVM is trained within a struc-

tured output SVM framework that formulates AU detection

as a problem of detecting temporal events in a time series

of visual features. Each segment is modeled by a variant of

the BoW representation with soft assignment of the words

based on similarity. Our framework has several benefits

for AU detection: (1) both dependencies between features

and the length of action units are modeled; (2) all possible

segments of the video may be used for training; and (3) no

assumptions are required about the underlying structure of

the action unit events (e.g., i.i.d.). Our algorithm finds the

best k-or-fewer segments that maximize the SVM score. Ex-

perimental results suggest that the proposed method outper-

forms state-of-the-art static methods for AU detection.

1. Introduction

The face is a powerful channel of nonverbal communi-

cation. Facial expression provides cues about emotional re-

sponse, regulates interpersonal behavior, and communicates

aspects of psychopathology. To make use of the information

afforded by facial expression, Ekman and Friesen [8] pro-

posed the Facial Action Coding System (FACS). FACS is

a comprehensive, anatomically-based system for measuring

all visually discernible facial movement. It segments all fa-

cial activity on the basis of 44 unique “action units” (AUs),

as well as several categories of head and eye positions and
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Figure 1. During testing, the AU events are found by efficiently

searching over the segments (position and length) that maximize

the SVM score. During training, the algorithm searches over all

possible negative segments to identify those hardest to classify,

which improves classification of subtle AUs.

movements. Any facial event (e.g., a gesture, expression or

speech component) may be a single AU or a combination of

AUs. For example, the felt, or Duchenne smile, is indicated

by movement of the zygomatic major (AU12, e.g., Fig. 2)

and orbicularis oculi, pars lateralis (AU6). Because of its

descriptive power, FACS has become the state of the art

in manual measurement of facial expression and is widely

used in studies of spontaneous facial behavior. Much effort

in automatic facial image analysis seeks to automatically

recognize FACS action units [12, 20, 25, 27].

AU detection from video is a challenging computer vi-

sion and pattern recognition problem. Some of the most im-

portant challenges are to: (1) accommodate large variability

of action units across subjects; (2) train classifiers when rel-

atively few examples for each AU are present; (3) recognize

subtle AUs; (4) and model the temporal dynamics of AUs,

which can be highly variable.

To address some of these issues, various approaches have

been proposed. Static approaches [3, 12, 15, 25] pose AU

detection as a binary- or multi-class classification prob-

lem using different features (e.g., appearance, shape) and

classifiers (e.g., Boosting, SVM). The classifiers are typi-

cally trained on a frame-by-frame basis. For a given AU,

the positive class comprises a subset of frames between its



Figure 2. Left to right, evolution of an AU12 (involved in smiling),

from onset, peak, to offset.

onset and offset, and the negative class comprises a sub-

set of frames labeled as neutral or other AUs. Temporal

models, such as modifications of dynamic Bayesian net-

works [6, 10, 21, 27, 29] model the dynamics of the AU as

transitions in a partially observed state space.

Although static and dynamic approaches have achieved

high performance on most posed facial expression

databases [3, 23, 25], accuracy tends to be much lower in

studies that test on non-posed facial expressions [3, 12, 31].

Non-posed expressions are challenging. They are less

stereotypic, more subtle, more likely to co-occur with other

AUs, and more-often confounded by increased noise due

to variation in pose, out-of-plane head motion, and co-

occurring speech. They also may be more complex tem-

porally. Segmentation into onset, one or more local peaks,

and offset must be discovered.

For non-posed facial behavior, static approaches may be

more susceptible to noise because independent decisions

are made on each frame. Similarly, hidden state tempo-

ral models suffer the drawbacks of needing either an ex-

plicit definition of the latent state of all frames, or the need

to simultaneously learn a state sequence and state transi-

tion model that fits the data, resulting in a high-dimensional

minimization problem with typically many local minima. In

this paper, we propose a segment-based SVM, kSeg-SVM,

a temporal extension of the spatial Bag-of-Words (BoW) [5]

approach trained with a Structured Output SVM frame-

work (SO-SVM) [28], which results in a convex optimiza-

tion problem.

kSeg-SVM is inspired by the success of the spatial BoW

sliding-window model [5] that has been used in difficult ob-

ject detection problems. We pose the AU detection problem

as one of detecting temporal events (segments) in time se-

ries of visual features. Events correspond to AUs, including

all frames between onset and offset (see Fig. 1). kSeg-SVM

represents each segment as a BoW; however, the standard

histogram of entries is augmented with a soft-clustering as-

signment of words to account for smoothly-varying signals.

Given several videos with AU labeled events, kSeg-SVM

learns the SVM parameters that maximize the response on

positive segments (AU to be detected) and minimize the re-

sponse in the rest of the segments (all other positions and

lengths). Fig. 1 illustrates the main ideas of our paper.

kSeg-SVM can be efficiently trained on all available

video using the SO-SVM framework [28]. Recent re-

search [18] in the related area of sequence-labeling has

shown that SO-SVMs can out-perform other algorithms in-

cluding Hidden Markov Model (HMM), Conditional Ran-

dom Field [11] and Max-Margin Markov Networks [24].

SO-SVMs have several benefits in the context of AU detec-

tion: (1) they model the dependencies between visual fea-

tures and the duration of AUs; (2) they can be trained effec-

tively on all possible segments of the video (rather than on

independent sequences); (3) they explicitly select negative

examples that are most similar to the AU to be detected;

and (4) they make no assumptions about the underlying

structure of the AU events (e.g., i.i.d.). Finally, we propose a

novel parameterization of the output space to handle multi-

ple AU event occurrences such that occur in long time series

and search simultaneously for the k-or-fewer best matching

segments in the time-series.

2. Previous work

There is a large body of research on automatic analysis

of facial expressions from video. This section reviews some

related work; for comprehensive surveys see [9, 19, 25, 30].

In the case of static models, different feature represen-

tations and classifiers for frame-by-frame facial expression

detection have been extensively studied. Barlett et al. [3]

and Littlewort et al. [12] used Gabor filters in conjunc-

tion with AdaBoost feature selection followed by an SVM

classifier. Tian et al. [25] incorporated geometric features

by tracking facial components. Lucey et al. [15] evalu-

ated different shape and appearance representations derived

from an AAM facial feature tracker. Zhu et al. [31] real-

ized the importance of automatically selecting the positive

and negative samples in training classifiers for AU detec-

tion. [31] showed how the AU detection can be greatly im-

proved by automatically selecting the most discriminative

training samples of those that were manually coded.

More recent work has focused on incorporating the dy-

namics of facial expressions to improve performance. A

popular strategy is to use hidden state models to temporally

segment the expression by establishing a correspondence

between the action’s onset, peak, and offset and an under-

lying latent state. Valstar and Pantic [29] used a combina-

tion of SVM and a HMM to temporally segment and recog-

nize AUs. Koelstra and Pantic [10] used GentleBoost classi-

fiers on motion from a non-rigid registration combined with

an HMM. Similar approaches include a nonparametric dis-

criminant HMM from Shang and Chan [21], and partially-

observed Hidden Conditional Random Fields by Chang et

al. [6]. Tong et al. [27] used Dynamic Bayesian Networks

that make use of co-occurrence relations between AUs.



Figure 3. AAM tracking across several frames

3. Face tracking and feature extraction

This section describes the system for facial feature

tracking using Active Appearance Models (AAMs) [7, 16],

and the feature extraction at a frame-level. The feature

representation at the segment-level is described in Sec-

tions 4.3.1 and 4.3.2.

3.1. Facial feature tracking

The facial features were tracked using a person-specific

AAM model [16]. In our case, the AAM model used is

composed of 66 landmarks distributed along the top of the

eyebrows, the inner and outer lip outlines, the outline of the

eyes, the jaw, and along the nose. Fig. 3 shows an example

of AAM tracking of facial features in several frames from

the RU-FACS [4] video dataset.

3.2. Feature extraction

Previous work [3, 14] has shown that appearance-based

features yield good performance on many AU. In this work

we follow recent work of Zhu et al. [31] and use fixed-scale-

and-orientation SIFT descriptors [13] anchored at several

points of interest at the tracked landmarks. Intuitively, the

histogram of gradient orientations calculated in SIFT has

the potential to capture much of the information that is de-

scribed in FACS (e.g., the markedness of the naso-labial fur-

rows, the direction and distribution of wrinkles, the slope of

the eyebrows). At the same time, the SIFT descriptor has

been shown to be robust to illumination changes and small

errors in localization.

After the facial components have been tracked in each

frame, a normalization step registers each image with re-

spect to an average face [31]. An affine texture transforma-

tion is applied to each image so as to warp the texture into

this canonical reference frame. This normalization provides

further robustness to the effects of head motion. Once the

texture is warped into this fixed reference, SIFT descrip-

tors are computed around the outer outline of the mouth (11
points for lower face AU) and on the eyebrows (5 for upper

face AU). Due to the large number of resulting features (128
by number of points), the dimensionality of the resulting

feature vector was reduced using PCA to keep 95% of the

energy, obtaining 261 and 126 features for lower face and

upper face AU respectively.

4. Segment-based SVMs for AU localization

This section frames the AU event detection problem as a

structured output learning problem.

4.1. Structured output learning

Given the frame-level features computed in the previous

section, we will denote each processed video sequence i as

xi ∈ R
d×mi , where d is the number of features and mi is

the number of frames in the sequence. To simplify, we will

assume that each sequence contains at most one occurrence

of the AU event to be detected. This will be extended to

k-or-fewer occurrences in Sec. 5.1. The AU event will be

described by its corresponding onset to offset frame range

and will be denoted by yi ∈ Z
2.

Let the full training set of video sequences be

x1, · · · ,xn ∈ X , and their associated ground truth annota-

tions for the occurrence of AUs y1, · · · ,yn ∈ Y . We wish

to learn a mapping f : X → Y for automatically detect-

ing the AU events in unseen signals. This complex output

space contains all contiguous time intervals; each label yi

consists of two numbers indicating the onset and the offset

of an AU:

Y = {y | y = ∅ or y = [s, e] ∈ Z
2, 1 ≤ s ≤ e}. (1)

The empty label y = ∅ indicates no occurrence of the AU.

We will learn the mapping f as in the structured learning

framework [2, 5, 28] as:

f(x) = argmax
y∈Y

g(x,y), (2)

where g(x,y) assigns a score to any particular labeling y;

the higher this value is, the closer y is to the ground truth

annotation. For structured output learning, the choice of

g(x,y) is often taken to be a weighted sum of features in

the feature space:

g(x,y) = w
T ϕ(x,y). (3)

where ϕ(x,y) is a joint feature mapping for temporal signal

x and candidate label y, and w is the weight vector. Learn-

ing f can therefore be posed as an optimization problem:

min.
w,ξ

1

2
||w||2 + C

n
∑

i=1

ξi, (4)

s.t. w
T ϕ(xi,yi) ≥ w

T ϕ(xi,y) + ∆(yi,y) − ξi ∀y,

ξi ≥ 0 ∀i.

Here, ∆(yi,y) is a loss function that decreases as a label y

approaches the ground truth label yi. Intuitively, the con-

straints in Eq. 4 force the score of g(x,y) to be higher for

the ground truth label yi than for any other value of y, and

moreover, to exceed this value by a margin equal to the loss

associated with labeling y.



4.2. Optimization and inference

The learning formulation (Eq. 4) is equivalent to:

min.
w,ξ

1

2
||w||2 + C

n
∑

i=1

ξi, (5)

s.t. max
y

{∆(yi,y) + w
T ϕ(xi,y)} ≤ w

T ϕ(xi,yi) + ξi,

ξi ≥ 0 ∀i.

This optimization problem is convex, but it has an exponen-

tially large number of constraints. A typical optimization

strategy is constraint generation [28] that is theoretically

guaranteed to produce a global optimal solution. Constraint

generation is an iterative procedure that optimizes the ob-

jective w.r.t. a smaller set of constraints. The constraint set

is expanded at every iteration by adding the most violated

constraint. Thus at each iteration of constraint generation,

given the current value of w, we need to solve:

ŷ = argmax
y∈Y

{∆(yi,y) + w
T ϕ(xi,y)}. (6)

Thus for the feasibility of the training phase, it is necessary

that (6) can be solved effectively and efficiently at every

iteration. It is worth to note that this inference problem is

different from the one for localizing AUs in a signal:

ŷ = argmax
y∈Y

w
T ϕ(x,y). (7)

The optimization of (6) & (7) depends on the feature repre-

sentation ϕ(x,y). In the next section we describe two types

of signal representation that render fast optimization.

4.3. Signal representation

4.3.1 Histogram of temporal words

Suppose each frame of the temporal signal is associated

with a feature vector. Following [17], we consider the fea-

ture mapping ϕ(x,y) as the histogram of temporal words.

For quantization, we use a temporal dictionary built by ap-

plying a clustering algorithm to a set of feature vectors sam-

pled from the training data [22]. Subsequently, each feature

vector is represented by the ID of the corresponding vocab-

ulary entry. Finally, the feature mapping ϕ(x,y) is taken as

the histogram of IDs associated with the frames inside the

interval y. Let x
i be the feature vector associated with the

ith frame of signal x, and let Cj denote the cluster j of the

temporal dictionary. The feature mapping is defined as:

ϕ(x,y) = [ϕ1, · · · , ϕd, len(y)]T , (8)

where ϕj =
∑

i∈y

ϕi
j ; ϕi

j = δ(xi ∈ Cj). (9)

Here [ϕ1, · · · , ϕd]
T is the histogram of temporal words lo-

cated within segment [s, e] of signal x. The feature vector is

the histogram concatenated with the length of the segment.

4.3.2 Soft clustering

Sec. 4.3.1 describes a feature mapping in which each frame

is associated with only one cluster. In contrast with this

harsh quantization, in this subsection we proposes a novel

feature mapping which is based on soft clustering:

ϕ(x,y) = [ϕ1, · · · , ϕd, len(y)]T , (10)

where ϕj =
∑

i∈y

ϕi
j ; ϕi

j = k(xi, cj). (11)

Here {cj} are cluster centers, and k(·, ·) is the kernel func-

tion that measures the similarity between the frame x
i to

the cluster center cj . ϕj measures the total similarity of the

frames inside the segment [s, e] to the cluster center cj .

Notably, the vectors {cj} do not need to be the clus-

ter centers. They can be chosen to be any set of repre-

sentative vectors. For example, {cj} can be taken as the

support vectors of a frame-based SVM trained to distin-

guish between individual positive and negative frames. In

this case, our method directly improves the performance of

frame-based SVM by relearning the weights to incorporate

temporal constraints. To see this, consider the score func-

tion of frame-based SVM. For a frame x
i of a given signal

x, the SVM score is of the form v
T ϕ(xi) + b. It has been

shown that v can be expressed as a linear combination of

the support vectors:

v =

d
∑

j=1

αjϕ(cj). (12)

Thus the SVM score for frame x
i is:

v
T ϕ(xi) + b =

d
∑

j=1

αjk(xi, cj) + b. (13)

Meanwhile, the decision function of structured learning is:

w
T ϕ(x,y) =

e
∑

i=s

d
∑

j=1

wjk(xi, cj) + wd+1.len(y). (14)

Observe the similarity between the decision function of

frame-based SVM and the decision function of segment-

based SVM, Eq. 13 versus Eq. 14. In both cases, we need

to learn a weight vector that is associated with the similar-

ity measurement between a frame and the support vectors

{cj}. Furthermore, ignoring the constant threshold, the de-

cision value of segment-based SVM is the sum of the de-

cision values of frame-based SVM at all frames inside the

segment. The key differences between frame-based SVM

and segment-based SVM are: (1) frame-based SVM clas-

sifies each frame independently while segment-based SVM

makes a collective decision; (2) segment-based SVM incor-

porates spatial constraints during training and testing while

frame-based SVM does not.



4.4. Decomposability and fast optimization

This section discusses the decomposability of the above

feature mappings and how they enable efficient and effec-

tive optimization of (7) and (6).

For both feature mappings defined in Eq. 9 and Eq. 11,

let ai denote
∑d

j=1
wjϕ

i
j + wd+1. Thus w

T ϕ(x,y) =
∑e

i=s ai. The label ŷ that maximizes w
T ϕ(x,y) is:

ŷ = [ŝ, ê] = argmax
1≤s≤e

e
∑

i=s

ai. (15)

There exists an efficient algorithm [17] for optimizing

Eq. 15. The label ŷ that maximizes ∆(yi,y)+w
T ϕ(xi,y)

can be found as:

ŷ = [ŝ, ê] = argmax
1≤s≤e

{∆(yi, [s, e]) +

e
∑

t=s

at}. (16)

For certain types of the loss function ∆(yi,y), Eq. 16 can

be optimized very efficiently by means of a branch-and-

bound algorithm [5].

5. Dealing with multiple AU occurrences

Sec. 4 presents a method to train a segment-based SVM

for AU localization. It assumes the AU of interest does not

occur more than once in each temporal signal. In practice,

however, a temporal signal usually contains multiple AU

occurrences. This raises several technical difficulties in di-

rectly applying the method presented in Sec. 4. First, even

though training samples can be ensured to contain no more

than one AU occurrence by breaking long training signals

into smaller ones, it is unclear what the optimal division is.

Second, unlike the case of training samples, we cannot en-

sure testing signals to contain no more than one AU occur-

rence. Thus it is unclear how to extend the above method

to find multiple AU occurrences in a temporal signal. A

possible solution is to localize multiple AU occurrences se-

quentially. However, sequential optimization is very likely

to lead to a suboptimal solution. This section presents a

method that addresses these difficulties by extending the

above formulation to allow for multiple event occurrences

in both training and testing stages.

5.1. Enriching the label set

To handle multiple occurrences of an AU, we propose to

keep the same structured output learning formulation as in

Sec. 4.1 but enriching the label set Y . Suppose we know a

priori that the number of occurrences of the AU of interest

is bounded by k (such an upper bound always exists in prac-

tice). Consider the label space of all k-segmentations [17].

A k-segmentation of a time series is defined as a set of k

disjoint time-intervals. Note that it is possible for some in-

tervals of a k-segmentation to be empty. Formally speaking,

the label space is defined as follows:

Yk = {(I1, · · · , Ik)|Ii ∈ Y, Ii ∩ Ij = φ ∀i, j}. (17)

Because the intervals of a k-segmentation can be empty, the

above label set is rich enough to allow for different number

of occurrences of AUs.

5.2. Inference and loss function

As in the previous case, for any fixed w, we need effi-

cient algorithms for the inference problems of Eq. 6 & 7.

Eq. 7 can be solved efficiently because:

w
T ϕ(x,y) =

k
∑

j=1

∑

t∈Ij

at. (18)

To find ŷ that maximizes w
T ϕ(x,y), we first use a linear

time algorithm [17] to find:

ŷ = (Î1, · · · , Îk) = argmax
I1,...,Ik

Ii∩Il=φ

k
∑

j=1

∑

t∈Ij

at. (19)

To take into account the imbalance of positive and neg-

ative frames, we propose to use the loss function ∆(yi,y)
which is defined as follows:

∆(yi,y) = α.len(yi \ y) + β.len(y \ yi). (20)

Here α and β are penalties for false negative and false pos-

itive frames respectively. This cost function decreases to

zero when the label y approaches yi. Let

bj =

{

aj − α if j ∈ yi,

aj + β otherwise.
(21)

We have

∆(yi,y) + w
T ϕ(xi,y) =

k
∑

j=1

∑

t∈Ij

bt + α.len(yi). (22)

Eq. 22 has the form of Eq. 18 and can be optimized simi-

larly.

6. Experiments

This section describes experiments on two spontaneous

datasets for AU detection. Experiment 1 (Sec. 6.3) com-

pares the performance of our method against a state-of-the-

art static method on a large dataset of FACS coded videos.

In Experiment 2 (Sec. 6.4) we evaluate the generalization

performance by testing on a dataset that was not used for

training. Comparisons with dynamic models are not pre-

sented because code was not available for comparison.



6.1. Datasets and AU selection

Evaluations of performance for Experiment 1 were car-

ried out on a relatively large corpus of FACS coded videos,

the RU-FACS-1 [4] dataset. Recorded at Rutgers Univer-

sity, subjects were asked to either lie or tell the truth under

a false opinion paradigm in interviews conducted by police

and FBI members who posed around 13 questions. These

interviews resulted in 2.5 minute long continuous 30-fps

video sequences containing spontaneous AUs of people of

varying ethnicity and sex. Ground truth FACS coding was

provided by expert coders. Data from 28 of the subjects was

available for our experiments. In particular, we divided this

dataset into 17 subjects for training (97000 frames) and 11

subjects for testing (67000 frames).

Previously published results on this dataset (e.g., [3]) are

not directly comparable due to differences in the evalua-

tion method; for comparison purposes, we implemented a

frame-based RBF SVM similar to [3].

The AU for which we present results were selected by

requiring at least 100 event occurrences in the available

RU-FACS-1 data, resulting in the following set of AU:

1, 2, 12, 14, 15, 17, 24. Additionally, to test performance on

AU combinations, AU1+2 was selected due to the large

number of occurrences.

Experiment 2 tests generalization performance on a dif-

ferent dataset, Sayette1. This dataset records subjects par-

ticipating in a 3-way conversation to study the effects of

alcohol on social behavior. Video for 3 subjects was avail-

able to us (32000 frames) and included moderate to large

head motion as subjects turned toward and away from each

other, and frequent partial occlusion as subjects drank bev-

erages. Only FACS codes for AU 6 and 12 were available.

AU6 and 6+12 (which distinguishes the Duchenne smile)

were therefore added to our target set.

6.2. Experimental setup and evaluation

We compare our method against a frame-based SVM and

a hard-clustering BoW-kSeg approach. All methods use the

same frame-level features described in Sec. 3.

The frame-based SVM is trained to distinguish between

positive (AU) negative (non-AU) frames and uses a radial

basis kernel k(x, z) = exp(−γ||x − z||2).

The BoW-kSeg approach is based on a hard-clustering

histogram of temporal words (Sec. 4.3.1). This approach

is modeled directly after the approach used for 2D object-

detection. For quantization, we use a temporal dictionary

of 256 entries obtained by applying hierarchical K-means

clustering to the training set feature vectors [22].

Our method (referred to as kSeg-SVM ) is based on soft-

clustering (Sec. 4.3.2). The cluster centers are chosen to be

1This is an in-progress data-collection.

the support vectors (SVs) of frame-based SVMs with a ra-

dial basis kernel. Because for several AUs the number of

SVs can be quite large (2000 − 4000), we apply the idea

proposed by Avidan [1] to reduce the number of SVs for

faster training time and better generalization. However, in-

stead of using a greedy algorithm for subset selection, we

use LASSO regression [26]. In our experiments, the sizes

of the reduced SV sets ranges from 100 to 500 SVs.

Following previous work [3], positive samples were

taken to be frames where the AU was present, and nega-

tive samples where it was not (although better strategies are

possible [31]). To evaluate performance, we report various

measures: the area under the ROC, the precision-recall val-

ues, and the maximum F1 score. the F1 score is defined

as: F1 = 2·Recall·Precision
Recall+Precision

, summarizing the trade-off be-

tween high recall rates and accuracy among the predictions.

All measures were computed on a frame-by-frame basis by

varying the bias or threshold of the corresponding classifier.

In our case, the F1 score is a better performance measure

than the more common ROC metric because the latter is de-

signed for balanced binary classification rather than detec-

tion tasks , and fails to reflect the effect of the proportion of

positive to negative samples on classification performance.

Parameter tuning is done using 3-fold subject-wise

cross-validation on the training data. For the frame-based

SVM, we need to tune C and γ, the scale parameter of

the radial basis kernel. For BoW-kSeg and kSeg-SVM, we

need to tune C only. The kernel parameter γ of kSeg-SVM

could also potentially be tuned, but for simplicity it was set

to the same γ used for frame-based SVM. For all methods,

we choose the parameters that maximize the average cross-

validation ROC area.

6.3. Within dataset performance

Tab. 1 shows the experimental results on the RU-FACS-1

dataset. As can be seen, kSeg-SVM consistently outper-

forms frame-based classification. It has the highest ROC

area for 7 out of 10 AUs. Using the ROC metric, kSeg-SVM

appears comparable to standard SVM. kSeg-SVM achieves

highest F1 score on 9 out of 10 test cases.

As noted above, the F1 metric may be better suited

for imbalanced detection tasks. Using this criterion, kSeg-

SVM shows a substantial improvement. To illustrate this,

consider Fig. 4 depicting ROC and precision-recall curves

of AU12 and AU15. According to the ROC metric, kSeg-

SVM and SVM seem comparable. However, the precision-

recall curves clearly show superior performance for kSeg-

SVM . For example, at 70% recall, the precision of SVM

and kSeg-SVM are 0.79 and 0.87, respectively. At 50% re-

call for AU15, the precision of SVM is 0.48 compared to

0.67, roughly 2

3
that of kSeg-SVM .



Area under ROC Max F1 score

AU SVM
BoW- kSeg-

SVM
BoW- kSeg-

kSeg SVM kSeg SVM

1 0.86 0.52 0.86 0.48 0.13 0.59

2 0.79 0.45 0.81 0.42 0.14 0.56

6 0.89 0.69 0.91 0.50 0.28 0.59

12 0.94 0.77 0.94 0.74 0.61 0.78

14 0.70 0.56 0.68 0.20 0.17 0.27

15 0.90 0.49 0.90 0.50 0.04 0.59

17 0.90 0.51 0.87 0.55 0.06 0.56

24 0.85 0.52 0.73 0.15 0.04 0.08

1+2 0.86 0.46 0.89 0.36 0.12 0.56

6+12 0.95 0.69 0.96 0.55 0.28 0.62

Table 1. Performance on the RU-FACS-1 dataset. Higher numbers

indicate better performance, and best results are printed in bold.

kSeg-SVM is consistently the best according to both measures.

(a) AU 12 ROC (b) AU 12 Precision-Recall

(c) AU 15 ROC (d) AU 15 Precision-Recall

Figure 4. ROCs and precision-recall curves for AU 12 and AU 15.

Although there is not a notable difference in the measured area un-

der the ROC, precision-recall curves show a substantial improve-

ment for our method.

As shown in Tab. 1, BoW-kSeg performs poorly. There

are two possible reasons for this. First, clustering is

done with K-means, an unsupervised, non-discriminative

method that is not informed by the ground truth labels. Sec-

ond, due to the hard dictionary assignment, each frame is

forced to commit to a single cluster. While hard-clustering

shows good performance in the task of object-detection, our

time-series vary smoothly, resulting in large groups of con-

secutive frames being assigned to the same cluster.

6.4. Across dataset performance

In the second experiment we compared the generaliza-

tion performance of SVM and our method across datasets.

SVM and kSeg-SVM are trained on RU-FACS-1, and tested

on Sayette, a separate dataset. Tab. 2 shows the ROC areas

and the maximum F1 scores of both methods. As shown,

our method kSeg-SVM consistently outperforms SVM by

a large margin for all AU and their combination. Tab. 3

shows the precision values of both methods at two typical

recall values of interest. The precision values of kSeg-SVM

are always higher than those of SVM; in many cases the dif-

ference is as high as 50%.

Area under ROC Max F1 score

AU SVM kSeg-SVM SVM kSeg-SVM

6 0.92 0.94 0.51 0.62

12 0.91 0.92 0.78 0.79

6+12 0.91 0.93 0.52 0.61

Table 2. Performance on the Sayette dataset. SVM and kSeg-SVM

are trained on the RU-FACS-1 dataset which is a completely sep-

arated from Sayette.

50% recall 70% recall

AU SVM kSeg-SVM SVM kSeg-SVM

6 0.49 0.60 0.36 0.54

12 0.91 0.95 0.83 0.87

6+12 0.44 0.56 0.30 0.53

Table 3. Sayette dataset – precision values at recall values of inter-

est.

7. Conclusions

We have extended the BoW model, which was originally

proposed for spatial object detection, to the complex task

of action unit detection in non-posed behavior. The kSeg-

SVM demonstrated competitive performance across various

AU detection tasks on a large video corpus. On measures of

area under the ROC curve, our approach and frame-based

SVM perform similarly. On the more challenging F1 mea-

sure, our method outperformed SVM for 9 out of 10 AUs.

Until now, a common measure of classifier performance

for AU detection has been area under the curve. In object

detection, the common measure represents the relation be-

tween recall and precision. The two approaches give very

different views of classifier performance. This difference is

not unanticipated in the object detection literature, but lit-

tle attention has been paid to this issue in facial expression

literature. Our findings underscore the importance of con-

sidering both types of measures.

In this paper we have illustrated the benefits of

kSeg-SVM in the context of action unit detection, however,



the method can be applied to other domains such as action

recognition and event detection in video.
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