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Discriminative Optimization:
Theory and Applications to Computer Vision

Jayakorn Vongkulbhisal, Fernando De la Torre, and João P. Costeira

Abstract—Many computer vision problems are formulated as the optimization of a cost function. This approach faces two main
challenges: designing a cost function with a local optimum at an acceptable solution, and developing an efficient numerical method to
search for this optimum. While designing such functions is feasible in the noiseless case, the stability and location of local optima are
mostly unknown under noise, occlusion, or missing data. In practice, this can result in undesirable local optima or not having a local
optimum in the expected place. On the other hand, numerical optimization algorithms in high-dimensional spaces are typically local
and often rely on expensive first or second order information to guide the search. To overcome these limitations, we propose
Discriminative Optimization (DO), a method that learns search directions from data without the need of a cost function. DO explicitly
learns a sequence of updates in the search space that leads to stationary points that correspond to the desired solutions. We provide a
formal analysis of DO and illustrate its benefits in the problem of 3D registration, camera pose estimation, and image denoising. We
show that DO outperformed or matched state-of-the-art algorithms in terms of accuracy, robustness, and computational efficiency.

Index Terms—Optimization, gradient methods, iterative methods, image processing and computer vision, machine learning.

F

1 INTRODUCTION

Mathematical optimization plays an important role for
solving many computer vision problems. For instance,
optical flow, camera calibration, homography estimation,
and structure from motion are computer vision problems
solved as optimization. Formulating computer vision prob-
lems as optimization problems faces two main challenges:
(i) Designing a cost function that has a local optimum that
corresponds to a suitable solution, and (ii) selecting an
efficient and accurate algorithm for searching the parameter
space. Conventionally, these two steps have been treated
independently, leading to different cost functions and search
algorithms. However, in the presence of noise, missing data,
or inaccuracies of the model, this conventional approach
can lead to undesirable local optima or even not having an
optimum in the correct solution.

Consider Fig. 1a-top which illustrates a 2D alignment
problem in a case of noiseless data. A good cost function
for this problem should have a global optimum when the
two shapes overlap. Fig. 1b-top illustrates the level sets
of the cost function for the Iterative Closest Point (ICP)
algorithm [1] in the case of complete and noiseless data.
Observe that there is a well-defined optimum and that it
coincides with the ground truth. Given a cost function,
the next step is to find a suitable algorithm that, given an
initial configuration (green square), finds a local optimum.
For this particular initialization, the ICP algorithm will
converge to the ground truth (red diamond in Fig. 1b-top),
and Fig. 1e-top shows the convergence region for ICP in
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green. However, in realistic scenarios with the presence of
perturbations in the data, there is no guarantee that there
will be a good local optimum in the expected solution,
while the number of local optima can be large. Fig. 1b-
bottom show the level set representation for the ICP cost
function in the case of corrupted data. We can see that the
shape of cost function has changed dramatically: there are
more local optima, and they do not necessarily correspond
to the ground truth (red diamond). In this case, the ICP
algorithm with an initialization in the green square will
converge to a wrong optimum. It is important to observe
that the cost function is only designed to have an optimum
at the correct solution in the ideal case, but little is known
about the behavior of this cost function in the surroundings
of the optimum and how it will change with noise.

To address the aforementioned problems, this paper
proposes Discriminative Optimization (DO). DO exploits
the fact that we often know from the training data where
the solutions should be, whereas traditional approaches
formulate optimization problems based on an ideal model.
Rather than following a descent direction of a cost function,
DO directly learns a sequence of update directions leading
to a stationary point. These points are placed by design
in the desired solutions from training data. This approach
has three main advantages. First, since DO’s directions are
learned from training data, they take into account the per-
turbations in the neighborhood of the ground truth, result-
ing in more robustness and a larger convergence region, as
can be seen in Fig. 1e. Second, because DO does not optimize
any explicit function (e.g., `2 registration error), it is less
sensitive to model misfit and more robust to different types
of perturbations. Fig. 1c illustrates the contour level inferred
from the update directions learned by DO. It can be seen that
the curve levels have a local optimum on the ground truth
and fewer local optima than ICP in Fig. 1b. Fig. 1e shows
that the convergence regions of DO change little despite
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Figure 1. 2D point alignment using ICP and DO. (a) Data. (b) Level sets of the cost function for ICP. We used the optimal matching at each parameter
value to compute the `2 cost. (c) Inferred level sets for the proposed DO, approximately reconstructed with the surface reconstruction algorithm [2]
from DO’s update directions. (d) The update directions of DO. (e) Regions of convergence for ICP and DO. See text for detailed description.

the perturbations, and always include the regions of ICP.
Third, to compute update directions, traditional approaches
require the cost function to be differentiable or continuous,
whereas DO’s directions can always be computed. We also
provide a proof of DO’s convergence in the training set.
We named our approach DO to reflect the idea of learning
to find a stationary point directly rather than optimizing a
“generative” cost function.

In this work, we study the convergence properties of
DO and its relation to generalized convexity. Based on
this relation, we propose a framework for designing fea-
tures where the update directions can be interpreted as the
gradient direction of an unknown cost function. We show
that our approach can handle both ordered (e.g., image
pixels) and unordered (e.g., set of feature matches) data
types. We perform a synthetic experiment to confirm our
interpretation, and apply DO to the problems of point cloud
registration, camera pose estimation, and image denoising,
and show that DO can obtain state-of-the-art results.

2 RELATED WORK

2.1 Optimization in computer vision

Many problems in computer vision involve solving inverse
problems, that is to estimate the parameters x ∈ Rp that sat-
isfies gj(x) = 0d, j = 1, . . . , J , where gj : Rp → Rd models
the phenomena of interest. For example, in camera pose es-
timation [3], x may represent the camera parameters and gj
the reprojection error of the jth feature match. Optimization-
based framework tackles these problems by searching for
the parameters x∗ that optimize a certain cost function,
which is typically designed to penalize the deviation of gj
from 0d. Since selecting a cost function is a vital step for
solving problems, there exists a large amount of research on
the robustness properties of different penalty functions (e.g.,
`2 loss, `1 loss, etc.) [4], [5], [6]. Instead of using a fixed
penalty function, many approaches use continuation meth-
ods to deform the function as the optimization is solved [7],
[8]. On the other hand, many computer vision problems are
ill-posed [9] and require some forms of regularization. This
further leads to a combination of different penalty functions

and requires setting the value of hyperparameters, which
make the issue even more complicated.

Due to a large variety of design choices, it is not trivial
to identify a suitable cost function to solve a problem.
Instead of manually designing a cost function, several works
proposed to use machine learning techniques to learn a
cost function from available training data. For example,
kernel SVM [10], boosting [11], metric learning [12], and
nonlinear regressors [13] have been used to learn a cost
function for object tracking, alignment, and pose estimation.
Once a cost function is learned, the optimal parameters are
solved using search algorithms such as descent methods or
particle swarm optimization. However, a downside of these
approaches is that they require the form of the cost function
to be imposed, e.g., [12] requires to cost to be quadratic,
thereby restricting the class of problems that they can solve.

2.2 Learning search direction
Instead of using search directions from a cost function,
many works proposed to directly learn to compute such
directions. This is done by learning a sequence of regressors
that maps a feature vector to an update vector that points
to the desired parameters. We refer to these algorithms as
supervised sequential update (SSU). The concept of SSUs re-
sembles gradient boosting (GB) [14], [15], which uses weak
learners to iteratively update the parameters. However, they
differ in that GB performs update using a fixed feature
vector, while SSUs also update the feature vector, which
allows new information to be incorporated as the parameter
is updated. Here, we provide a brief review of SSUs.

Cascaded pose regression [16] trains a sequence of ran-
dom ferns for image-based object pose estimation. The
paper also shows that the training error decreases expo-
nentially under a weak learner assumption. [17] learns a
sequence of boosted regressors that minimizes error in pa-
rameter space. Supervised descent method (SDM) [18], [19]
learns a sequence of linear maps as the averaged Jacobian
matrices for minimizing nonlinear least-squares functions
in the feature space. They also provided conditions for the
error to strictly decrease in each iteration. More recent works
include learning both Jacobian and Hessian matrices [20];
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running Gauss-Newton algorithm after SSU [21]; using dif-
ferent maps in different regions of the parameter space [22];
and using recurrent neural network as the sequence of maps
while also learning the feature [23]. Instead of sequentially
learning the regressors, [24] first learns a set of linear maps
then selects a subset to form a sequence of maps.

We observe that most SSUs focus on image-based track-
ing and pose estimation. This is because the features for
these problems are rather obvious: they use intensity-based
features such as intensity difference, SIFT, HOG, etc. Extend-
ing SSUs to other problems require designing new features.
Our recent work [25] proposes a new feature and extends
SSU to the problem of point cloud registration. Still, it is not
straightforward to design features for other applications. In
this work, we propose DO as an extension of previous SSUs.
We study its properties, propose a general framework for
designing features, and apply DO to computer vision prob-
lems not addressed by previous SSUs, such as point cloud
registration, camera pose estimation, and image denoising.

Recently, deep neural networks (DNNs) have received
tremendous interest for their success in various tasks in
computer vision and natural language processing [26].
While DNNs have been used for some applications similar
to those in this paper, e.g., camera pose estimation [27] and
image denoising [28], they are typically purely data-driven
while DO can combine the mathematical model of each
problem with the available training data. The model-driven
side of DO allows it to be interpreted and analyzed more
easily, and significantly reduces the amount of training data
and computational power.

3 DISCRIMINATIVE OPTIMIZATION (DO)
In this section, we provide the motivation and describe the
Discriminative Optimization (DO) framework.

3.1 Motivation from fixed point iteration
DO aims to learn a sequence of update maps (SUM) to
update an initial parameter vector to a stationary point. The
idea of DO is based on the fixed point iteration of the form

xt+1 = xt −∆xt, (1)

where xt ∈ Rp is the parameter at step t, and ∆xt ∈ Rp is
the update vector. Eq. (1) is iterated until ∆xt vanishes, i.e.,
until a stationary point is reached. An example of fixed point
iteration for solving optimization is the gradient descent
algorithm [29]. Let J : Rp → R be a differentiable cost
function. The gradient descent algorithm for minimizing J
is expressed as

xt+1 = xt − µt
∂

∂x
J(x)

∣∣∣∣
x=xt

, (2)

where µt is a step size. One can see that the scaled gradient
is used as ∆xt in (1), and it is known that the gradient
vanishes when a stationary point is reached.

In contrast to gradient descent where the updates are
derived from a cost function, DO learns the updates from
the training data. The major advantages are that no cost
function is explicitly selected and the neighborhoods around
the solutions of the perturbed data are taken into account
when the maps are learned, leading to more robustness.

3.2 DO framework

DO uses an update rule in the form of (1). The update vector
∆xt is computed by mapping the output of a function
h : Rp → Rf with a sequence of matrices1 Dt ∈ Rp×f . Here,
h is a function that encodes a representation of the data
(e.g., h(x) extracts features from an image at position x).
Given an initial parameter x0 ∈ Rp, DO iteratively updates
xt, t = 0, 1, . . . , using:

xt+1 = xt −Dt+1h(xt), (3)

until convergence to a stationary point. The sequence of
matrices Dt+1, t = 0, 1, . . . , learned from training data
forms a sequence of update maps (SUM).

3.2.1 Learning a SUM
Suppose we are given a training set as a set of triplets
{(x(i)

0 ,x
(i)
∗ ,h(i))}Ni=1, where x

(i)
0 ∈ Rp is the initial pa-

rameter for the ith problem instance (e.g., the ith image),
x

(i)
∗ ∈ Rp is the ground truth parameter (e.g., position of the

object on the image), and h(i) : Rp → Rf extracts features
from the ith problem instance. The goal of DO is to learn a
sequence of update maps {Dt}t that updates x(i)

0 to x
(i)
∗ . To

learn the maps, we solve the least squares problem:

Dt+1 = arg min
D̃

1

N

N∑
i=1

‖x(i)
∗ − x

(i)
t + D̃h(i)(x

(i)
t )‖22, (4)

where ‖ · ‖2 is the `2 norm. After we learn a map Dt+1,
we update each x

(i)
t using (3), then proceed to learn the

next map. This process is repeated until some terminating
conditions, such as until the error does not decrease much or
a maximum number of iterations is reached. To see why (4)
learns stationary points, we can see that for i with x

(i)
t ≈

x
(i)
∗ , (4) will force Dt+1h

(i)(x
(i)
t ) to be close to zero, thereby

inducing a stationary point around x
(i)
∗ . In practice, we use

ridge regression to learn the maps to prevent overfitting:

minimize
D̃

1

N

N∑
i=1

‖x(i)
∗ −x

(i)
t + D̃h(i)(x

(i)
t )‖22 + λ‖D̃‖2F , (5)

where ‖ · ‖F is the Frobenius norm, and λ is a hyperparam-
eter. The pseudocode for training a SUM is shown in Alg. 1.

3.2.2 Solving a new problem instance
To solve a new problem instance with an unseen function h
and an initialization x0, we update xt, t = 0, 1, . . . , with the
obtained SUM using (3) until a stationary point is reached.
However, in practice, the number of maps is finite, say T
maps. We observed in many cases that the update at the
T th iteration is still large, which means the stationary point
is still not reached, and that xT is far from the true solution.
For example, in the point cloud registration task, the rotation
between initial orientation and the solution might be so
large that we cannot obtain the solution within T iterations.
To overcome this problem, we keep updating x using the
T th map until the update is small or the maximum number
of iterations is reached. This approach makes DO different

1. Here, we use linear maps due to their simplicity and computational
efficiency, but it can be replaced by other nonlinear regressors.
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Algorithm 1 Training a sequence of update maps (SUM)

Input: {(x(i)
0 ,x

(i)
∗ ,h(i))}Ni=1, T, λ

Output: {Dt}Tt=1

1: for t = 0 to T − 1 do
2: Compute Dt+1 with (5).
3: for i = 1 to N do
4: Update x

(i)
t+1 := x

(i)
t −Dt+1h

(i)(x
(i)
t ).

5: end for
6: end for

Algorithm 2 Searching for a stationary point

Input: x0,h, {Dt}Tt=1,maxIter, ε
Output: x

1: Set x := x0

2: for t = 1 to T do
3: Update x := x−Dth(x)
4: end for
5: Set iter := T + 1.
6: while ‖DTh(x)‖ ≥ ε and iter ≤ maxIter do
7: Update x := x−DTh(x)
8: Update iter := iter + 1
9: end while

from previous works in Sec. 2.2, where the updates are only
performed up to the number of maps. Alg. 2 shows the
pseudocode for updating the parameters.

3.3 Relation to Supervised Descent Method (SDM)
SDM [19] is a SSU algorithm which uses a sequence of
linear maps to update the parameters. While this work uses
similar learning and update rules, DO subsumes [19] in the
following key issues: (i) SDM was inspired as a method
for solving nonlinear least-squares problems, but this claim
was not verified. In this work, we mathematically relate DO
to generalized convexity (Sec. 4.2), allowing us to interpret
DO as imitating gradient descent to solve some nonconvex
problems with an unknown cost function. (ii) We provide a
framework for deriving feature h for different tasks (Sec. 5),
unlike SDM and other SSU work where h needs to be
designed ad hoc. (iii) SDM views the use of multiple maps
as heuristic while we provide a theoretical result explaining
the necessity and benefits of using multiple maps (Sec. 4.1).

4 THEORETICAL ANALYSIS OF DO
In this section, we analyze the theoretical properties of DO.
Specifically, we discuss the conditions for the convergence
of the training error, and the relation between DO and
generalized convexity.

4.1 Convergence of training error
Here, we show that under weak assumptions on h(i), we
can learn a SUM that updates x

(i)
0 to x

(i)
∗ , i.e., the training

error converges to zero. First, we define the monotonicity at a
point condition:

Definition 1. (Monotonicity at a point) A function f :Rp→Rp is
(i) monotone at x∗ ∈ Rp if for any x ∈ Rp,

(x− x∗)
>f(x) ≥ 0, (6)

(ii) strictly monotone at x∗ ∈ Rp if for any x ∈ Rp,

(x− x∗)
>f(x) ≥ 0, (7)

where the equality holds only at x = x∗,
(iii) strongly monotone at x∗ ∈ Rp if there exists m > 0

such that for any x ∈ Rp,

(x− x∗)
>f(x) ≥ m‖x− x∗‖22. (8)

It can be seen that if f is strongly monotone at x∗ then
f is strictly monotone at x∗, and if f is strictly monotone at
x∗ then f is monotone at x∗. With the above definition, we
obtain the following result:

Theorem 1. (Convergence of SUM’s training error) Given a
training set {(x(i)

0 ,x
(i)
∗ ,h(i))}Ni=1, if there exists a linear map

D̂ ∈ Rp×f where D̂h(i) is strictly monotone at x(i)
∗ for all i, and

if there exists some i where x(i)
t 6= x

(i)
∗ , then the update rule:

x
(i)
t+1 = x

(i)
t −Dt+1h

(i)(x
(i)
t ), (9)

with Dt+1 ⊂ Rp×f obtained from (4), guarantees that the
training error strictly decreases in each iteration:

N∑
i=1

‖x(i)
∗ − x

(i)
t+1‖22 <

N∑
i=1

‖x(i)
∗ − x

(i)
t ‖22. (10)

Moreover, if D̂h(i) is strongly monotone at x(i)
∗ , and if there exist

L > 0, H ≥ 0 such that

‖D̂h(i)(x(i))‖22 ≤ H + L‖x(i)
∗ − x(i)‖22 (11)

for all i, then the training error converges to zero. If H = 0 then
the error converges to zero linearly.

The proof of Thm. 1 is provided in the appendix. In
words, Thm. 1 says that if each instance i is similar in
the sense that each D̂h(i) is strictly monotone at x(i)

∗ , then
sequentially learning the optimal maps with (4) guarantees
that the training error strictly reduces in each iteration. If
D̂h(i) is strongly monotone at x(i)

∗ and upperbounded then
the error converges to zero. Note that h(i) is not required to
be differentiable or continuous. Xiong and De la Torre [19]
also present a convergence result for a similar update rule,
but they show the strict decrease of error of a single function
h under a single ideal map. It also requires an additional
condition called ‘Lipschitz at a point.’ This condition is
necessary for bounding the norm of the map, otherwise
the update can be too large, preventing the reduction in
error. In contrast, Thm. 1 shows the convergence of multiple
functions under the same SUM learned from the data, where
each learned map Dt can be different from the ideal map D̂.
To ensure reduction of error, Thm. 1 also does not require
the ‘Lipschitz at a point’ as the norms of the maps are
adjusted based on the training data. Meanwhile, to ensure
the convergence to zero, Thm. 1 requires an upperbound
which can be thought of as a relaxed version of ‘Lipschitz
at a point’ (note that D̂h(i)(x

(i)
∗ ) does not need to be 0p).

These weaker assumptions have an important implication as
it allows robust discontinuous features, such as HOG in [19],
to be used as h(i). Finally, we wish to point out that Thm. 1
guarantees the reduction in the average error, not the error
of each instance i.
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4.2 Relation to generalized convexity
In this section, we explore the relation between DO and gen-
eralized convexity. Specifically, we show that monotonicity-
at-a-point is a generalization of monotonicity and pseu-
domonotonocity, which are the properties of the gradient of
convex and pseudoconvex functions [30], [31]. Understand-
ing this relation leads to a framework for designing h in
Sec. 5. We begin this section by providing definitions and
propositions relating generalized convexity and monotonic-
ity, then we provide our result in the end.

A pseudoconvex function is defined as follows.

Definition 2. (Pseudoconvexity [31]) A differentiable function
f : Rp → R is

(i) pseudoconvex if for any distinct points x,x′ ∈ Rp,

(x− x′)>∇f(x′) ≥ 0 =⇒ f(x) ≥ f(x′), (12)

(ii) strictly pseudoconvex if for any distinct points x,x′ ∈
Rp,

(x− x′)>∇f(x′) ≥ 0 =⇒ f(x) > f(x′), (13)

(iii) strongly pseudoconvex if there exists m > 0 such that
for any distinct points x,x′ ∈ Rp,

(x−x′)>∇f(x′) ≥ 0 =⇒ f(x) ≥ f(x′)+m‖x−x′‖22. (14)

Fig. 2d shows examples of pseudoconvex functions. In
essence, pseudoconvex functions are differentiable func-
tions where the sublevel sets are convex and all stationary
points are global minima [32]. Pseudoconvex functions gen-
eralize convex functions: all differentiable convex functions
are pseudoconvex. Pseudoconvex functions are used as
penalty functions for their stronger robustness than convex
ones [6], [8], [33]. Next, we introduce pseudomonotonicity.

Definition 3. (Pseudomonotonicity [31]) A function f : Rp →
Rp is

(i) pseudomonotone if for any distinct points x,x′ ∈ Rp,

(x− x′)>f(x′) ≥ 0 =⇒ (x− x′)>f(x) ≥ 0, (15)

(ii) strictly pseudomonotone if for any distinct points
x,x′ ∈ Rp,

(x− x′)>f(x′) ≥ 0 =⇒ (x− x′)>f(x) > 0, (16)

(iii) strongly pseudomonotone if there exists m > 0 such
that for any distinct points x,x′ ∈ Rp,

(x−x′)>f(x′) ≥ 0 =⇒ (x−x′)>f(x) ≥ m‖x−x′‖22. (17)

It can also be shown that monotone (resp., strictly,
strongly) functions are pseudomonotone (resp., strictly,
strongly) [31]. The following proposition provides a rela-
tion between the gradients of pseudoconvex functions and
pseudomonotonicity.

Proposition 1. (Convexity and monotonicity [31]) A differen-
tiable function f : Rp → R is pseudoconvex (resp., strictly,
strongly) if and only if its gradient is pseudomonotone (resp.,
strictly, strongly).

Next, we provide our result on the relation between
monotonicity-at-a-point and pseudomonotonicity.

Proposition 2. (Pseudomonotonicity and monotonicity at a
point) If a function f : Rp → Rp is pseudomonotone (resp.,

strictly, strongly) and f(x∗) = 0p, then f is monotone (resp.,
strictly, strongly) at x∗.

The converse of the proposition is not true. For example,
f(x) = [x1x

2
2+x1, x2x

2
1+x2]> is strictly monotone at 02, but

not strictly pseudomonotone (counterexample at x = (1, 2)
and y = (2, 1)). Prop. 2 shows that monotonicity-at-a-point
is a generalization of pseudomonotonicity, implying that the
conditions in Thm. 1 are weaker than the conditions for the
gradient maps of pseudoconvex and convex functions.

5 DESIGNING h

The function h which provides information about each
problem instance is crucial for solving a problem. In this sec-
tion, we describe a framework to design h for solving a class
of problem based on our analysis in Sec. 4. We are motivated
by the observation that many problems in computer vision
aim to find x such that gj(x) = 0d, j = 1, . . . , J , where
gj : Rp → Rd models the problem of interest (see Sec. 2.1).
To solve such problem, one may formulate an optimization
problem of the form

minimize
x

Φ(x) =
1

J

J∑
j=1

ϕ(gj(x)), (18)

where ϕ : Rd → R is a penalty function, e.g., sum of
squares, `1 norm, etc. If Φ(x) is differentiable, then we can
use gradient descent to find a minimum and returns it as
the solution. The choice of ϕ has a strong impact on the
solution in terms of robustness to different perturbations,
and it is not straightforward to select ϕ that will account
for perturbations in real data. The following framework
is based on the concept of using training data to learn
the update directions that mimic gradient descent of an
unknown ϕ, thereby bypassing its manual selection.

5.1 h from the gradient of an unknown penalty function

For simplicity, we assume Φ(x) is differentiable, but the
following approach also applies when it is not, namely
when it is subdifferentiable. Let us observe its derivative:

∂Φ(x)

∂x
=

1

J

∂

∂x

J∑
j=1

ϕ(gj) =
1

J

J∑
j=1

[
∂gj
∂x

]> ∂ϕ(gj)

∂gj
, (19)

where we express gj(x) as gj to reduce notation clutter. We
can see that the form of ϕ affects only the last term in the
RHS of (19), while the Jacobian ∂gj

∂x does not depend on it.
Since different ϕ’s are robust to different perturbations, this
last term determines the robustness of the solution. Here, we
will use DO to learn this term from a set of training data.

In order to do so, we need to express (19) as Dh. First,
we rewrite (19) as the update vector ∆x, where we replace
the derivative of ϕ with a generic function φ : Rd → Rd:

∆x =
1

J

J∑
j=1

[
∂gj
∂x

]>
φ(gj) (20)

=
1

J

J∑
j=1

d∑
k=1

[
∂gj
∂x

]>
k,:

[φ(gj)]k, (21)
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where [Y]k,: is row k of Y, and [y]k is element k of y. We
then rewrite (21) as the following convolution:

∆x =
1

J

J∑
j=1

d∑
k=1

[
∂gj
∂x

]>
k,:

∫
Rd

[φ(v)]kδ(v − gj)dv, (22)

where δ(v) is the Dirac delta function. It can be seen that (22)
is equivalent to (19), while being linear in φ. This allows
us to learn φ using linear least squares. To do so, we will
express (22) in the form of Dh. For simplicity, we will look
at the element l of ∆x:

[∆x]l =
1

J

J∑
j=1

d∑
k=1

[
∂gj
∂x

]
k,l

∫
Rd

[φ(v)]kδ(v − gj)dv, (23)

=

d∑
k=1

∫
Rd

[φ(v)]k

(
1

J

J∑
j=1

[
∂gj
∂x

]
k,l

δ(v − gj)

)
dv, (24)

=

d∑
k=1

∫
Rd

D(v, k)h(v, k, l;x)dv. (25)

Eq. 25 expresses [∆x]l as the inner product between D and
h over v and k, where

D(v, k) = [φ(v)]k, (26)

h(v, k, l;x) =
1

J

J∑
j=1

[
∂gj
∂x

]
k,l

δ(v − gj). (27)

The following result discusses the convergence of the train-
ing error when h in (27) is used.

Proposition 3. (Convergence of the training error with
an unknown penalty function) Given a training set
{(x(i)

0 ,x
(i)
∗ , {g(i)

j }
Ji
j=1)}Ni=1, where x

(i)
0 ,x

(i)
∗ ∈ Rp and

g
(i)
j : Rp → Rd differentiable, if there exists a function ϕ : Rd →

R such that for each i, 1
Ji

∑Ji
j=1 ϕ(g

(i)
j (x(i))) is differentiable

strictly pseudoconvex with the minimum at x(i)
∗ , then the training

error of DO with h from (27) strictly decreases in each iteration.
Alternatively, if 1

Ji

∑Ji
j=1 ϕ(g

(i)
j (x(i))) is differentiable strongly

pseudoconvex with Lipschitz continuous gradient, then the train-
ing error of DO converges linearly to zero.

Under similar conditions, we can also show the same
convergence results for 1

Ji

∑Ji
j=1 ϕ(g

(i)
j (x(i))) that is nondif-

ferentiable strictly and strongly convex functions. Roughly
speaking, Prop. 3 says that if there exists a penalty function
ϕ such that for each i the global minimum of (18) is at
x

(i)
∗ with no other local minima, then using (27) allows

us to learn {Dt} for DO. Note that we do not need to
explicitly know what such penalty function is. Thus, we can
say that using (27) is equivalent to learning a surrogate of
the gradient of an unknown cost function. This illustrates
the potential of DO as a tool for solving a broad class of
problems where the penalty function ϕ is unknown.

5.2 Computing h

Eq. (27) expresses h as a function. To compute h in practice,
we need to express it as a vector. To do so, we will convert
h in (27) into a discrete grid, then vectorize it. Specifically,
we first discretize δ(v − gj) into a d-dimensional grid with
r bins in each dimension, where a bin evaluates to 1 if
gj is discretized to that bin, and 0 for all other bins. Let

us denote this grid as δ̄j , and let γ : R → {1, . . . , r} be a
function where γ(y) returns the index that y discretizes to.
We can express the vectorized δ̄j as the following Kronecker
product of standard basis vectors:

vec(δ̄j) = eγ([gj ]1)⊗· · ·⊗eγ([gj ]d) =
d⊗

α=1

eγ([gj ]α) ∈ {0, 1}r
d

.

(28)
With this discretization, we can express h in (27) in a discrete
form as

h(k, l;x) =
1

J

J∑
j=1

[
∂gj
∂x

]
k,l

d⊗
α=1

eγ([gj ]α). (29)

By concatenating h(k, l;x) over k and l, we obtain the final
form of h as

h(x) =
1

J

J∑
j=1

p⊕
l=1

d⊕
k=1

[
∂gj
∂x

]
k,l

d⊗
α=1

eγ([gj ]α), (30)

where
⊕

denotes vector concatenation. The dimension of h
is pdrd. We show how to apply (30) to applications in Sec. 6.
Note that the above approach is one way of designing h to
use with SUM. It is possible to use different form of h (e.g.,
see Sec. 6.2), or replace D with a nonlinear map.

6 EXPERIMENTS

In this section, we first provide an intuition into DO with a
synthetic problem, then we apply DO to three computer vi-
sion tasks: 3D point cloud registration, camera pose estima-
tion, and image denoising. All experiments were performed
in MATLAB on a single thread on an Intel i7-4790 3.60GHz
computer with 16GB memory.

6.1 Optimization with unknown 1D cost functions
In this experiment, we demonstrate DO’s potential in solv-
ing 1D problems without an explicit cost function. Specifi-
cally, given a set of number X = {x1, x2, . . . , xJ}, we are
interested in finding the solution x̂ of the problem

gj(x̂) = 0 = x̂− xj , j = 1, . . . , J. (31)

A common approach to solve this problem is to solve the
optimization

P : minimize
x̂:x̂=xj+εj

1

J

J∑
j=1

ϕ (εj) ≡ minimize
x̂

1

J

J∑
j=1

ϕ (x̂− xj) ,

(32)
for some function ϕ. The form of ϕ depends on the assump-
tion on the distribution of εi, e.g., the maximum likelihood
estimation for i.i.d. Gaussian εj would use ϕ(x) = x2. If the
an explicit form of ϕ is known, then we can compute x̂∗
in closed form (e.g., ϕ is squared value or absolute value)
or with an iterative algorithm. However, using a ϕ that
mismatches with the underlying distribution of εj could
lead to an optimal, but incorrect, solution x̂∗. Here, we will
use DO to solve for x̂∗ from a set of training data.

For this problem, we defined 6 ϕβ ’s as follows:

ϕ1(x) = |x| ϕ4(x) = |x|0.7

ϕ2(x) = 0.35|x|4.32 + 0.15|x|1.23 ϕ5(x) = 1− exp(−2x2)

ϕ3(x) = (3 + sgn(x))x2/4 ϕ6(x) = 1− exp(−8x2)
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Figure 2. Learning to solve unknown cost functions. (a-c) show three
convex functions, their gradients, and the learned DT for each function.
(d-f) show similar figures for pseudoconvex functions. (g) shows training
error in each step t. (h) shows the squared norm of the maps Dt. (i)
shows the first map of each function.

The first three ϕi’s are convex, where ϕ1 is a nonsmooth
function; ϕ2 is a combination of different powers; ϕ3 is an
asymmetric function (i.e., ϕ3(x) 6= ϕ3(−x)). The latter three
ϕi’s are pseudoconvex, where ϕ4 has exponents smaller
than 1; while ϕ5 and ϕ6 are inverted Gaussian functions
with different widths. Note that the sum of pseudoconvex
functions may not be pseudoconvex and can have multiple
local minima. The graphs of the functions and their gradi-
ents2 are shown in Fig. 2a,d and Fig. 2b,e, resp. We call the
problem in (32) that uses ϕ ≡ ϕβ as Pβ .

We generate the training data for Pβ as Xβ =

{(X(i)
β , x̂

(i)
0,β , x̂

(i)
∗,β)}10000

i=1 where X(i)
β = {x(i)

1,β , . . . , x
(i)
Ji,β
} ⊂

[−1, 1]; x̂(i)
0,β = 0 is the initial estimate; and x̂(i)

∗,β is the global

minimizer of Pβ with the data X(i)
β . To find the minimizers,

we use grid search with the step size of 0.0001. We trained
the SUMs using the h in Sec. 5, which in this case is simply

h(x̂) =
1

J

J∑
j=1

eγ(x̂−xj). (33)

We use [−2, 2] as the range of x̂ − xj , and discretize it into
r = 40 bins. Let us denote the maps that was learned from
Xβ as SUMβ . To illustrate the training error, we train up to
15 maps for each β, but for test we set the number of maps
T as the last map that reduce the training RMSE more than
0.005. During test, we set ε = 10−3 and maxIter = 100.

Fig. 2c,f show the scaled maps DT for each β. We can
see that the maps resemble the gradients of their respective
functions, suggesting that DO can learn the gradients from
training data without explicit access to the cost functions.
The reason that SUMβ learns the gradient is because the
stationary points need to satisfy DTh(x̂) ≈ 0 =

∑
j ∇ϕ(x̂−

2. Here, we abuse the word gradient to include (generalized) subdif-
ferential for nonsmooth functions [34].

Table 1
MAE of solving unknown cost functions. Best results in underline bold,

and second best in bold.

Pβ
fminunc SUMβP1 P2 P3 P4 P5 P6

P1 .0000 .0675 .1535 .0419 .0707 .2044 .0137
P2 .0675 .0000 .1445 .1080 .1078 .2628 .0145
P3 .1535 .1445 .0000 .1743 .1657 .2900 .0086
P4 .0493 .1009 .1682 .0457 .0929 .1977 .0325
P5 .0707 .1078 .1657 .0823 .0000 .1736 .0117
P6 .2098 .2515 .2791 .1905 .2022 .1161 .0698

xj). It should be noted that the first maps for all β in Fig. 2i
are different from their T th maps. This is because the first
maps try to move x̂(i)

0 as close to x̂(i)
∗ as possible and thus

disregard the placement of the stationary point. The training
errors in Fig. 2g show that convex functions are easier
to learn than nonconvex ones. This is because nonconvex
functions may have multiple local minima, which means
there may not exist an ideal map where all training data
are monotone at their solutions, thus x̂(i)

t may get stuck at
a wrong stationary point. Fig. 2h shows that the map have
decreasing norms, which represents reducing step sizes as
the estimates approach the solutions.

We also perform an experiment on unseen sets of data,
where we compare the global minimizer x̂∗,β of Pβ of
each test data against the solution from fminunc of all
Pω, ω = 1, . . . , 6, and the solution of SUMβ . Table 1 shows
the MAE over 1000 test sets. We can see that DO can
approximate the solution better than using incorrect cost
functions. An interesting point to note is that DO was able to
solve nonconvex problems better than fminunc, suggesting
DO can avoid some local minima and more often terminates
closer to the global minimum.

We summarize this experiment in 4 points. (i) We show
that DO can learn to mimic gradient of unknown penalty
functions. (ii) A very important point to note is that a single
training data can have multiple ground truths, and DO
will learn to find the solution based on the ground truths
provided during the training. Thus, it is unreasonable to use
DO that, say, trained with the data of P1 and hope to get the
minimizer of P2 as the solution. (iii) A practical implication
of this demonstration is that if we optimize a wrong cost
function then we may obtain a bad optimum as solution,
and it can be more beneficial to obtain training data and
learn to solve for the solution directly. (iv) We show that
for nonconvex problems, DO has the potential to skip local
minima and arrive at a better solution than that of fminunc.

6.2 3D point cloud registration
In this section, we perform experiments on the task of
3D point cloud registration. The problem can be stated
as follows: Let M ∈ R3×NM be a matrix containing 3D
coordinates of one shape (‘model’) and S ∈ R3×NS for the
second shape (‘scene’), find the rotation and translation that
registers S to M. Here, we briefly describe our parametriza-
tion and experiments. For more details, please see [25].

6.2.1 DO parametrization and training
We use Lie Algebra [35] to parametrize x, which represents
rotation and translation, because it provides a linear space
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*DO's training time: 236 sec.

Figure 3. Results of 3D registration with synthetic data under different perturbations. (Top) Examples of scene points with different perturbations.
(Middle) Success rate. (Bottom) Computation time.

with the same dimensions as the degrees of freedom of
our parameters. For h, we design it as a histogram that
indicates the weights of scene points on the ‘front’ and the
‘back’ sides of each model point based on its normal vector.
Let na ∈ R3 be a normal vector of the model point ma

computed from its neighbors; T (y;x) be a function that
applies rigid transformation with parameter x to vector y;
S+
a = {sb : n>a (T (sb;x) − ma) > 0} be the set of scene

points on the ‘front’ of ma; and S−a contains the remaining
scene points. We define h : R6 × R3×NS → R2NM as:

[h(x;S)]a =
1

z

∑
sb∈S

+
a

exp

(
1

σ2
‖T (sb;x)−ma‖2

)
, (34)

[h(x;S)]a+NM =
1

z

∑
sb∈S

−
a

exp

(
1

σ2
‖T (sb;x)−ma‖2

)
, (35)

where z normalizes h to sum to 1, and σ controls the width
of the exp function. h can be precomputed to speed up
processing time (see [25]).

Given a model shape M, we first normalized the data
to lie in [−1, 1], and generated the scene models as training
data by uniformly sampling with replacement 400 to 700
points from M. Then, we applied the following perturba-
tions: (i) Rotation and translation: We randomly rotated the
model within 85 degrees, and added a random translation in
[−0.3, 0.3]3. These transformations were used as the ground
truth x∗, with x0 = 06 as the initialization. (ii) Noise and
outliers: Gaussian noise with standard deviation 0.05 was
added to the sample. Then we added two types of outliers:
sparse outliers (random 0 to 300 points within [−1, 1]3); and
structured outliers (a Gaussian ball of 0 to 200 points with
the standard deviation of 0.1 to 0.25). Structured outliers is
used to mimic other dense object in the scene. (iii) Incomplete

shape: We used this perturbation to simulate self occlusion
and occlusion by other objects. This was done by uniformly
sampling a 3D unit vector u, then projecting all sample
points to u, and removing the points with the top 40%
to 80% of the projected values. For all experiments, we
generated 30000 training samples, and trained a total of
T = 30 maps for SUM with λ = 3 × 10−4 in (5) and
σ2 = 0.03 in (34) and (35), and set the maximum number of
iterations to 1000.

6.2.2 Baselines and evaluation metrics

We compared DO with two point-based approaches (ICP [1]
and IRLS [5]) and two density-based approaches (CPD [36]
and GMMReg [37]). The codes for all methods were down-
loaded from the authors’ websites, except for ICP where
we used MATLAB’s implementation. For IRLS, the Huber
penalty function was used.

We used the registration success rate and the compu-
tation time as performance metrics. We considered a reg-
istration to be successful when the mean `2 error between
the registered model points and the corresponding model
points at the ground truth orientation was less than 0.05 of
the model’s largest dimension.

6.2.3 Synthetic data

We performed synthetic experiments using the Stanford
Bunny model [38] (see Fig. 3). We used MATLAB’s
pcdownsample to select 472 points from 36k points as the
model M. We evaluated the performance of the algorithms
by varying five types of perturbations: (i) the number of
scene points ranges from 100~4000 [default = 200~600]; (ii)
the standard deviation of the noise ranges between 0~0.1
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Figure 4. Results of 3D registration with range scan data. (a) example
3D model (‘chef’). (b) Example of a 3D scene. We include surface
rendering for visualization purpose. (c) Results of the experiment. (d)
shows an example of registration steps of DO. The model was initialized
60 degrees from the ground truth orientation with parts of the model
intersecting other objects. In addition, the target object is under 70%
occlusion, making this a very challenging case. However, as iteration
progresses, DO is able to successfully register the model.
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Figure 5. Result for object tracking in 3D point cloud. (a) shows the 3D
models of the kettle and the hat. (b) shows tracking results of DO and
ICP in (top) 3D point clouds with the scene points in blue, and (bottom)
as reprojection on RGB image. Each column shows the same frame.

[default = 0]; (iii) the initial angle from 0 to 180 degrees [de-
fault = 0~60]; (iv) the number of outliers from 0~600 [default
= 0]; and (v) the ratio of incomplete scene shape from 0~0.7
[default = 0]. While we perturbed one variable, the values
of the other variables were set to the default values. Note
that the scene points were sampled from the original 36k
points, not from M. All generated scenes included random
translation in [−0.3, 0.3]3. A total of 50 rounds were run for
each variable setting. Training time for DO was 236 seconds

(incl. training data generation and precomputing features).
Examples of test data and the results are shown in Fig. 3.

ICP required low computation time for all cases, but it had
low success rates because it tended to get trapped in the
local minimum closest to its initialization. CPD generally
performed well except when number of outliers was high,
and it required a high computation time. IRLS was faster
than CPD, but it did not perform well with incomplete
targets. GMMReg had the widest basin of convergence, but
it did not perform well with incomplete targets and required
long computation time for the annealing steps. For DO,
its computation time was much lower than those of the
baselines. Notice that DO required higher computation time
for larger initial angles since more iterations were required
to reach a stationary point. In terms of the success rate, we
can see that DO outperformed the baselines in almost all
test scenarios. This result was achievable because DO does
not rely on any specific cost functions, which generally are
modelled to handle a few types of perturbations. On the
other hand, DO learned to cope with the perturbations from
training data, allowing it to be significantly more robust
than other approaches.

6.2.4 Range-scan data

In this section, we performed 3D registration experiment
on the UWA dataset [39]. This dataset contains 50 cluttered
scenes with 5 objects taken with the Minolta Vivid 910
scanner in various configurations. All objects are heavily
occluded (60% to 90%). We used this dataset to test our al-
gorithm under unseen test samples and structured outliers,
as opposed to sparse outliers in the previous section. The
dataset includes 188 ground truth poses for four objects.
We performed the test using all the four objects on all 50
scenes. From the original model, ∼300 points were sampled
by pcdownsample to use as M (Fig. 4a). We also down-
sampled each scene to ∼1000 points (Fig. 4b). We initialized
the model from 0 to 75 degrees from the ground truth
orientation with random translation within [−0.4, 0.4]3. We
ran 50 initializations for each parameter setting, resulting
in a total of 50 × 188 rounds for each data point. Here, we
set the inlier ratio of ICP to 50% as an estimate for self-
occlusion. Average training time for DO was 260 seconds
for all object models.

The results and examples for the registration with DO
are shown in Fig. 4c and Fig. 4d, resp. IRLS, CPR, and
GMMReg has very low success in almost every scene.
This was because structured outliers caused many regions
to have high density, creating false optima for CPD and
GMMReg which are density-based approaches, and also
for IRLS which is less sensitive to local minima than ICP.
When initialized close to the solution, ICP could register
fast and provided some correct results because it typically
terminated at the nearest, and correct, local minimum. On
the other hand, DO provided a significant improvement
over ICP, while maintaining low computation time. We
emphasize that DO was trained with synthetic examples
of a single object and it had never seen other objects from
the scenes. This experiment shows that we can train DO
with synthetic data, and apply it to register objects in real
challenging scenes.
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6.2.5 Application to 3D object tracking
In this section, we explore the use of DO for 3D object
tracking in 3D point clouds. We used Microsoft Kinect to
capture RGBD videos at 20fps, then reconstruct 3D scenes
from the depth images. We used two reconstructed shapes,
a kettle and a hat, as the target objects. These two shapes
present several challenges besides self occlusion: the kettle
has a smooth surface with few features, while the hat is flat,
making it hard to capture from some views. We recorded the
objects moving through different orientations, occlusions,
etc. The depth images were subsampled to reduce compu-
tation load. To perform tracking, we manually initialized
the first frame, while subsequent frames were initialized
using the pose from the previous frames. Here, we only
compared DO against ICP because IRLS gave similar results
to those of ICP but could not track rotation well, while
CPD and GMMReg were much slower and failed to handle
structured outliers in the scene (similar to Sec. 6.2.4). Fig. 5b
shows examples of the results. It can be seen that DO can
robustly track and estimate the pose of the objects accurately
even under heavy occlusion and structured outliers, while
ICP tended to get stuck with other objects. The average
computation time for DO was 40ms per frame. This shows
that DO can be used as a robust real-time 3D object tracker.

Failure case: We found DO failed to track the target object
when the object was occluded at an extremely high rate, and
when the object moved too fast. When this happened, DO
would either track another nearby object or simply stay at
the same position as in the previous frame.

6.3 Camera Pose Estimation
The goal of camera pose estimation is to estimate the relative
pose between a given 3D and 2D correspondence set. Given
{(pj , sj)}Jj=1 ⊂ R2 × R3 where pj is 2D image coordinate
and sj is the corresponding 3D coordinate of feature j, we
are interested in estimating the rotation matrix R ∈ SO(3)
and translation vector t ∈ R3, such that

p̃j ≡ K
[
R t

]
s̃j , j = 1, . . . , J, (36)

where tilde denotes homogeneous coordinate, K ∈ R3×3 is
a known intrinsic matrix, and ≡ denotes equivalence up to
a scaling factor. General approaches for camera pose esti-
mation involve solving nonlinear problems [40], [41], [42],
[43]. Most of existing approaches assume that there are no
outlier matches in the correspondence set. When outliers are
present, they rely on RANSAC [44] to select the inliers. One
approach that does not rely on RANSAC is REPPnP [45]. It
finds the camera pose by solving for the robust nullspace
of a matrix that represents algebraic reprojection error. In
this section, we will use DO to find a set of inliers, then
postprocess the inliers to obtain the camera pose. We show
that our algorithm is more robust than REPPnP while being
faster than RANSAC-based approaches.

6.3.1 DO parametrization and training
To obtain the set of inliers, we solve for a matrix X =
[x1,x2,x3]> ∈ R3×4 such that the geometric reprojection
error [3] is zero (assuming pj is calibrated):

gj(X) = pj −
[

x>1 s̃j/x
>
3 s̃j

x>2 s̃j/x
>
3 s̃j

]
= 02, j = 1, . . . , J. (37)

The optimization for solving X is formulated by summing
the error over the correspondences:

minimize
X

1

J

J∑
j=1

ϕ(gj(X)), (38)

where ϕ is a penalty function. Following the derivation in
Sec. 5, the h function can be derived as:

h(X) =
1

J

J∑
j=1

12⊕
l=1

2⊕
k=1

[
∂gj(X)

∂vec(X)

]
lk

2⊗
α=1

eγ([gj(X)]α). (39)

After computing (39), we normalize it to a unit vector and
use it our feature. Note that, although the Jacobian matrix of
gj has 24 elements, it has only 12 degrees of freedom. Thus,
we need to consider only its 12 values instead of all 24.

We generated DO’s training data as follows. Each image
was assumed to be 640 by 480 pixels. Generating 3D shapes:
A 3D shape, composing of 100 to 500 points, was generated
as random points in one of the following shapes: (i) in a
box; (ii) on a spherical surface; and (iii) on multiple planes.
For (iii), we randomly generated normal and shift vectors
for 2 to 4 planes, then added points to them. All shapes
were randomly rotated, then normalized to fit in [−1, 1]3.
Generating camera matrix: We randomized the focal length
in [600, 1000] with the principal point at the center of the
image. We sampled the rotation matrix from SO(3), while
the translation was generated such that the projected 3D
points lie in the image boundary. Generating image points:
We first projected the 3D shape using the generated camera
parameters, then randomly selected 0% to 80% of the image
points as outliers by changing their coordinates to random
locations. All random numbers were uniformly sampled.
No noise was added for the training samples. To reduce the
effect of varying sizes of images and 3D points, we normal-
ized the inputs to lie in [−0.5, 0.5].3 Since the camera matrix
is homogeneous, we normalize it to have a unit Frobenius
norm. We use [−1, 1] as the range for each dimension of
gj , and discretize it to 10 bins. We generated 50000 training
samples, and trained 30 maps with λ = 10−4. The training
time was 252 seconds.

We compared 3 DO-based approaches: DO,
DO+P3P+RANSAC, and DO+RPnP. When DO returned x
as result, we transformed it back to a 3 × 4 matrix M, then
projected the first three columns to SO(3) to obtain the
rotation matrix. For DO+P3P+RANSAC and DO+RPnP, we
used M from DO to select matches with small reprojection
error as inliers, then calculated the camera parameters using
P3P+RANSAC [42] and RPnP [43] (without RANSAC).

6.3.2 Baselines and evaluation metrics
We compared our approach against 5 baselines. EPnP [40]
and REPPnP [45] are deterministic approaches. The other
three baselines, P3P+RANSAC [42], RPnP+RANSAC [43],
and EPnP+RANSAC [40] rely on RANSAC to select inliers
and use the respective PnP algorithms to find the camera
parameters. The number of matches used in each algo-
rithm is 3, 4, and 6, resp. We used the code from [45] as
the implementation for the PnP algorithms. The RANSAC
routine automatically determines the number of iterations

3. Camera matrix needs to be transformed accordingly, similar to [46].
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Figure 6. Results for PnP with synthetic data. Varying parameters are (a) outlier ratio, (b) noise SD, and (c) number of points.

(a) BRISK matches (b) DO [17.24 ms]

(c) DO+P3P+RANSAC [21.64 ms] (d) DO+RPnP [18.99 ms] (e) P3P+RANSAC [159.72 ms]

Figure 7. Results for camera pose estimation on real image. (a) Feature
matches. Left and right images contain 2D points and projection of 3D
points, resp. (b-d) Projected shape with average time over 100 trials.

to guarantee 99% chance of obtaining the inlier set. The
performance are measured in terms of (i) mean computation
time, (ii) mean rotation angle error, and (iii) mean inlier
reprojection error.

6.3.3 Experiments and results

We first performed experiments using synthetic data. We
generated the test data using the same approach as training
samples. We vary 3 parameters: (i) the number of points
from 200~2000 [default = 400]; (ii) the ratio of outliers from
0%~90% [default = 30%]; and (iii) the noise standard devi-
ation from 0~10 pixels [default = 2]. When one parameter
is varied, the other two parameters were set to the default
values. We performed a total of 500 trials for each setting.

Fig. 6 shows the results of the experiments. In Fig. 6a, we
can see that RANSAC-based approaches could obtain accu-
rate results, but their computation time grows exponentially
with the outlier ratio. On the other hand, EPnP and REPPnP
which are deterministic performed very fast, but they are
not robust against outliers even at 10%. For our approaches,
it can be seen that DO alone did not obtain good rotations
since it did not enforce any geometric constraints. However,
DO could accurately align the 3D inlier points to their image

points as can be seen by its low inlier reprojection errors.
This is a good indication that DO can be used for iden-
tifying inliers. By using this strategy, DO+P3P+RANSAC
could obtain accurate rotation up to 80% of outliers while
maintaining low computation time. In contrast, DO+RPnP
could obtain very accurate rotation when there were small
outliers, but the error increases as it was easier to mistakenly
include outliers in the post-DO step. For the noise case
(Fig. 6b), DO+RPnP has constant time for all noise levels
and could comparatively obtain good rotations under all
noise levels, while DO+P3P+RANSAC required exponen-
tially increasing time as points with very high noise may
be considered as outliers. Finally, in Fig. 6c, we can see that
computation times of all approaches grow linearly with the
number of points, but those of DO approaches grow with
faster rate, which is a downside of our approach.

Next, we performed experiments on real images. We
used an image provided with the code in [41]. Fig. 7a shows
the input matches. Notice that the matches are not one-to-
one. Although DO is a deterministic algorithm, different
configurations of the same 3D shape can affect the result.
For example, we might consider either a 3D shape or its
90◦ rotated shape as the initial configuration with the iden-
tity transformation. To measure this effect, we performed
100 trials for DO-based algorithms, where we randomly
rotate the 3D shape as the initial configuration. Similarly,
we performed 100 trials for P3P+RANSAC. Fig. 7b-e show
the results. It can be seen that DO can obtain a rough
estimate of the camera pose, then DO+P3P+RANSAC and
DO+RPnP can postprocess to obtain accurate pose. While
P3P+RANSAC also obtained the correct pose, it required 8
times the computation time of DO-based approaches. (More
results are provided in the appendix.)

Like all learning-based approaches, DO may fail when
tested with data that are not well represented in training. As
it is not straightforward to generate training data to cover
all possible cases (e.g., all possible depths and perturbation),
this could potentially lead to DO’s failure to obtain the
correct poses. On the other hand, PnP solvers which directly
solve the geometric problem can reliably obtain the correct
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poses when combined with the robustness of RANSAC (if
enough computation time is given).

6.4 Image Denoising
In this final experiment, we demonstrate the potential of DO
for image denoising. This experiment illustrates the poten-
tial of DO in multiple ways. First, we show that an SUM
trained in a simple fashion can compare favorably against
state-of-the-art total variation (TV) denoising algorithms
for impulse noises. Second, we show that a SUM can be
used to estimate a large and variable number of parameters
(number of pixels in this case). This differs from previous
experiments that used DO to estimate a small, fixed number
of parameters. Third, we show that it is simple for DO to
incorporate additional information, such as intensity mask,
during both training and testing. Finally, we demonstrate
the effect of training data on the results.

6.4.1 DO parametrization and training
We based our design of h on the TV denoising model [47],
where we replace the penalty functions on both the data
fidelity term and the regularization term with unknown
functions ϕ1 and ϕ2:

minimize
{xi}

∑
i∈Ω

(
miϕ1(xi − ui) +

∑
j∈N (i)

ϕ2(xi − xj)
)
, (40)

where Ω is the image support, ui ∈ [0, 1] is the intensity at
pixel i of the noisy input image,mi ∈ {0, 1} is a given mask,
and N (i) is the set of neighboring pixels of i. The goal is to
estimate the clean image {xi}.

In order to allow the learned SUM to work with images
of different size, we will treat each pixel i independently:
Each pixel will have its own estimate xi.4 Since we have two
error terms, we follow Sec. 5 and concatenate the indicator
of the two errors to form h as

h(xi) =

mie
>
γ(xi−ui),

∑
j∈N (i)

e>γ(xi−xj)

> . (41)

The first part of h accounts for the data fidelity term, while
the second part accounts for the regularization term.

To train DO, we randomly sample 1000 patches of size
40 × 40 to 80 × 80 from the training image, then randomly
replace 0% to 80% of the pixels with impulse noise to create
noisy images. We trained 3 SUMs: (i) DO-SP, where we used
salt-pepper (SP) impulse noise in {0, 1}; (ii) DO-RV, where
we used random-value (RV) impulse noise in [0, 1]; and (iii)
DO-SPRV, where 50% of the images have RV noise, while
the rest have SP noise. This is to study the effect of training
data on the learned SUMs. Following [48], for images with
SP noise, we set the mask mi = 0 for pixels with intensity 0
and 1 and mi = 1 for others. For images with RV noise, we
set mi = 1 for all pixels as we cannot determine whether a
pixel is an impulse noise or not. The intensity of each pixel
in the noisy image is treated as initial estimate x0, and x∗
is its noise-free counterpart. We use [−2, 2] as the ranges for
both xi − ui and xi − xj , and discretize them to 100 bins.
We train a total of 30 maps for DO with λ = 10−2. The

4. The idea is similar to parameter sharing in deep neural network.
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Figure 8. Results for image denoising for (a) salt-pepper impulse noise,
and (b) random-value impulse noise.

training time took on average 367 seconds. During test, we
use maxIter = 200 as the stopping criteria.

6.4.2 Baseline and evaluation metrics
We compared our approach with two total variation (TV)
denoising algorithms which are suitable for impulse noise.
The first baseline is the convex `1TV [49], which uses `1 for
the data fidelity term and isotropic TV as the regularization
term. The optimization is solved by the ADMM algorithm.
The second baseline is `0TV [48], which uses the nonconvex
`0 for the data term and isotropic TV for the regularization
term. The optimization is solved by the Proximal ADMM
algorithm. The codes of both algorithms are provided in the
toolbox of [48]. We used the same mask mi as in the DO
algorithms. We compare the results in terms of Peak Signal-
to-Noise Ratio (PSNR).

6.4.3 Experiments and results
We downloaded 96 grayscale images of size 512 × 512
pixels from the Image Database5 of University of Granada’s
Computer Vision Group. The first 30 images were used for
training DO and selecting the best hyperparameters for the
baselines and noise types, while the remaining 66 images
were used for evaluation. For each image, we add impulse
noise of 10% to 90% to measure the algorithm robustness.

Fig. 8 show the result PNSR over different noise ratios.
It can be seen that DO trained with the correct noise type
can match or outperform state-of-the-art algorithms, while
using a wrong DO give a very bad result. Interestingly,
DO-SPRV which was trained with both noise performed
well for both cases. Fig. 9 shows examples of denoising
results of each algorithm (`1TV omitted for clarity of other
approaches). For SP noise, `0TV , DO-SP, and DO-SPRV can
recover small details, while `1TV oversmoothed the image
and DO-SP returned an image with smudges. For RV noise,
DO-RV returned the best result. DO-SPRV also returned an
acceptable image but still contain intensity clumps, while
DO-SP cannot recover the image at all. On the other hand,
both baselines oversmoothed the image (notice the persons’
heads) and still have intensity clumps over the images. This
experiment shows that DO can robustly handle different
types of impulse noises, and that the training data have a
strong effect on types and amount of noise that it can handle.
The best approach for solving the problem is to select the

5. http://decsai.ugr.es/cvg/dbimagenes/g512.php
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correctly trained model. Still, training DO with both noise
can return a good result, illustrating the potential of DO in
solving a hard problem.

7 CONCLUSION AND DISCUSSION

We presented Discriminative Optimization (DO) as a new
framework for solving computer vision problems. DO
learns a sequence of update maps that update a set of
parameters to a stationary point from training data. We pro-
vide a theoretical result on the convergence of the training
error and study the relation between DO and generalized
convexity. We also proposed a framework for designing fea-
tures for DO based on gradient descent, and provide a the-
oretical result that DO can learn to imitate gradient descent
under unknown cost functions. This result is supported
by a synthetic experiment that shows that the maps learn
to approximate the gradients. In terms of applications, we
show that DO can perform favorably against state-of-the-art
algorithms in the problems of 3D point cloud registration
and tracking, camera pose estimation, and image denoising.
This also shows that DO can deal with both ordered and
unordered data.

Although algorithms similar to DO have been proposed
previously, this paper opens the connection between DO
and optimization. Future work may import ideas and intu-
ition from optimization to DO, such as the incorporation of
constraints and momentum methods. We also observe that
DO’s update rule can be compared with the layer in deep
residual network [50], since they both iteratively perform
update of the form x + Tx for some transformation T . This
may provide some connections to deep learning algorithms.
Future research may also address convergence in the test
data or other approaches for designing feature function h.
With a strong theoretical foundation and practical potential,
we believe DO opens a new exciting research area which
would have strong impact to computer vision.
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