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Selective Transfer Machine for Personalized
Facial Expression Analysis

Wen-Sheng Chu, Fernando De la Torre, and Jeffrey F. Cohn

Abstract—Automatic facial action unit (AU) and expression detection from videos is a long-standing problem. The problem is
challenging in part because classifiers must generalize to previously unknown subjects that differ markedly in behavior and facial
morphology (e.g., heavy versus delicate brows, smooth versus deeply etched wrinkles) from those on which the classifiers are trained.
While some progress has been achieved through improvements in choices of features and classifiers, the challenge occasioned by
individual differences among people remains. Person-specific classifiers would be a possible solution but for a paucity of training data.
Sufficient training data for person-specific classifiers typically is unavailable. This paper addresses the problem of how to personalize a
generic classifier without additional labels from the test subject. We propose a transductive learning method, which we refer to as a
Selective Transfer Machine (STM), to personalize a generic classifier by attenuating person-specific mismatches. STM achieves this
effect by simultaneously learning a classifier and re-weighting the training samples that are most relevant to the test subject. We
compared STM to both generic classifiers and cross-domain learning methods on four benchmarks: CK+ [44], GEMEP-FERA [67], RU-
FACS [4] and GFT [57]. STM outperformed generic classifiers in all.

Index Terms—Facial expression analysis, personalization, domain adaptation, transfer learning, support vector machine (SVM)
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AUTOMATIC facial AU detection confronts a number of
challenges. These include changes in pose, scale, illumi-
nation, occlusion, and individual differences in face shape,
texture, and behavior. Face shape and texture differ between
and within sexes; they differ with ethnic and racial back-
grounds, age or developmental level, exposure to the ele-
ments, and in the base rates with which they occur. For
example, some people smile frequently and broadly, while
others smile rarely and only in a controlled manner, counter-
acting the upward pull of the zygomatic major on the lip cor-
ners. These and other sources of variation represent
considerable challenges for computer vision. Furthermore,
there is the challenge of automatically detecting facial actions
that require significant training and expertise in humans [67].

To address these challenges, previous work has focused
on identifying optimal feature representations and classi-
fiers. Interested readers may refer to [20], [46], [49], [56] for
comprehensive reviews. While improvements have been
made, a persistent shortcoming of existing systems is that
they fail to generalize well to previously unseen, or new,
subjects. One way to cope with this problem is to train and
test separate classifiers on each subject (i.e., person-specific
classifier). Fig. 1a shows a real example of how a simple
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linear person-specific classifier can separate the positive
samples of AU12 (lip corner puller, seen in smiling) from
the negative ones. When ample training data are available,
a person-specific classifier approaches an ideal classifier, one
that best separates actions for the test subject.

A problem with person-specific classifiers is that a suffi-
cient quantity of training data is usually unavailable. In part
for this reason, most approaches use training data from mul-
tiple subjects in the hope to compensate for subject biases.
However, as shown in Fig. 1b, when a classifier is trained on
all training subjects and tested on an unknown subject, its
generalizability may disappoint. When a classifier is trained
and tested in this manner, we refer to it as a generic classifier.
Because person-independent classifiers typically are not fea-
sible, generic classifiers are commonly used.

We hypothesize that impaired generalizability occurs in
part because of individual differences among subjects. Fig. 2
illustrates this phenomenon on real data in a 3-D eigenspace.
One can observe that if the data in Fig. 2a are interpreted as
positive and negative classes, they could be very difficult to
separate without overfitting. If the data in Fig. 2a are instead
interpreted as subjects, the grouping effect becomes clear
and echoes our conjecture about individual differences.
Individual differences may include sex, skin color and tex-
ture, illumination, and other ways in which people and
image acquisition effects may vary. Our guiding hypothesis
is that the person-specific bias causes standard generic classi-
fiers to perform worse on some subjects than others [28].

To mitigate the influence of individual biases, this paper
explores the idea of personalizing a generic classifier for
facial expression analysis. Given a common observation
that a test video usually comes from only a single subject,
we assume the test distribution can be approximated by a
subset of video frames from training subjects. The problem
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Fig. 1. An illustration of the proposed Selective Transfer Machine (STM):
(a) 2D PCA projection of positive (squares) and negative (circles) sam-
ples for a given AU (in this case AU 12 or lip-corner raiser) for three sub-
jects. An ideal classifier separates AU 12 nearly perfectly for each
subject. (b) A generic classifier trained on all three subjects generalizes
poorly to a new person (i.e., test subject) due to individual differences
between the 3-subject training set and the new person. STM personal-
izes a generic classifier and reliably separates an AU for a new subject.

of personalizing a generic classifier is then formulated as
training a classifier on selected training samples, while
reducing the discrepancy between distributions of selected
training samples and test ones. In this way, generic classi-
fiers can adapt to unseen test subjects without test labels.
We term this transductive approach a Selective Transfer
Machine. The major contributions of this work include:

e Based on both qualitative observations and empirical
findings, individual differences attenuate perfor-
mance of AU detection. To address this problem, we
introduce Selective Transfer Machine (STM), an unsu-
pervised personalization approach that reduces mis-
match between feature distributions of training and
test subjects. We propose an effective and robust
procedure to optimize STM in its primal form.

e Considering that many applications afford labeled
test data, we introduce a useful extension of STM,
termed L-STM, to make use of labeled data from the
target domain. This extension shows considerable
performance improvement in situations where
labeled test data are available.

e To evaluate STM, we conduct comprehensive experi-
ments using within-subject, cross-subject, and cross-
dataset scenarios on four benchmark datasets. We
test STM for both AU detection and detection of
holistic expressions.

e For test subjects, some training samples are more
instrumental than others. We can identify those
training samples using STM. The effectiveness of
STM scales as domain size, or the number of training
subjects, increases.

Fig. 2. Visualization of samples from the RU-FACS dataset [4] in 3D
eigenspace: colors/markers indicate different (a) positive/negative clas-
ses, and (b) subjects (best viewed in color).

This paper is organized as follows. Section 2 reviews
related work. Sections 3-5 describe the STM model, optimi-
zation algorithm, and theoretical rationale. Section 6 introdu-
ces L-STM, an STM extension that utilizes labeled test data.
Section 7 considers similarities and differences between STM
and related methods. Section 8 evaluates STM and alterna-
tives for AU and holistic expression detection. Section 9 con-
cludes the paper with remarks and future work.

2 RELATED WORK

Our approach lies at the intersection between facial expres-
sion analysis and cross-domain adaptation. Below we
briefly discuss each in turn.

2.1 Facial Expression Analysis

Automatic facial expression analysis entails at least three
steps: Face tracking and registration, feature extraction,
and learning classifiers. This section reviews recent advan-
ces in each.

Tracking and registration. Tracking and registration of
non-rigid facial features is a long-standing problem in com-
puter vision. The goal of tracking is to detect facial land-
marks (e.g., eyes) in each frame. For facial landmark
detection, Parametrized Appearance Models (PAM) are
among the most popular methods. PAM include the Lucas-
Kanade method [43], Active Appearance Models (AAM)
[18], [47], Constrained Local Models (CLM) [15], and, more
recently, Zface [34] and Supervised Descent Method [74].
Once facial landmarks are located, the registration step
aims to align the face image to remove 3D rigid head
motion, so features can be geometrically normalized. A sim-
ilarity transformation [20], [61], [86] registers faces with
respect to an averaged face. A Delaunay triangulation can
be also applied with a backward piecewise affine warping
to extract features in areas not explicitly tracked. This two-
step registration proves to preserve better shape variation
in appearance than by geometric normalization alone.

Feature extraction. With advances in tracking and registra-
tion, there has been a renewed emphasis on biologically
inspired features and temporal variation. As summarized in
Table 1, current approaches to feature extraction may be
broadly divided into four types: geometric, appearance, dynamic,
and fusion. Geometric features contain information about the
shape and locations of permanent facial features, such as eyes
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TABLE 1 TABLE 2
Representative Feature Extraction Methods Representative Classifiers
Type | Feature Year  Reference Type | Classifier Year  Reference
Shape model parametrization 2012 [45] Deep Networks 2013 [42]
Geometric Geometry of facial components 2010 [85] Stati Support Vector Machine (SVM) 2007 [45]
Landmark locations 2006 [45] ate AdaBoost 2005 [4]
Active facial patches 2012 [84] Neural Network (NN) 2005 [38]
SIFT/DAISY 2011 [86] Conditional Random Field (CRF) 2009 9]
Discrete Cosine Transform (DCT) 2011 [27] T | Gaussian process 2009 [13]
Appearance Local Phase Quantization (LPQ) 2011 [35] empora Dynamic Bayesian Network (DBN) 2007 [65], [70]
pp Local Binary Patterns (LBP) 2009 [59], [67] Isomap embedding 2006 [10]
Hist. of Oriented Gradient (HOG) 2009 [48] N
Gabor 2006 [4], [41] Hybrid \ Cascade of Tasks (CoT) 2013 [21]
Raw pixels 2000 [37]
Longitudinal expression atlases 2012 [33] Common to all these approaches is the assumption that
_ Gabor motion energy 2010 [73] training and test data are drawn from the same distribution.
Dynamic Bag of Temporal Words (BoTW) 2010 (61 However, as Fig. 2 shows, they could suffer from individual
Volume LBP (LBP-TOP) 2007 [82] . . . s
Optical flow 2005 [32] differences, causing poor generalizability to an unseen sub-
- - ject. STM makes no such assumption. Instead, it seeks a per-
Fusion \ Multiple feature kernels 2012 [58]

or nose. Standard approaches rely on detecting fiducial facial
points [45], a connected face [61], landmark coordinates [15],
or face component shape parameterization [45]. Geometric
features have performed well for many but not all AU detec-
tion tasks. They have difficulties in detecting subtle expres-
sions and are highly vulnerable to registration error [16].

Appearance features, which often are biologically inspired,
afford increased robustness to tracking and registration error.
Appearance features represent skin texture and its permuta-
tions and have been widely applied to facial expression anal-
ysis. Representative methods include SIFT [86], DAISY [86],
Gabor jets [4], LBP [35], [84], Bag-of-Words model [60], [61],
compositional [77] and others [72]. Dynamic features, a newly
popular technique, encodes temporal information during the
feature extraction stage. Examples include optical flow [32],
bag of temporal words [62], volume LBP/LPQ [82], Gabor
motion energy [73], and others. Fusion approaches incorpo-
rate multiple features, e.g., Multiple Kernel Learning (MKL)
[58], and have yet to prove superior to other approaches [67].

Classifiers. Two main trends have been pursued when
designing classifiers for facial expression analysis, as sum-
marized in Table 2. One trend, static modeling, typically
tackles the problem as discriminative classification and eval-
uates each frame independently. Representative approaches
include Neural Network [38], Adaboost [4], SVMs [45], [61],
[83], and Deep Networks [42]. Due to lack of temporal consis-
tency, static models tend to produce non-smooth results. To
address this issue, temporal modeling, the other trend, cap-
tures the temporal transition between contiguous frames.
For instance, Dynamic Bayesian Network (DBN) with
appearance features [65] was proposed to model AU co-
occurrence. Other variants of DBN include Hidden Markov
Models [59] and Conditional Random Fields (CRF) [9], [68].
As an alternative, Simon et al. [61] proposed a structural-out-
put SVM that detects AUs as temporal segments. To model
relations between segments, Rudovic et al. [52] considered
ordinal information in CRF. More recently, Ding et al. [21]
proposed a hybrid approach that integrates frame-based,
segment-based, and transition-based tasks in a sequential
order. Interested readers are referred to [20], [46], [49], [56],
[67] for more complete surveys.

sonalized classifier by re-weighting training samples
according to their distribution mismatch with test samples.
Several studies merged into this direction could be found in
[55], [78], [79], [80].

2.2 Cross-Domain Adaptation

Our approach is motivated by an increasing concern about
dataset shift in the object detection literature. In real-world
data, labels of interest could occur infrequently and features
vary markedly between and within datasets. These factors
contribute to significant biases in object categorization [66].
Saenko et al. [40], [54] proposed to reduce the discrepancy
between features by learning metric transformation. Aytar
and Zisserman [2] regularized the training of a new object
class by transferring pre-learned models. Chattopadhyay
etal. [12] proposed to learn a combination of source classifiers
that matches the target labels. Because these techniques use a
supervised approach in which one or more labeled instances
are required from the target domain, they are ill-suited to new
domains or subjects for which no prior knowledge is avail-
able. In contrast, our approach is unsupervised and thus bet-
ter geared to the generalization to new domains or subjects.

Closer to our approach is a special case in unsupervised
domain adaptation known as covariate shift [63]. In covariate
shift, train and test domains follow different distributions
but the label distributions remain the same.

On the other hand, Dudik et al. [24] infer the re-sampling
weights through maximum entropy density estimation
without target labels. Maximum Mean Discrepancy (MMD)
[5] measures the discrepancy between two different distri-
butions in terms of expectations of empirical samples. With-
out estimating densities, Transductive SVM (T-SVM) [36]
simultaneously learns a decision boundary and maximizes
the margin in the presence of unlabeled patterns. Domain
adaptation SVM [6] extends T-SVM by progressively adjust-
ing the discriminant function toward the target domain.
SVM-KNN [81] labels a single query using an SVM trained
on its k£ neighborhood of the training data. Each of these
methods uses either all or a portion of the training data.
STM learns to re-weight training instances, which reduces
the influence of irrelevant data.

Considering distribution mismatch, Kernel Mean Match-
ing (KMM) [31] directly infers re-sampling weights by



532 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.39, NO.3, MARCH 2017

matching training and test distributions. Following this idea,
Yamada et al. [75] estimated relative importance weights and
learned from re-weighted training samples for 3D human
pose estimation. See [50] for further review. These methods
take a two-step approach that first estimates the sampling
weights and then trains a re-weighted classifier or regressor.
In contrast, STM jointly optimizes both the sampling weights
and the classifier parameters and hence preserves the dis-
criminant property of the new decision boundary.

3 SELECTIVE TRANSFER MACHINE (STM)

This section describes the proposed Selective Transfer
Machine (STM) for personalizing a generic classifier. Unlike
previous cross-domain methods [2], [22], [39], [76], STM
requires no labels from a test subject. For classification pur-
pose, we model STM with a Support Vector Machine (SVM)
due to its popularity for AU detection [15], [35], [61].

Problem formulation. Recent research and applications in
automatic facial expression analysis consider video data,
which provide a wide sampling of facial appearance changes.
We assume the distribution of a subject’s appearance can be
estimated by certain video frames. Based on this assumption,
the main idea of STM is to re-weight training samples (i.e.,
frames) to form a distribution that approximates the test dis-
tribution. Classifiers trained on the re-weighted training sam-
ples are likely to generalize to the test subject.

Denote the training set as D" ={x;,y; }.7, y; €{+1,—1}
(see notation'). For notational simplicity, we stack 1 in each
data vector x; to compensate for the offset, i.e., x; ceR™! We
formulate STM as minimizing the objective:

g(f,s) = nfusn Ry (D", s) + AQs (X", X"), (1)
where R;(D",s) is the SVM empirical risk defined on the
decision function f, and training set D" with each instance
weighted by selection coefficients s € R". Each entry s; cor-
responds to a positive weight for a training sample x;.
Q4 (X™,X*) measures training and test distribution mis-
match as a function of s. The lower the value of () is, the
closer the training and the test distributions are. A > 0 is a
tradeoff between the risk and the distribution mismatch.
The goal of STM is to jointly optimize the decision function
f as well as the selective coefficient s, such that the resulting
classifier can alleviate person-specific biases.

Penalized SVM. The first term in STM, R;(D",s), is the
empirical risk of a penalized SVM, where each training
instance is weighted by its relevance to the test data. In the
following, we denote X=X" for notational simplicity unless
further referred. The linear penalized SVM has the target
decision function in the form f(x)=w'x and minimizes:

Ttr
Ry(D",s) = ||w\| +CY sl (yi, W), )
=1
where LP(y,-)=max(0,1—y-)’ (p =1 stands for hinge loss
and p = 2 for quadratic loss). In general, L could be any loss

function. The unconstrained linear SVM in (2) can be

1. Bold capital letters denote a matrix X; bold lower-case letters
denote a column vector x. x; represents the ith column of the matrix X.
All non-bold letters represent scalars. 2; denotes the scalar in the jth
element of x. I,, e R™" is an identity matrix.

extended to a nonlinear version by introducing a kernel
matrix K;;:=k(x;,x;), which corresponds to a kernel func-
tion k induced from a nonlinear feature mapping ¢(-). Using
the representer theorem [11], the nonlinear decision func-
tion can be represented f(x)=> 1" B;k(x;,x), yielding the
nonlinear penalized SVM:

N

ﬂTK,chZsL (vi, k; B), 3)

i=1

Ry(D",s) =

where BeR"" is the expansion coefficient and k; is the ith
column of K. Unlike most standard solvers, we train the
penalized SVM in the primal due to its simplicity and effi-
ciency. Through the unconstrained primal problems, we
apply Newton’s method with quadratic convergence [11].
Details are given in Section 4.

Distribution mismatch. The second term in STM, Q4(X",
X'"®), imitates domain mismatch and aims to find a re-weight-
ing function that minimizes the discrepancy between the
training and the test distributions. In previous cross-domain
learning methods, the re-weighting function may be com-
puted by separately estimating the densities and then the
weights (e.g., [64]). However, this strategy could be prone to
error while taking the ratio of estimated densities [64].

To estimate the re-weighting function, here we adopt the
Kernel Mean Matching (KMM) [31] method, which aims to
reduce the distance of empirical means between the training
and the test distributions in the Reproducing Kernel Hilbert
Space H. KMM computes the instance re-weighting s; that
minimizes:

2

Ntr 1 Tite
00X = |5 sl 5ot | @
T =1 H

Let x;:=11 an E(x", x ] x%),i=1,...,ny, capture the closeness
between a tralmng sample and each test sample, solving s in
(4) can be rewritten as a quadratic programming (QP):
1
ming isTKs —«'s,

(5)

Ntr

E Si — Ny
i=1

where B defines a scope that bounds discrepancy between
probability distributions P, and P, (B=1,000 in our case).
For B—1, one obtains an unweighted solution where all
s; = 1. The second constraint ensures the weighted samples
to be close to a probability distribution [31]. Observe in
(5) that a larger «; leads to a larger s; to minimize the objec-
tive. This matches our intuition to put higher selection
weights on the training samples that are more likely to
resemble the test distribution.

A major benefit from KMM is a direct importance estima-
tion without estimating training and test densities. Com-
pared to existing approaches, with proper tuning of kernel
bandwidth, KMM shows the lowest importance estimation
error, and robustness to input dimension and the number of
training samples [64]. Fig. 3 illustrates its effect on a syn-
thetic data. As shown, KMM can estimate the ideal fitting
well, while standard Ordinary Least Square (OLS) and

s.t. s €[0,B], < ng€,
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Fig. 3. Fitting a line to a quadratic function using KMM and other re-
weighting methods. The larger size (more red) of training data, the more
weight KMM adopted. As can be observed, KMM puts higher weights in
the training samples closer to the test ones. Compared to standard OLS
or WOLS, KMM leads to better approximation for the test data.

Weighted OLS (WOLS) with training/test ratio lead to sub-
optimal prediction.

4 OPTIMIZATION FOR STM

To solve Eq. (1), we adopt Alternate Convex Search [26] that
alternates between solving the decision function f and the
selection coefficient s. Note that the objective in (1) is bicon-
vex: Convex in f when s is fixed (f is quadratic and L? is
convex), and convex in s when f is fixed (since K*0).
Under these conditions, the alternate optimization approach
is guaranteed to monotonically decrease the objective func-
tion. Because the function is bounded below, it will con-
verge to a critical point. Algorithm 1 summarizes the STM
algorithm. Once the optimization is done, f is applied to
perform the inference for test images. Below we detail the
two steps in the alternate algorithm.

Minimizing over s. Denote the training losses as
&=L (y;, f(x;)), i=1,...,n4. The optimization over s can
be rewritten into the following QP:

1 o

ming §STKS + (XZP —x)'s

Tr (6)
si <y (1+e).

i=1

st. 0<s <Bnu(l—¢) <

Since K= 0 by definition, (6) has only one global optimum.
To make the algorithm numerically stable, we add a ridge o
on the diagonal so that K > oI, (6= 1078 in our case).

Note that the procedure here is different from the
original KMM in terms of weight refinement: In each itera-
tion s will be refined through the training loss ¢ from
the penalized SVM. This effect can be observed from
minimizing the second term in (6): Larger ¢ leads to
smaller s to keep the objective small. This effectively
reduces the selection weights of misclassified training
samples. On the contrary, KMM uses no label informa-
tion and thus is incapable of refining importance weights.
Introducing training losses helps preserve the discrimi-
nant property of the new decision boundary and hence
leads to a more robust personalized classifier. From this
perspective, KMM can be treated as a special case as the
first iteration in STM.

Algorithm 1. Selective Transfer Machine

Input: X', X', parameters C, A

Output: Inferred test labels y* for test data

1 Initialize training loss ¢’ — 0;

2 while not converged do

3  Update the instance-wise re-weighting s by solving the
QP in (6);

4  Update the decision function f and training loss ¢’ by
solving the penalized SVM in (2) or (3);

5 Infer test labels by y* « f(X')

Fig. 5 illustrates the iterative effect of personalizing a
generic classifier on a synthetic example. In it#1, the
hyperplane estimated by KMM is unreliable due to its unsu-
pervised nature. On the other hand, STM simultaneously
considers the SVM loss and the similarity between training
and test samples, and thus encourages the associated train-
ing samples with small training loss to be weighted more.
As can be observed, as the iterations proceed, the STM sepa-
ration hyperplane moves toward the ideal hyperplane for
the target data.

Minimizing over f. Let sv indicate the index set of support
vectors, and n, the number of support vectors. In the case
training loss ¢’ being quadratic, the gradient and the
Hessian of the linear penalized SVM in (2) can be written as:

Vw =W +20XSI'(X"w — y), (1)
Hy = I, + 20XSI°X ", (8)

where S=diag(s) e R™"*"r denotes the re-weighting matrix,
y€R" the label vector, and I’ € R"=*": the proximity iden-
tity matrix with the first n,, diagonal elements being 1 and
the rest being 0. Similarly, the gradient with respect to the
expansion coefficient g in (3) can be derived as:

Vg =KB+ 2CKSI'(KB —y), 9)

Hy = K + 2CKSI’K. (10)

Given the gradients and the Hessians, the penalized SVM
can be optimized in the primal using standard Newton’s
method or conjugate gradient.

Differentiable huber loss. The L' (hinge) loss in standard
SVMs are not differentiable, hampering its gradient and
Hessian to be explicitly expressed and computed. Instead,
we use the Huber loss [11] as a differentiable surrogate, i.e.,
Ly, f(x;)) =~ Ly (yisign(f(x;))). Note that any differential
convex loss, e.g., logistic loss and exponential loss, can be
directly incorporated. The Huber loss is defined as:

0 ifa > 1+ h,
2
Ly(a) = % if |1 —a| < h, (11)
1—a otherwise,

where h is a parameter of choice. Fig. 4 shows the influnce
of h in comparison to the L' and L? loss. As can be
observed, Ly approaches the hinge loss when h—0. As
indicated in [11], there is no clear reason to prefer the hinge
loss because replacing the hinge loss with Huber loss does
not influence much the results. With the differentiable
Huber loss, the gradient and Hessian with Huber loss for
the penalized linear SVM can be obtained:
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Fig. 4. Loss functions: (a) L' and L? loss, and (b) Huber loss.
C OfvT 1
Vw =W +ﬂx51 [X'w — (1+ h)y] — CXSl'y, (12)
Hy =1, + C xsexT (13)
W d 2% )
and for the penalized nonlinear SVM:
¢ 0 1
Vg =K8 +ﬁKSI KB — (1+ h)y] — CKl'y, (14)
¢ 0
Hg =K+ %KSI K, (15)

where I' eR"*": denotes the proximity identity matrix
with the first n,, diagonal elements being 0, followed by
ny (the number of points in the linear part of the Huber
loss) elements of ones. With the derived gradients
and Hessians, we optimize for f using standard Newton
method.

5 THEORETICAL RATIONALE

This section analyzes two important properties of STM, bi-
convexity and boundedness, based on the techniques devel-
oped for biconvex optimization [30]. Then we justify the
convergence of the Alternate Convex Search algorithm,
which we used for solving STM, in terms of both objective
value and optimization variables.

5.1 Properties of STM
We start by showing that STM is a biconvex problem.

Property 1. (Bi-convexity) Selective Transfer Machine in (1) is a
biconvex optimization problem.
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Proof. Denote the decision variable of f as weW CR?
and the selection coefficient s€ SCR"™r, where W and
S are two non-empty convex sets. Let Z C W x S be
the solution set on W x S; Z,, and Zs be the subsets
when w and s are given respectively. Because Z; is
convex for every we W (w and LP are convex;
s; € [0, B] are non-negative) and Z, is convex for
every s € S ({)s is QP and K = 0), the solution set Z
is a biconvex set. Hence STM can be rewritten in the
standard form of biconvex optimization problem [1]:
miny s{g(w,s) : (w,s) e Z}. O

Property 2. (Boundedness) The STM optimization problem in
Problem (1) is bounded from below.

Proof. The boundedness can be observed from two aspects:
(1) Ry is bounded due to the quadratic term in f and
non-negative s and L?. (2) (), is bounded since K is posi-
tive semi-definite. O

Following the same proof line, the above properties can
be also shown for nonlinear STM defined with Eq. (3).

5.2 Algorithm

The following analysis mimics directly Section 4 in [30]. We
present the key steps for proving the convergence and refer
to more details on this style of proof in [30].

Alternate convex search. To solve the biconvex STM prob-
lem, one approach is to exploit its convex substructure.
We used the Alternate Convex Search (ACS) algorithm
[71], a special case of Block-Relaxation Methods, by alter-
nately solving the convex subproblems. For explanation
convenience, we recall the ACS algorithm in Algorithm 2.

Denote z = (w,s) as the solution variable. As men-
tioned in Section 4, STM can be seen as initializing sy
using KMM or a uniform vector, and then solving the
classifier w; as an unweighed SVM. As will be discussed
below and in Section 8.5, the permutation order does not
influence the convergence. For Step 4, there are several
ways to determine the stopping criterion. We used the
relative decrease of z compared to the last iteration.
Below we discuss the convergence properties in terms of
objective value (i.e., the difference between g(z;) and
g(z;—1) of two consecutive iterations ¢ and ¢ — 1), and the
variables (i.e., the difference between z; and z;_;).

Convergence. Recall that W and S are two non-empty sets,
and Z C W x S'is a biconvex set on W x S. We firstly show
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Fig. 5. Comparisons of a generic SVM, a personalized STM, and an ideal classifier for synthetic data. The left-most figure shows the convergence
curve of the objective value. Figures it #1,4,8,12 with training/test accuracy (Tr% and Te%) show the corresponding hyperplanes at each iteration.
Grey (shaded) dots denote training samples, and white (unshaded) dots denote test samples. Circles and squares denote two different classes.
Note that it #1 indicates the results of KMM [31]. STM improves separation relative to the generic SVM as early as the 1st iteration and converges

toward the ideal hyperplane by the 12th iteration.
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the convergence of the sequence of objective value
{9(z¢)},cn, and then convergence of the sequence of varia-

bles {z;},cy-

Algorithm 2. Alternate Convex Search Algorithm

1 Step 1: Choose a starting point zy <« (wy,sy) € Z;

2 Sett «—0;

3 while not converged do

4  Step 2: Solve the convex optimization problem for fixed
Wi S — ming{g(wWy,s),s € Zy, };

5  Step 3: Solve the convex optimization problem for fixed
Si41: Wiy1 — ming {g(w,si11), W € Zs, ., };

6  Step4:Setzi; < (Wi1,5:11);

7 Sett«+—t+1;

8 end

Theorem 1. Let the STM objective function be g : Z — R. Then
the sequence of objective value {g(z;)},.y generated by ACS
converges monotonically.

Proof. The sequence {g(z:)},.y generated by Algorithm 2
decreases monotonically, because g(w*,s*)<g(w,s*),
VYW € Zg+, and g(w*,s*) <g(w*,s),Vs € Z+. In addition,
Property 2 shows g is bounded from below. According to
Theorem 4.5 in [30], the sequence {g(z;)},.y converges to
a limit real value. o

Theorem 1 only tells the convergence of {g(z;)},.y but
not of {z},.. See Example 4.3 in [30] where {g(z¢)},cy con-
verge but {z;},. diverge. The following states the condition
for the convergence of {z;},.y.

Theorem 2. Let W and S be closed sets, and z = (Wy,8;),ey
where w, € W and s, € S. The sequence of variables {z;},.y
generated by ACS converge toz* € W x S.

Proof. This can be proved using Theorem 4.7 in [30]. ]

6 STM wiTH LABELED TARGET DATA (L-STM)

As discussed above, STM requires no labels from the tar-
get subject to personalize a generic classifier. Neverthe-
less, in many problems one might collect partially
labeled data from the target domain, or acquire addi-
tional guidance with a few manual labels. Such labels
can be considered as the only reference to the target sub-
ject and aid the determination of the personalized classi-
fier. This section describes an inductive extension of
STM, termed L-STM, to adapt target labels for personal-
izing a classifier.

Given the target data and their labels as D" = {x, y*}7% ,
yJL e{+1, -1}, 0<ny <ny, we formulate L-STM by introduc-

ing an additional regularization term Q,(D") to (1):

mings Ry(D",s)+AQ(X", X) +A,Q(DF),  (16)

where A;, > 0 is a tradeoff parameter. A choice of large Ay,
ensures the labeled target data are correctly classified. The
goal of Q7 (D") is to regulate the classification quality on the
labeled target data. In this paper, we define Q(D") =
Sk LP(yf, f(xF)). Note that an L? loss here is analogous
to the regularization in Least Square SVM [69], which
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Fig. 6. Comparison of different methods on the RU-FACS dataset. Light
yellow (dark green) indicates AU 12 presense (absense) of Subject 12.
The numbers in parentheses are F1 scores. Two misclassified frames of
STM were chosen and fed into L-STM with correct labels.

{57}
= {(X%Gb —1), (Xi%99, +1)}

performs comparably with SVM using the hinge loss and
has been shown to benefit binary classification, such as our
task at hand. Because Q1 (D") is convex in f, problem (16)
remains a biconvex optimization problem, and thus the
ACS algorithm can be directly applied.

We show that solving problem (16) is equivalent to solv-
ing the original STM using a training set augmented with
weighted labeled target data. We demonstrate the use of L?
loss on linear SVM, while different choices of loss functions
(e.g., L') and classifier types (e.g., nonlinear SVM) can be
applied. Specifically, updating for s remains the same pro-
cess. For updating w, one can use Newton’s method by
associated gradient and Hessian:

Vw=w+XSX'w —9), an

H,, =1, + XSX", (18)

where X=[X"[X"] is the augmented set with labeled tar-

~

get data, S:[SCSIU Al U] is the augmented re-weighting
n,

matrix, and y= [;,L] are the augmented labels.

The equivalence between (16) and an augmented STM is
useful particularly for the scenario of AU detection, where
FACS coding is time-consuming and unlabeled videos are
usually abundant. L-STM allows users to add just a few
frames to alleviate false detections significantly. Fig. 6 illus-
trates the benefits of L-STM over alternative methods. Light
yellow (dark green) indicates positive (negative) frames for
AU 12 on Subject 12 of the RU-FACS dataset. Top two rows
show the ground truth and the detection result of an ideal
classifier. The numbers in parentheses indicate F1 scores.
The third and fourth rows illustrate the detection of a
generic SVM and KMM. Both approaches produced many
false detections due to the person-specific biases and the
lack of weight refinement. STM, on the fifth row, greatly
reduced false positives and produced a better F1 score. The
last row shows the detection of L-STM only two misclassi-
fied frames from STM with manually corrected labels. L-
STM boosted ~10-point F1 score. As we observed empiri-
cally, the more the labeled target data are introduced, the
better L-STM approaches the ideal classifier.
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TABLE 3
Compare STM with Related Transductive
Transfer Learning Methods

Importance Weight . Labeled
Methods rel—pweight refirgw Convexity target data
SVM-KNN [81] X X NA X
T-SVM [17] X X non-convex X
KMM [31] v X convex X
DA-SVM [6] X v non-convex X
DT-MKL [22] X X jointly convex optional
DAM [23] X X convex optional
STM (proposed) v v bi-convex  optional

V' included, x: omitted, NA: not applicable

7 DiscussioN OF RELATED WORK

A few related efforts use personalized modeling for facial
expression analysis, e.g., AU intensity estimation [53]. STM
differs from them in how it accomplishes personalization.
Chang and Huang [8] introduced an additional face recog-
nition module and trained a neural network on the combi-
nation of face identities and facial features. Romera-
Paredes et al. [51] applied multi-task learning to learn a
group of linear models and then calibrated the models
toward the target subject using target labels. By contrast,
STM requires neither a face recognition module nor target
labels. Motivated by covariate shift [63], Chen et al. [14]
proposed transductive and inductive transfer algorithms
for learning person-specific models. In their transductive
setting, KL-divergence was used to estimate sample impor-
tance. However, STM models the domain mismatch using
KMM [31], which with proper tuning, as implied in [64],
yields better estimation.

Closest to STM is transductive transfer learning, which
seeks to address domain shift problems without target
labels. Table 3 summarizes the comparison. DT-MKL [22]
simultaneously minimizes the MMD criterion [5] and a
multi-kernel SVM. DAM [23] leverages a set of pre-
trained base classifiers and solves for a test classifier that
shares similar predictions with the base classifiers. How-
ever, similar to T-SVM [36] and SVM-KNN [81], these
methods treat training data uniformly. By contrast, KMM
[31] and STM consider importance re-weighting, properly
adjusting the importance for each training instance to
move the decision function toward test data. KMM per-
forms re-weighting only once while STM does so in an
iterative manner. From this perspective, KMM can be
viewed as an initialization of STM (see Section 4). In addi-
tion, STM uses training loss to refine instance weights in
successive steps, thus being able to reduce weights of the
samples that carry a large loss. DA-SVM [6] refines

instance weights as a quadratic function decaying with
iterations. However, DA-SVM could fail to converge due
to its non-convexity, while STM is formulated as a bi-con-
vex problem and thus assures convergence. Moreover,
STM can be extended to tackle labeled target data, which
greatly improves the performance.

8 [EXPERIMENTS

STM was evaluated in datasets that afforded inclusion of
both posed and unposed facial expression, frontal versus
variable pose, complexity (e.g., interview versus three-
person interaction), and differences in numbers of sub-
jects, the amount of video per subject, and men and
women of diverse ethnicity. These factors are among the
individual differences that adversely affect classifier per-
formance in previous work [28]. We compared STM
against alternative approaches under various scenarios,
including a generic classifier, person-specific classifiers,
and cross-domain classifiers, under within-subject, cross-
subject, and cross-dataset scenarios. Operational parame-
ters for STM included initialization order, parameter
choice, and domain size.

8.1 Dataset Description

We tested the algorithms on four diverse datasets that
involve posed, acted, or spontaneous expressions, and
vary in video quality, length, annotation, the number of
subjects, and context, as summarized in Table 4 and illus-
trated in Fig. 7.

(1) The extended Cohn-Kanade (CK+) dataset [44] contains
brief (approximately 20 frames on average) videos of posed
and un-posed facial expressions. Videos begin with a neu-
tral expression and finish at the apex, or peak, which is
annotated with AUs and with holistic expressions. Changes
in pose and illumination are relatively small. Posed expres-
sions from 123 subjects and 593 videos were used. Since
STM requires some number of frames to estimate a test dis-
tribution, it is necessary to modify coding in CK+. Specifi-
cally, we assume the last one-third frames share the same
AU labels. We note that this may introduce some errors,
compared to related methods that use only the peak frame
for classification.

(2) The GEMEP-FERA dataset [67] consists of seven por-
trayed emotion expressions by 10 trained actors. Actors
were instructed to utter pseudo-linguistic phoneme sequen-
ces or a sustained vowel and display pre-selected facial
expressions. Head pose is primarily frontal with some fast
movements. Each video is annotated with AUs and holistic
expressions. We used the GEMEP-FERA training set, which
comprises 7 subjects (three of them men) and 87 videos.

TABLE 4
Detailed Content of Different Datasets

Datasets #Subjects #Videos #Frames/video Content AU annotation Expression annotation
CK+ [44] 123 593 ~20 Neutral—peak Per video Per video
GEMEP-FERA [67] 7 87 20~60 Acting Frame-by-frame Per video
RU-FACS [4] 34 34 5000~8000 Interview Frame-by-frame -

GFT [57] 720 720 ~60,000 Multi-person social interaction Frame-by-frame =
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Fig. 7. Example images from (a) CK+ [44], (b) GEMEP-FERA [67], and
(c) RU-FACS [4] datasets.

(3) RU-FACS dataset [4] consists of video-recorded inter-
views of 100 young adults of varying ethnicity. Interviews
are approximately 2.5 minutes in duration. Head pose is
frontal with small to a moderate out-of-plane rotation. AU
are coded if the intensity is greater than ‘A’, i.e., lowest
intensity on a 5-point scale. We had access to 34 of the inter-
views, of which video from five subjects could not be proc-
essed for technical reasons. Thus, the experiments reported
here were conducted with data from 29 participants with
more than 180,000 frames in total.

(4) GFT [57] consists of social interaction between 720
previously unacquainted young adults that were assembled
into groups of three persons each and observed over the
course of a 30-minute group formation task. Two minutes of
AU-annotated video from 14 groups (i.e., 42 subjects) was
used in the experiments for a total of approximately 302,000
frames. Head pose varies over a range of about plus/minus
15-20 degrees [28]. For comparability with RU-FACS, we
included AU 6,9, 12, 14, 15, 20, 23 and 24.

Out of these datasets, CK+ is the most controlled, followed
by GEMEP-FERA. Both include annotations for holistic
expressions and AUs. GEMEP-FERA introduces variations
in spontaneous expressions and large head movements but
contains only seven subjects. RU-FACS and GFT are both
unposed and vary in complexity. RU-FACS is an interview
context; GFT is a social interaction over a longer duration
with greater variability. The first sets of experiments focus
on CK+, GEMEP, and RU-FACS. GFT figures primarily in
experiments on domain transfer between datasets and on the
influence of numbers of subjects on performance.

8.2 Settings

Face tracking and registration. For CK+, FERA, and GFT, 49
landmarks were detected and tracked using the Super-
vised Descent Method (SDM) [74]. For RU-FACS, we
used available AAM detection and tracking of 68 land-
marks. Tracked landmarks were registered to a 200x200
template shape.

Feature extraction. Given a registered facial image, SIFT
descriptors were extracted using 36x36 patches centered at
selected landmarks (nine on the upper face and seven on
the lower face), because AUs occur only in local facial
regions. The dimensionality of the descriptors was reduced
by preserving 98 percent PCA energy.

AU selection and evaluation. Positive samples were taken
as frames with an AU presence and negative samples as
frames without an AU. We selected the eight most com-
monly observed AUs across all datasets. To provide a com-
prehensive evaluation, we reported both Area Under the
ROC Curve (AUC) and F1 score. As AUC was originally
designed for balanced binary classification tasks, F1 score,
as the harmonic mean of precision and recall, could be more
meaningful for imbalanced data, such as AUs.

Dataset split and validation. A leave-one-subject-out proto-
col was used. For each AU, we iteratively chose one subject
for testing and the remaining subjects for training and vali-
dation. For all iterations, we first identified the range for
which F1 scores on the validation set was greatest. Then, we
chose the F1 scores for which C' was small. That is, we
sought the parameters that maximize F1 scores while pre-
serving the smoothness of the decision boundary.

8.3 Action Unit (AU) Detection

We evaluated STM with generic classifiers and alternative
approaches using three scenarios for AU detection: within-
subject, cross-subject, and cross-dataset. We report results sep-
arately for each scenario.

8.3.1  Within-Subject AU Detection

A natural comparison with STM is a classifier trained on a
single subject, also known as a Person-Specific (PS) classifier.
A PS classifier can be defined in at least two ways. One, the
more common definition, is a classifier trained and tested
on the same subject. We refer to this usage as PS;. The other
definition, referred to as PS, or quasi-PS, is a classifier that
has been tested on a subject included in the training set. The
GEMEP-FERA competition [67] defined PS in this way. An
SVM trained with PSy; (PS,-SVM) is sometimes considered
to be a generic classifier (e.g., [45]). In our usage, we reserve
the term “generic classifier” to the case in which training
and test subjects are independent.

Here we compare STM with both PS;-SVM and PS,-
SVM, and summarize the results in Table 5. In all, PS;-SVM
showed the lowest AUC and F1. This outcome occurred
because of the relatively small number of samples for indi-
vidual subjects. Lack of sufficient training data for individ-
ual subjects is a common problem for person-specific
classifiers. It is likely that PS;-SVM would have performed
the best if the amount training data from the same subject is
large enough. PS,-SVM achieved better AUC and F1
because it sees more training subjects. Overall, STM consis-
tently outperformed both PS classifiers.

Selection ability of STM. Recall that PS, includes samples
of the test subject in both training and test sets. Could STM
improve PS; performance by selecting proper training
samples? To answer this question, we employed PS; to
investigate STM's ability to select relevant training samples
with respect to the test subject. Table 6 shows the selection
percentage of STM upon initialization and convergence.
Here STM is initialized by KMM. Each row sums to 1 and
represents a test subject; each entry within one row denotes
the percentage of selected samples from each training sub-
ject. For example, (a) shows the initialization phase that,
when testing on Subject 2, 26 percent of training samples
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TABLE 5
Within-Subject AU Detection with STM and PS Classifiers
| AUC | F1 Score
AU| PS1-SVM PS3-SVM STM | PS1-SVM PS3-SVM STM
1 48.0 724 792 45.0 548 619
2 46.5 71.1 80.2 459 55.7 64.3
4 62.6 61.9  66.5 46.6 40.7  60.4
6 70.3 80.0 86.4 60.2 69.7 78.5
7 47.5 543 724 49.4 553 584
12 65.7 74.0 72.3 69.5 70.4 72.6
15 41.4 64.0  70.5 44.5 49.0  56.0
17 32.6 70.3 61.7 25.0 40.3 36.3
Av | 518 685 736 | 483 545  61.0

were selected from Subject 1. Upon convergence, as (b)
shows, STM selected most training samples that belong to
the target subject (higher diagonal value). Note that the
selection percentages along the diagonal do not sum to 100
percent due to insufficient training samples for the target
subject. As a result, STM was able to select relevant training
samples, even from different subjects, to alleviate the mis-
match between training and test distributions.

8.3.2 Cross-Subject AU Detection

Using a cross-subject scenario, i.e., training and test subjects
are independent in all iterations (a.k.a., leave-one-subject-
out), we compared STM against various types of methods.
Unsupervised domain adaptation methods are closest to
STM. For comparisons we included Kernel Mean Matching
(KMM) [31], Domain Adaptation SVM (DA-SVM) [6], and
Subspace Alignment (SA) [25]. Multiple source domain
adaptation methods serve as another natural comparison by
treating each training subject as one source domains; we
compared to the state-of-the-art DAM [23]. For baseline
methods, we compared with linear SVMs and semi-super-
vised Transductive SVM (T-SVM) [17]. T-SVM, KMM,
DAM and SA were implemented per the respective author’s
webpage. Because STM requires no target labels, methods
that use target labels for adaptation (e.g., [19], [40], [54])
were not included.

All methods were compared in CK+ and RU-FACS with
a few exceptions in CK+. In CK+, SA was ruled out because
too few frames were available per subject to compute mean-
ingful subspaces. DAM was also omitted in CK+ because it
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TABLE 6
Selection Percentage of STM for Different Subjects
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would be problematic to choose negative samples given the
structure of the data (i.e.,, pre-segmented positive exam-
ples). In training, a Gaussian kernel was used with a band-
width set as the median distance between pairwise
samples. For KMM and STM we set B=1,000 so that none
Vi =1
N
[31], when B was reduced to the point where a small per-
centage of the s; reached B, empirically performance either
remained unchanged, or worsened. For T-SVM we used
[17] since the original T-SVM [36] solves an integer pro-
gramming and thus unscalable to our problem that consists
hundreds to thousands of frames. For fairness, we used lin-
ear SVMs in all cases. In DA-SVM, we used LibSVM [7] as
discussed in Section 4, t=0.5 and B=0.03. For SA, we
obtained the dimension of subspaces d,,., using their theo-
retical bound with y=10° and §=0.1; SA with both NN and
SVM classifiers were reported. Following [23], we tuned
DAM using C=1, A\, =Ap, =Ap, =1; B was set as the median
of computed MMD values [5]; the threshold for virtual labels
were cross-validated in {0.01,0.1,0.5,1}. Linear SVMs were
used as base classifiers. Note that, because these alternative
methods are not optimized for our task, their performances
might be improved by searching over a wider range of
parameters.

Discussion. Tables 7 and 8 show results on AUC and F1
scores. A linear SVM served as a generic classifier. For
semi-supervised learning, T-SVM performed similarly to
SVM in RU-FACS, but worse than SVM in CK+. An expla-
nation is that in CK+ the negative (neutral) and positive
(peak frames) samples are easier to separate than consecu-
tive frames in RU-FACS. For transductive transfer learn-
ing, KMM performed worse than the generic classifier,

of s; reached the upper bound, and e= . As reported in

TABLE 7
Cross-Subject AU Detection on RU-FACS Dataset. “SA (NNISVM)” Indicates SA with NN and SVM, Respectively
‘ AUC ‘ F1 Score
AU | SVM KMM T-SVM DA-SVM SA (NN|SVM) DAM STM | SYM KMM T-SVM DA-SVM SA (NN|SVM) DAM STM
1 720 740 720 77.0 41.282.0 826 839 | 408 377 374 35.5 20.9[24.2 113 553
2 66.6 586 711 76.5 38.2|81.4 812 824 | 357 322 362 34.1 18.6[21.8 170 526
4 74.8 62.2 50.0 76.4 24.5|71.1 513 824 25.2 14.5 11.2 35.3 57| 5.8 29 304
6 89.1 888 616 60.3 46.2|78.3 812 931 | 583 392 331 429 23.2|19.2 209 724
12 | 867 870 867 84.4 55.9/86.1 931 923 | 619 630 626 71.4 37.5/38.6 36.6 723
14 | 71.8 678 744 70.4 38.0|78.5 79.5 874 | 313 258 2538 40.9 16.5]15.7 57 510
15 | 725 688 735 58.1 37.7|79.2 718 861 | 323 295 323 34.9 10.1] 8.8 32 454
17 78.5 76.7 79.5 75.7 55.8/89.9 939 89.6 39.5 35.6 44.0 46.5 21.9|17.2 28 3
Av. | 765 72.3 71.1 72.3 42.2180.8 793 863 | 40.6 373 40.6 42.7 19.3|18.9 15.1 543
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TABLE 8
Cross-Subject AU Detection on CK+ Dataset
‘ AUC ‘ F1 Score

T DA- T DA-
AU| SVM KMM gy sym STM | SVM KMM gy sym STM
1 79.8 689 699 726 889 | 61.1 449 568 57.7 62.2
2 | 908 735 693 71.0 875 | 735 50.8 59.8 64.3 76.2
4 748 622 634 699 81.1 | 627 523 519 57.7 69.1
6 80.7 877 60.5 947 940 | 755 70.1 47.8 682 79.6
7 82.1 682 557 614 91.6 | 59.6 47.0 43.8 53.1 79.1
12 | 88.1 895 760 955 928 | 767 745 59.6 59.0 77.2
15| 935 668 499 94.1 982 | 753 444 404 769 84.8
17 | 903 66.6 73.1 947 96.0 | 760 532 61.7 814 843
Av.| 86.1 729 647 817 913 | 70.0 547 527 648 76.6

because KMM estimates sample weights without label
information. SA combined with both Nearest Neighbor
(NN) and SVM led to even worse results than the above
methods. This is because SA obtains an optimal transfor-
mation through linear subspace representation, which
could be improper due to the non-linearity of our data. In
addition, SA weighted all training samples equally, and
thus suffered from biases caused by individual differences
(as illustrated in Fig. 2). Although SA+SVM performed
better in AUC, its low F1 score tells a likely overfitting
(low precision or recall). The proposed STM outperformed
alternative methods in general. For AUC in RU-FACS,
STM achieved the highest averaged score about 6 points
higher than the 2nd best, and the highest scores in all but
two AUs. For F1, STM had the highest averaged score
about 12 points higher than the nearest alternative, and
the highest F1 score of all but AU4. For CK+, STM
achieved 91 percent AUC on average, slightly better than
the best-published result 90.5 percent [41], although the
results may not be directly comparable due to different
choices of features and registration. It is noteworthy that
we tested the last one-third of a video that could contain
low intensities, while [41] tested only on peak frames with
the highest intensity. On the other hand, STM may be
benefited from additional frames due to more information.
For other SVM-based methods, unlike STM that uses a
penalized SVM, T-SVM considered neither re-weighting for
training instances nor weight refinement for irrelevant sam-
ples, such as noises or outliers. On the other hand, DA-SVM
extends T-SVM by progressively labeling test samples
and removing labeled training ones. Not surprisingly,
DA-SVM showed better performance than KMM and T-
SVM, because it selects relevant samples for training.
However, similar to T-SVM, DA-SVM did not update the
re-weightings using label information. Moreover, it is not
always guaranteed to converge. In our experiments, we
faced the situation where DA-SVM failed to converge due
to a large amount of samples lying within the margin
bounds. In contrast, STM is a biconvex formulation, and
therefore is guaranteed to converge to a critical point and
outperformed existing approaches (details in Section 4).
As for multi-source domain adaptation, DAM overall
performed comparably in AUC, but significantly worse
than STM in F1. There are at least three explanations. First,
AUs are by nature imbalanced: Simply predicting all sam-
ples as negative could yield high AUC for infrequent AUs
(such as AUs 4), yet zero precision and recall for F1 score.

Second, similar to person-specific classifiers, training sam-
ples for each subject are typically insufficient to estimate the
true distribution (as discussed in Section 8.3.1). Using such
limited training samples for each subject, therefore, limits
the power of base classifiers and the final prediction in
DAM. Last but not least, DAM uses MMD to estimate inter-
subject distance, which could be inaccurate due to insuffi-
cient samples or sampling bias (e.g., some subjects have
more expressions than others).

Although in Table 7 STM achieved slightly worse than
DAM in AUC for some AUs, STM showed a better improve-
ment in F1 metric, which more properly describes our
imbalanced detection task. STM’s improvement could be
limited due to insufficient training subjects, which hinder
STM from selecting and receiving proper supports from the
training samples. This can be also explained by the findings
of selection ability in Section 8.3.1. When the number of sub-
jects and training samples increase, as will be illustrated in
Section 8.5.3, STM is able to gain contributions from the
selected data, and thus the improvement becomes more
obvious. Overall STM achieved the most competitive per-
formance due to the properties of instance re-weighting,
weight refinement, and convergence.

8.3.3 Cross-Dataset AU Detection

Detecting AUs across datasets is challenging because of dif-
ferences in acquisition and participant characteristics and
behavior. Fig. 7 shows participant characteristics, context,
illumination, camera parameters among the differences that
may bias features. Generic SVMs fail to address such differ-
ences. Sections 8.3.1 and 8.3.2 have shown the effectiveness
of STM on within-dataset experiments involving within-sub-
ject and across-subject scenarios. This section aims to justify
that STM can attain not only subject adaptation but can be
naturally extended for cross-dataset adaptation. Specifically,
we performed two experiments, RU-FACS—GEMEP-FERA
and GFT—RU-FACS, using the same settings described
above.

Table 9 shows the results. One can observe that cross-
domain approaches outperformed a generic classifier in
most cases. It is not surprising because a generic classifier
does not model the biases between datasets. That is, in
the cross-dataset scenario, the training and test distribu-
tions vary more dramatically than in within-dataset sce-
nario, causing a generic classifier to fail to transfer the
knowledge from one dataset to another. This also
explains why cross-domain approaches showed consis-
tent improvements in the cross-dataset setting, compared
to the within-dataset results. Among the cross-domain
methods, STM consistently outperforms the others.
Observe STM gained improvement over SVM in Table 7
by 12.8 percent in AUC (76.5—86.3) and 33.7 percent in
F1 (40.6—54.3), and in Table 9(b) by 37.9 percent in AUC
(55.8—77.0) and 46.1 percent in F1 (28.6—41.8). The
advantages of STM over SVM becomes more obvious in
the cross-dataset experiments.

8.4 Holistic Expression Detection

Taking into account of individual differences, STM showed
improvement for AU detection. In this experiment, we ask
whether the same could be found for holistic expression
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TABLE 9
Cross-Dataset AU Detection: (a) RU-FACS—GEMEP-FERA, and (b) GFT—RU-FACS
(“A—B” Represents for Training on Dataset A and Test on B)

(a)] AUC | F1 Score (b) | AUC | FI Score
T- DA- T- DA- T- DA- T- DA-
AU| SVM KMM SVM SVM STM| SVM KMM SVM SVM STM AU| SVM KMM SVM SVM STM| SVM KMM SVM SVM STM
1 447 48.8 437 569 63.2| 463 464 41.8 46.1 504 1 458 636 703 712 73.7| 237 29.8 26.6 31.8 38.6
2 528 70.5 521 523 74.0| 474 542 386 454 54.6 2 464 628 685 682 71.7| 21.3 254 194 321 302
4 5277 554 542 527 58.6| 57.1 57.1 402 429 574 4 569 60.1 59.1 472 61.7| 183 245 207 194 285
6 73.5 552 77.1 799 834| 60.7 552 528 56.3 72.7 6 655 739 815 74.1 933| 422 46.8 304 38.7 614
12 56.8 60.1 709 76.1 781 | 67.7 6777 635 62.6 715 12 653 721 763 809 903| 432 476 458 56.8 62.2
15 | 551 521 593 60.2 58.6| 31.5 328 29.7 264 41.1 14 | 572 548 537 702 722| 258 238 259 29.7 36.2
17 443 41.1 39.1 462 52.7| 273 27.1 243 246 314 15 569 61.8 642 655 804 | 237 303 282 299 378
Av. ‘ 543 548 56.6 60.6 669 ‘ 483 486 41.6 435 542 17 24 545 648 726 726] 308 315 323 389 395
Av. ‘ 558 629 673 68.7 77.0 ‘ 28.6 325 28.7 347 41.8

detection. We used the major benchmarks CK+ [44] and
FERA emotion subchallenge [67] for this experiment, and
the same settings in Section 8.2, except for that the labels
were replaced as holistic expressions. Similar to [67], we uti-
lized every frame of a video to train and test our algorithm.
Because each video had only a single expression label
instead of a frame-by-frame labeling, F1 score is meaning-
less in this experiment. For CK+, 327 out of the original 593
videos were given a nominal expression label based on the
7 basic and discrete expressions: Anger, Contempt, Disgust,
Fear, Happy, Sadness, and Surprise. For GEMEP-FERA, 289
portrayals were retained one out of the five expression
states: Anger, Fear, Joy, Sadness, and Relief. The training set
included seven actors with 3~5 instances of each expression
per actor. We evaluated on the training set, which contained
a total of 155 videos. STM was also compared to alternative
approaches discussed in Section 8.3.2.

Table 10(a) shows the results from CK+. Note that DA-
SVM is unavailable in this experiment because it failed to
converge to a final classifier due to insufficient test data,
recalling that we used the last one-third frames of each
video for test. One can observe that a generic SVM per-
formed fairly well because positive (peak expressions) and
negative samples (neutral faces) are relatively easy to sepa-
rate in CK+. KMM and T-SVM resulted in suboptimal
results due to the lack of a weight-refinement step, and thus
were unable to rectify badly estimated weights for learning
the final classifier (see discussions in Section 7). This effect
becomes obvious when there is insufficient test data, such
as this experiment. On the other hand, STM considers the
labels for weight refinement and performed similarly as
well as a generic SVM.

Table 10(b) presents our results on GEMEP-FERA,
which served as a larger and more challenging benchmark
for evaluating the holistic expression detection perfor-
mance. In this experiment, each test video consisted of
tens of frames, and thus enabled DA-SVM to converge in
most cases. The generic SVM performed poorly due to
large variations in this dataset, such as head movements
and exaggerated expressions. Without the ability to select
meaningful training samples, the generic classifier suf-
fered from the individual differences. Other cross-domain
methods alleviated the person-specific biases and pro-
duced better results. Overall STM achieved the best aver-
aged performance. This also serves as evidence that when

training data grow larger and more complex, the improve-
ment of STM becomes clearer.

8.5 Analysis
8.5.1 |Initialization Order

A potential concern of STM is that the initialization
order could affect the convergence property and perfor-
mance. To evaluate this, we examined the initialization
order with wy (STM,,) and with s; (STM;). Standard
two-stage approach, i.e., solving the selection coefficients
first and then the penalized SVM (e.g., [31]), can be inter-
preted as STM,,, as discussed in Section 4. To validate
convergence property of STM, we randomized 10 initiali-
zation sets for STM,, and STM; respectively. Upon the
convergence of STM, we computed the objective differ-
ences in consecutive iterations (g(zy1)—g(z;)), and the
absolute sum of variable difference (||z¢+1—2:];). For the
cases where STM took fewer iterations to converge, we
set the difference of later iterations to 0.

Fig. 8a shows the curve of mean and standard devia-
tion of differences across the iterations of STM, and
STM;. Note that the differences were scaled for visuali-
zation convenience. The random initial value was
reflected in the first iteration and made a major differ-
ence with the value of the second iteration. One can

TABLE 10
Expression Detection with AUC on (a) CK+
and (b) GEMEP-FERA

Expression | SVM  KMM TSVM DA-SVM STM
Anger 95.1 853 76.1 - 96.4
Contempt 969 945 88.8 — 96.9
< Disgust 945  81.6 84.2 - 96.0
O  Fear 96.6 927 84.9 — 95.5
‘< Happy 99.4 93.9 86.7 - 98.9
~  Sadness 94.5 76.0 78.7 - 93.3
Surprise 97.3 64.5 81.8 - 97.6
Av. | 963  84.1 83.0 - 96.4
< Expression | SVM  KMM TSVM DASVM  STM
W Anger 3.1 665 70.4 78.8 78.6
o Fear 319 814 64.5 83.9 85.5
W Joy 902 335 78.9 71.1 95.0
= Relief 204 748 76.8 87.9 88.4
(> Sadness 73.4 80.2 77.1 74.7 84.8
S A | 494 673 735 79.3 86.5
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(c) Performance versus parameter choices. (d) Per-subject F1 score versus # training subjects. (e) Exemplar images of the GFT dataset [57].

observe that in STM,, and STM;, both the objective value
and difference between consecutive variables decreased
at each step and toward convergence, as theoretically
detailed in Section 5. Note that, although the resulting
solution was slightly different due to different initializa-
tion, the performance remains the same as both converge
to a critical point. We observed so by comparing the con-
fusion matrices during the experiments.

8.5.2 Parameter Choice

Recall that training STM involves two parameters: C' for
the tradeoff between maximal margin and training loss,
and A for the tradeoff between the SVM empirical risk
and the domain mismatch. This section examines the sensi-
tivity of performance with respect to different parameter
choices. Specifically, we ran the experiments of detecting
AU12 on the CK+ dataset with the parameters ranges
Ce{2710...,2"% and Xe{27'9,...,2!% Following the
experiment settings in Section 8.2, we computed an aver-
aged F1 score for evaluating the performance. We used
Gaussian kernel with a fixed bandwidth as the median dis-
tance between sample points.

Fig. 8c illustrates the contour plot of F1 score
versus different parameter pairs in terms of (log,(C),
log,(A)). As can be observed, the performance scatters
evenly in most region of the plot, showing that STM is
robust to the parameter choices when their values are
reasonable. The performance decayed when both (C,\)
become extremely small (< 275), as shown in the bottom
left of the plot. This is not surprising because smaller val-
ues of C'and A imply less emphasis on training loss and
personalization. Note that with large enough A, STM
does not need large C to achieve comparable F1, provid-
ing an explanation that personalization helps avoid
imposing large C and hence avoids overfitting. As a gen-
eral guideline for choosing parameters, we suggest a
small value of C' with a reasonably large A (thus encour-
aging a decision boundary with reasonably small distri-
bution mismatch).

We note that cross validation (CV) for domain adaptation
methods is difficult and remains an open research issue. As
also mentioned in [64], this issue becomes vital in a conven-
tional scenario where the number of training samples is
much smaller than the number of test samples. However, in
our case, we always have much more training samples than
test samples, and thus, the CV process is less biased under
covariate shift. In addition, as can be seen in Fig. 2 of [64],
with proper o (kernel bandwidth) and standard CV, KMM

consistently reaches lower error than the KL-divergence-
based CV [64]. This serves as a justification for KMM'’s
ability to estimate importance weights.

8.5.3 Domain Size

The intuition for STM to work better in facial expression
analysis is a judicious selection of training samples. Richer
diversity grants STM a broader knowledge to select better
candidates that match the test distribution. This experi-
ment examines performance changes w.r.t. diversities of
the source domain, which we describe as the domain size
or the number of training subjects. Intuitively, the larger
number of training subjects is, the more diverse the train-
ing domain is, and thus the more likely STM could per-
form better. We compared STM to a generic SVM (with
cross-validation) to contrast the performance.

This experiment was performed on AU12 using the
RU-FACS dataset. A subset from 3 to 27 training subjects
was randomly picked as a shrunk domain. The leave-
one-subject-out protocol and F1 score were used following
Section 8.2. Fig. 9a illustrates the effects of #training subjects
on averaged F1 scores. For each domain size, the mean and
standard deviation were computed on F1 scores over all test
subjects. Test subjects without true positives were ignored
because their precision and F1 scores were not computable.
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Fig. 9. Performance versus domain size: The averaged and standard
deviation of F1 score on (a) RU-FACS. (b) and (c) show the F1 scores
on the GFT dataset before and after removing the outlier subjects.
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One can observe that, as #training subjects grew, STM
achieved higher F1 scores, and also performed more consis-
tently with lower standard deviation. This observation
imitates Section 8.3.2, where a source domain with poor
diversity was shown to limit STM’s performance. On the
other hand, the generic classifier improved when #training
subjects rose to 12. However, with more training subjects
being introduced, its performance was slightly lowered due
to the biases caused by individual differences. Note that,
because the training subjects were downsampled in a ran-
domized manner, it is possible that STM achieved better
performance on a domain with less training subjects.

As another justification, we examined the effects of
domain size on the GFT dataset [57], which contains a larger
number of subjects and more intensive facial expressions
than RU-FACS. The GFT dataset records videos of real-life
social interactions among three-person groups in less con-
strained contexts. Videos were recorded using separate
wall-mounted cameras facing each subject; Fig. 8e shows
exemplar frames. The videos include moderate-to-large
head rotations and frequent occlusions; facial movements
are spontaneous and unscripted. We selected 50 videos
with around 3 minutes each (5,400 frames).

Following the same procedure, we randomly picked a
subset of subjects varying from 4 to 49 as the shrunk
domains. Fig. 9b shows the F1 scores with respect to the
number of training subjects. One can observe the aver-
aged F1 score increased with #training subjects, although
the standard deviation fluctuated. To study the fluctua-
tion, we broke down the averaged F1 into individual sub-
jects corresponding to different training sizes, as shown
in Fig. 8d. Each row represents a test video; each column
represents one number of training subjects (ranging from
4 to 49). Note that for subject four (the 4th row), there is
no F1 score because AU12 was absent. One can observe
that for six outlier subjects (e.g., rows 19, 20, 39, 40, 47,
48), their F1 scores remained low even as the number of
subjects was increased. This result suggests that these
subjects share no or few instances in the feature space.
Visual inspection of their data was consistent with this
hypothesis. The outliers were ones with darker skin color,
asymmetric smiles or relatively large head pose varia-
tions. Thus, for these subjects STM could offer no benefit.
This finding suggests the need to include great heteroge-
neity in training subjects. When these subjects were omit-
ted, as shown in Fig. 9c, the F1 scores are markedly
higher. The influence of the domain size becomes clear
and replicates Fig. 9a. It is interesting to note that, for
generic classifiers, the performance increased until 24
training subjects and then drops abruptly. This obse-
rvation serves as another evidence that individual differ-
ences (introduced by increasing number of training
subjects) could bias generic classifiers.

Between these two experiments, generally the averaged
F1 score in GFT is higher than that in RU-FACS. At least
two factors may have accounted for this difference. One is
that participants in GFT may have been less inhibited and
more expressive. In RU-FACS, subjects were motivated to
convince an examiner of their veridicality. They knew that
they would be penalized if they were not believed. In the
three-person social interaction of GFT, there were no such

negative contingencies. Subjects may have felt more relaxed
and become more expressive. More intense AUs are more
easily detected. The other factor is that inter-observer reli-
ability of the ground truth FACS labels was likely much
higher for GFT than for RU-FACS. Kappa coefficients for
GFT were exceptionally good. While reliability for RU-
FACS is not available, we know from past confirmation-
coding that inter-observer agreement was not as high. Less
error in the GFT ground truth would contribute to more
accurate classifier performance.

8.6 Discussion

In above experiments, we have evaluated STM against alter-
native methods in many scenarios: Within-subject (Sec-
tion 8.3.1), cross-subject (Section 8.3.2), cross-dataset
(Section 8.3.3), and holistic expression detection (Section 8.4).
We also systematically analyzed STM on its initialization
order, and the sensitivity to parameters and domain size
(Section 8.5). STM consistently outperformed a generic SVM
and most alternative methods. The advantage of STM is
clearest in GFI, where the variety of subjects are more
extensive, and slightly so, in RU-FACS. The results indicate
a more obvious improvement in F1 than in AUC, in large
complex datasets than in posed datasets, in cross-dataset
scenario than in within-dataset scenario, and with more
training subjects than with fewer ones.

STM has some limitations. For example, it suffers
from the lack of training subjects or crucial mismatch
between training and test distributions, which are known
as common drawbacks in unsupervised domain adapta-
tion methods. For a theoretical analysis in terms of per-
formance versus the number of samples, Corollary 1.9 in
KMM [29] reaches a transductive bound for an estimated
risk of a re-weighted task, given the assumptions of lin-
ear loss and data being iid. However, it remains unclear
how to theoretically analyze STM’s performance in terms
of the number of test samples, because STM involves
nonlinear loss functions and the data are from real-world
videos (non-iid).

9 CONCLUSION AND FUTURE WORK

Based on the observation of individuals differences, we
have presented Selective Transfer Machine for personalized
facial expression analysis. We showed that STM translates
to a biconvex problem, and proposed an alternating algo-
rithm with a primal solution. In addition, we introduced
L-STM, an extension of STM that exhibited significant
improvement when labeled test data are available. Our
results on both AU and holistic expression detection sug-
gested that STM is capable of improving test performance
by selecting training samples that form a close distribution
to test samples. Experiments using within-subject, cross-
subject, and cross-dataset scenarios revealed two insights:
(1) Some training data are more instrumental than others,
and (2) the effectiveness of STM scales as the number of
training subjects increases.

It is worth noticing that STM can be extended to other clas-
sifiers with convex decision functions and losses, such as
logistic regression. This is a direct outcome of Property 1 in
Section 5.1. However, for non-convex cases, such as random
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forest, local minimum could cause worse performance. We
leave extensions to non-convex classifiers as a focus of future
work. Moreover, improving STM’s training speed could
be another direction due to the QP for solving s. Finally, while
this study focuses evaluations on facial expressions, STM
could be applied to other fields where object-specific issues
are involved, e.g., object or activity recognition.
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