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In this supplementary material, we provide details and results omit-
ted in the main text.

• Section 1: Key advantages of FabricDiffusion.
• Section 2: Additional details on dataset construction.
• Section 3: Additional Implementation Details.
• Section 4: Additional results and analyses.

1 KEY ADVANTAGES OF FABRICDIFFUSION

Normalized texture representation. Unlike existing image-to-
3D texture transfer methods, FabricDiffusion generates normalized
textures that can be used in the 2D UV space. We highlight two
outputs: (1) High-quality, distortion-free, and tileable texture maps
from a non-rigid garment surface. (2) Seamless integration with
SVBRDF material estimation pipelines, which usually build upon
the first output — standard close-up views of the materials as input.
Sim-to-real generalizability. The conditional diffusion model,
trained entirely using synthetic rendering images, proves highly
effective in generating normalized texture maps from real-world im-
ages. We attribute this success to: (1) Our model bridging the domain
gap between real and rendered textures by conditioning on the real
input texture. (2) Synthetic data offering controllable supervision
and diverse geometric, illumination, and occlusion variations.
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Data and computational efficiency. During training, our method
of creating pseudo-BRDF material is effective in scaling up the train-
ing examples. During inference, our model performs feed-forward
sampling from Gaussian noise, which takes approximately less than
5 sec on a single NVIDIA A6000 GPU. In contrast, existing texture
transfer methods often rely on costly per-example optimization.

2 DETAILS ON DATASET CONSTRUCTION

Fabric BRDF and textile dataset. To curate textures and their
BRDF materials, we use several public libraries (AmbientCG1, Share-
Textures2, 3D Textures3) under the CC0 license and supplement
them with additional assets purchased from artists. The real BRDF
dataset we collected comprises 3.8k assets, encompassing a broad
spectrum of fabric materials. The pseudo-BRDF dataset contain 100k
fabric textures with only RGB color images. We reserved 200 materi-
als from the real BRDF dataset for testing our BRDF generator, and
800 materials from the pseudo BRDF dataset (combined with the
previous 200 materials) for testing the texture flattening module.
Our textile images are collected from online sources including

Openverse4, PublicDomainPictures5, and ARTX6 under CC0 or
royalty-free license.
3D garment mesh dataset. We collect 22 raw 3D garment meshes
for training and 5 garment meshes for testing. That is, during the
testing with synthetic data, the model has not seen the geometry
from the 5 testing meshes. With the method described in Section 3.2
of the main paper, we construct approximately 220k flat and warped
texture pairs for training and 5k pairs for testing.
Logos and prints dataset. We collect a dataset of 7k prints and
logos in PNG format with CC0 license. Their corresponding pseudo-
BRDF materials are generated by assigning a uniform roughness
value sampled fromU(0.4, 0.7), a uniform metallic value sampled
fromU(0, 0.3), and a default flat normal map. In cases where a print
was uniformly black, we converted it to white if the background
texture was also dark. By compositing the logo prints onto the 3D

1https://ambientcg.com/
2https://www.sharetextures.com/
3https://3dtextures.me/
4https://openverse.org/
5https://publicdomainpictures.net/en/
6https://architextures.org/
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garments, we obtain a total of 82k warped print images, following
the method outlined in Section 3.2 of the main paper.

3 ADDITIONAL DETAILS OF OUR METHOD

Details on physics-based rendering. During rendering, each
image pixel value at a specific viewing direction can be computed
using the following reflectance equation:

𝐿(𝑝,𝜔𝑜 ) =
∫
Ω
𝑓𝑟 (𝑝,𝜔𝑖 , 𝜔𝑜 )𝐿𝑖 (𝑝,𝜔𝑖 ) (𝜔𝑖 · 𝑛𝑝 )d𝜔𝑖 , (1)

where 𝐿 is the rendered pixel color along the direction 𝜔𝑜 from the
surface point 𝑝 , Ω = {𝜔𝑖 : 𝜔𝑖 · 𝑛𝑝 ≥ 0} denotes a hemisphere with
the incident direction 𝜔𝑖 and surface normal 𝑛𝑝 at point 𝑝 , 𝐿𝑖 is the
incident light that is represented by the environment map, and 𝑓𝑟
is known as the BRDF that scales or weighs the incoming radiance
based the material parameters (𝑘𝑑 , 𝑘𝑛, 𝑘𝑟 , 𝑘𝑚) of the garment sur-
face. By aggregating the rendered pixel colors along the direction
𝜔𝑜 (i.e., camera pose), we are able to obtain the rendered the image
of the input patch (image 𝑥 in Equation (1) of the main paper).
Classifier-free guidance for conditional image generation We
leverage Classifier-Free Guidance (CFG) [Ho and Salimans 2022]
during the training for trading off the quality and diversity of sam-
ples generated by our FabricDiffusion model. The implementation
of CFG involves jointly training the diffusion model for conditional
and unconditional denoising, and combining the two score estimates
(the ℓ2 loss of the noise term in Equation (3) of the main paper) at
inference time. Training for unconditional denoising is done by
simply setting the conditioning to a fixed null value E(𝑥) = ∅ at
some frequency during training. At inference time, with a guidance
scale 𝑠 ≥ 1, the modified score estimate ˜𝑒𝜃 (𝑥𝑡 , E(𝑥)) is extrapolated
in the direction toward the conditional 𝑒𝜃 (𝑥𝑡 , E(𝑥)) and away from
the unconditional 𝑒𝜃 (𝑥𝑡 ,∅):

˜𝑒𝜃 (𝑥𝑡 , E(𝑥)) = 𝑒𝜃 (𝑥𝑡 ,∅) + 𝑠 · (𝑒𝜃 (𝑥𝑡 , E(𝑥)) − 𝑒𝜃 (𝑥𝑡 ,∅)) . (2)

CFG enhances the visual quality of generated texture maps and
ensures that the sampled images more accurately correspond to the
input texture in terms of color, pattern, and scale.
Strategy for determining tiling scales. After extracting PBR ma-
terial maps from an image exemplar, we tile them in the garment
UV space for realistic rendering. The key question is how to deter-
mine the scale for tiling? We investigate two specific strategies: (1)
Proportion-aware tiling. We use image segmentation to calculate
the proportion of the captured region relative to the segmented
clothing, maintaining the same ratio when tiling the generated tex-
ture onto the sewing pattern. (2) User-guided tiling. We emphasize
that an end-to-end automatic tilling method may not be optimal,
as user involvement is often necessary to resolve ambiguities and
provide flexibility in fashion industries.
Implementation details. We use pre-trained Stable Diffusion v1.5
as the backbone of the normalized texture map generation and fine-
tune it on our texture and print datasets, respectively. Both the input
and output scales are set as 256×256px. We use a batch size of 512
and a learning rate of 5×10−5. It takes roughly 2 days (20k iterations)
to train on four NVIDIA A6000 GPUs. For PBR materials estimation,
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Fig. 1. Results on texture transfer on synthetic data. Given the input
image of the 3D garment and a captured patch, our method generates a
normalized texture map that is flat and tileable, along with the correspond-
ing PBR materials. The PBR materials maps can be applied to the target
3D garment with different geometry for reliable rendering. Our model is
capable of removing shadows (1st row), disentangling distortions (1st &
2nd row), and capturing physical properties (3rd row) from the input fabric
texture. Note that, both the input 3D garment meshes and textures in this
figure were not used for model training. See Table 1 of the main paper for
qualitative results.

Table 1. Quantitative comparison on texture images extraction from
3D garments. Results are evaluated on synthetic testing data. The ground-
truths are normalized texture images that are flat and with a unified lighting
condition. Our method outperforms Material Palette [Lopes et al. 2024]
across different evaluation metrics.

LPIPS↓ SSIM↑ MS-SSIM↑ DIST↓ CLIP-s↑

Material Palette 0.66 0.27 0.31 0.45 0.89
FabricDiffusion (ours) 0.53 0.32 0.32 0.32 0.91

we fine-tuned the pre-trained MatFusion model for roughly 1 hour
with our 3.8k BRDF materials training data.

4 ADDITIONAL RESULTS

Texture transfer on synthetic data.We first validate our method
using synthetic data and show the qualitative results in Figure 1.
We test on textured garments with ground-truth BRDF materials,
enabling controlled evaluation of geometric distortions and illumina-
tion variations. Our method reliably generates normalized textures
and PBR materials. As our focus is on clothing fabrics with minimal
metallic properties, we omit metallic map results for simplicity in
the following experiments. Quantitative results are shown in Table 1
of the main paper.
Additional results on textures extraction. Generating a nor-
malized texture image plays a crucial intermediate step to ensure
reliable texture transfer. Figure 7 (in the main paper) shows some
cases of the generated normalized textures. In Table 1, we provide
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a quantitative analysis using synthetic data, for which we have
ground-truth textures, and compare our method with state-of-the-
are methods. As we observe, our method consistently outperforms
Material Palette [Lopes et al. 2024] across various evaluation met-
rics. As discussed in Section 2 and Section 4.1 of the main paper,
personalization-based methods struggle at capturing fine-grained
texture details, or disentangling the effects of distortion.
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